
PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021) 85

Conformal Mappings with SymPy: Towards
Python-driven Analytical Modeling in Physics

Zoufiné Lauer-Baré‡∗, Erich Gaertig‡

F

Abstract—This contribution shows how the symbolic computing Python library
SymPy can be used to improve flow force modeling due to a Couette-type flow,
i.e. a flow of viscous fluid in the region between two bodies, where one body is
in tangential motion relative to the other. This motion imposes shear stresses
on the fluid and leads to a corresponding fluid flow. The flow forces exerted
on the moving component are of interest in many applications, for example in
system simulations of electrohydraulic valves. There, an eccentrically mounted
cylindrical core (the armature) moves within an oil-filled tube (the polecap),
experiencing fluid forces due to the viscous oil. SymPy can help to understand
the range of validity as well as the limitations of analytical relations that are
commonly used as standard approximations for these type of forces in many
leading system simulation tools. In order to motivate these approaches, this
contribution elucidates how the velocity of the flow is determined analytically by
solving the Stokes equation in an eccentric annulus with a conformal mapping-
approach. Afterwards analytical postprocessing leads to the corresponding flow
force. The results obtained with SymPy are then checked against full 3D
computational fluid dynamics (CFD) simulations. This work concludes with the
combination of new Couette flow force approximations and similar results for the
known Poiseuille flow (i.e. fluid flow induced by a pressure difference) to derive
new relations for a combined Couette-Poiseuille flow force. This article is ad-
dressed to natural scientists and engineers that are interested in the application
of conformal mappings and Taylor-expansions with the help of SymPy when
solving partial differential equations analytically.

Index Terms—Physical modeling, Stokes equation, Eccentric annulus, Flow
force, Conformal mapping, SymPy

Introduction

In times of digitization and wide use of numerical methods in
physics, the question emerges whether analytical tools, such as
Taylor-expansions or conformal mappings, are still of interest and
how they can be utilized in industrial and academic research.

Computational power has increased significantly in the last
years and many physical problems, ranging from electromag-
netism to fluid dynamics and structural mechanics, can be
solved directly by numerically integrating the corresponding three-
dimensional PDEs, i.e. the Maxwell, Navier-Stokes or elasticity
equations. However, when modeling physical systems such as
hydraulic valves, transmission systems, engines, cars or planes,
a direct 3D-approach for all relevant physical effects is still too
difficult. In these situations, look-up tables containing a limited set
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of 3D-results are often included into 1D-system models for later
interpolation. Alternatively, analytical approximations are used
which are already included in the corresponding system simulation
tools (e.g. Simcenter Amesim, [K19], [LGK21]).

Figure 1 schematically shows such a valve system with input
data from look-up tables and 1D-component symbols.

Fig. 1: Valve system model with input data from look-up tables and
1D-component symbols as used in standard system simulation tools

Hence, in modern system modeling there are currently two
main applications of analytical approximations:

• Analytical approximations are included in the system sim-
ulation software components themselves, or

• The user includes look-up tables for interpolation, entirely
or partially generated with analytical approximations.

In this work we will focus on analytical approximations of
flow forces that act upon the inner cylinder in an eccentric annular
flow domain. Such forces are of interest in, for example, hydraulic
valves that are electromagnetically actuated; see Figure 2. When
the armature moves within the oil-filled interior of the polecap,
that movement causes a Couette-type annular flow, i.e. a viscous
flow due to motion of a solid body, between both components.

For an analytical treatment, this geometry has to be simplified
considerably. Both armature and polecap are therefore modeled
as solid and hollow cylinders respectively. Since in realistic
scenarios, perfect concentricity between these two parts is rarely
obtained, the armature can be supported eccentrically within the
poletube. A cross-sectional cut perpendicular to the symmetry axes
of both cylinders then leads to Figure 3.
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Fig. 2: Armature and polecap in an electromagnetic actuator; the
interior of the polecap is filled with oil (not shown here)

Fig. 3: Cross-section of the simplified geometry of Figure 2, leading
to an eccentric annular flow domain

It shows the general case where an inner cylinder of radius
R1 is vertically displaced by a distance b from the center of an
outer cylinder with radius R2. The eccentric annular flow domain
is contained in the region between these two cylinders.

In leading system simulation tools, the flow force that acts
upon the inner cylinder in Figure 3 is typically approximated by
the relation

Fsystem =−2π
R1lµuR

δ
. (1)

Here µ denotes the viscosity of the fluid, l the common length of
both cylinders, uR the velocity and δ = R2−R1 the annular gap,
i.e. the difference between outer and inner radius. Utilizing the
capabilities of the open-source Computer Algebra System SymPy
(as done e.g. in [MSP17]), we answer the following two questions:

1) How is Equation (1) related to the corresponding Stokes
equation?

2) Does eccentricity ε = b/δ change this dependency and,
if so, how exactly?

Furthermore, the velocities and forces obtained by solving
the Stokes problem (i.e. the linear part of the Navier-Stokes
system) with SymPy are compared to corresponding numerical
solutions of the full, nonlinear Navier-Stokes equations, obtained
from the commercially available Finite Volume tool ANSYS-CFX.
Finally this article concludes with a note on the eccentric annular

Poiseuille flow (that is a flow due to a pressure difference) and
finishes with a comment on combined Couette-Poiseuille flow
velocities and forces.

Material and methods

In order to solve the Stokes problem

−µ∆u =
d p
l

for R1 <
√

x2 +(y+b)2 and
√

x2 + y2 < R2

u = 0 for
√

x2 + y2 = R2

u = uR for
√

x2 +(y+b)2 = R1 , (2)

the following SymPy functions and libraries were used: im, re,
subs, simplify and lambdify. For the postprocessing the
SymPy functions diff and series were particularly useful.
Additionally, the latex function allowed to use the latex code
of the formulae. For the interactive development with SymPy the
Jupyter Notebook is used as GUI; there the latex math
rendering proved to be very useful. The visualization is done with
NumPy [HMW20] and Matplotlib [H07]. Code snippets are
provided within the text in the subsequent sections. In addition,
supplemental Python examples are available at this public GitHub
repository1.

The theoretical methods used here are conformal mappings
(inspired by [PHW33] and [BC09]) and Taylor-expansions, fol-
lowing [LGK21]. Equations (2) describe Couette flow when
d p = 0 and uR 6= 0 and Poiseuille flow, when d p 6= 0 and uR = 0.
Furthermore, Equations (2) describe Couette-Poiseuille flow when
d p 6= 0 and uR 6= 0.

Solution of the Stokes problem within a concentric annulus for
Couette-type flow

The solution of the Stokes problem within a concentric annulus
for a Couette-type flow is well known, e.g. [LL87], and given by

u(r) = uR
ln(r/R2)

ln(R1/R2)
, (3)

where r =
√

x2 + y2. This can easily be checked by using the
diff function of SymPy. Keep in mind, that the natural logarithm
in Equation (3) is denoted by log there.

import sympy as sym
u_R, R1, R2, x, y = sym.symbols('u_r, R1, R2, x,

y', real=True)
u = u_R * sym.log(sym.sqrt(x**2 + y**2)/R2)

/ sym.log(R1/R2)
laplacian = sym.diff(u, x, 2) + sym.diff(u, y, 2)

It then follows that

>>> sym.simplify(laplacian)

0

as expected. Further analytical solutions to the Laplace problem
for other simple domains such as circles or rectangles can be found
in e.g. [G13], [CB81] or [PP12].

1. https://github.com/zolabar/ConformalMappingSympy

https://github.com/zolabar/ConformalMappingSympy
https://github.com/zolabar/ConformalMappingSympy
https://github.com/zolabar/ConformalMappingSympy
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Transformation of the eccentric annulus to a simple domain
with conformal mappings

In the following two Sections we will show with SymPy how
the Couette flow problem within an eccentric annular domain
can be transformed into a problem within a concentric annular
region or within a rectangle. In these simple geometries analytical
solutions to this problem are well-known. In order to transform the
domains we make use of complex analysis, inspired by the French
mathematician Jacques Hadamard (1865-1963):

The shortest path between two truths in the real
domain passes through the complex domain.

The ideas and strategies of conformal mappings using SymPy
are mostly described in the following Section, where a Möbius
transform is used.

Transformation to a concentric annulus with Möbius transforms

Using a Möbius transform (also called a bilinear transformation)
in the form of

w(z) = ξ + iη =
z+ ia
az+ i

(with z = x+ iy) , (4)

an eccentric annulus in the complex z-plane can be mapped onto
a concentric annulus in the corresponding w-plane. The Möbius
transform used here is a slightly adapted version of the one
presented in [BC09]; a is a constant (given in [BC09]) and will be
defined further down in this Section.

First of all, we will need some additional symbols for working
with complex numbers and for the constant a.

z, a = sym.symbols('z, a', real=True)

Scaling the geometry in such a way that the outer circle ends up
having a radius of 1

w = (z + sym.I * a)/(a * z + sym.I)
w = w.subs(z, x/R2 + sym.I * y/R2)

and separating real and imaginary part with SymPy functions

xi_ = sym.simplify(re(w))
eta_ = sym.simplify(im(w))

one arrives at

ξ =
ax2 +(R2 +ay)(R2a+ y)

a2x2 +(R2 +ay)2 (5)

η =
x(−R2−ay+a(R2a+ y))

a2x2 +(R2 +ay)2 . (6)

The latex rendering in the Jupyter Notebook shows di-
rectly the result of code in proper mathematical symbols, for
instance

>>> sym.simplify(im(w))

x(−R2−ay+a(R2a+ y))

a2x2 +(R2 +ay)2

After the scaling, the Möbius transform constant a reads as

a =

R2

(√(
1−
(
−R1

R2
+ b

R2

)2
)(

1−
(

R1
R2

+ b
R2

)2
)
+ cM

)
2b

(7)

with cM given by

cM =

(
−R1

R2
+

b
R2

)(
R1

R2
+

b
R2

)
+1 . (8)

Applying the Möbius transformation (4) to the boundaries leads to
a concentric annular flow domain in the w-plane with inner radius
1 and outer radius R, given by

R =

R2

(√(
1−
(
−R1

R2
+ b

R2

)2
)(

1−
(

R1
R2

+ b
R2

)2
)
− cM

)
2R1

.

(9)
This new flow domain is depicted in Figure 4.

Fig. 4: Concentric annular flow domain after Möbius transformation;
keep in mind that armature and polecap are swapped in the w-plane

Conformal mappings preserve harmonic functions, so the
Stokes equation in the w-plane is of the same form as in the z-
plane. However, Equation (4) interchanges inner and outer bound-
aries. This will affect the corresponding boundary conditions one
needs to specify there so that the Stokes-problem in the w-plane is
given by

−∆u = 0 for 1 < ρ < R

u = 0 for ρ = 1

u = uR for ρ = R . (10)

Using the structure of Equation (3), the velocity in the w-plane is
given by

u(ρ) = uR
ln(ρ)
ln(R)

, (11)

where ρ =
√

ξ 2 +η2.
With the parameters specified in Table 1, the velocity in

the w-plane (i.e. Equation (11)) can be used as an example for
visualization and further evaluation.

The very convenient SymPy function lambdify is used
to compute numerical values that are postprocessed by
Matplotlib and depicted in Figure 5. The term R_ in the
following code block denotes the numerical expression of the outer
radius in the w-plane (see Equation (9)).

xi, eta = sym.symbols(xi, eta, u_R, real=True)
u_w = u_R * sym.log(sym.sqrt(xi**2 + eta**2))

/ sym.log(R)
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Parameter Value Unit

R1 5 mm
R2 7.6 mm
b 1.3 mm
uR 0.4 m/s

TABLE 1: Geometry parametrization and imposed velocity for the
simulations presented in this Section

u_w = u_w.subs(u_R, 0.4).subs(R, R_)
u_w = sym.lambdify((xi, eta), u)

Fig. 5: Flow velocity in concentric annulus (w-plane); the boundary
condition (uR = 0.4 m/s) is applied to the outer cylinder, see Equation
(10)

At this stage it is pointed out that when working symbolically
with SymPy one has to separate consistently between expressions
and symbols. For instance xi and eta are symbols whereas
xi_ and eta_ are expressions. The user can replace symbols
by corresponding expressions when it best suits him/her. To avoid
confusion, in this work the associated expression to a symbol s is
tagged with an underline s_.

Now simply expressing ξ ,η in (11) in terms of x and y (see
Equation (5)), one easily obtains the fluid velocity in the eccentric
annulus.

u = u_w.subs(xi, xi_).subs(eta, eta_)
u = sym.lambdify((x, y), u)

Figure 6 depicts the velocity distribution in the original z-plane. As
one can see, the fluid gets dragged along the inner cylinder with
the prescribed speed of 0.4 m/s. The velocity distribution then
continuously drops down when moving radially outwards until it
reaches zero along the outer cylinder.

Mapping rectangles onto eccentric annuli by bipolar coordinate
transformations

Another way of solving this problem utilizes conformal mappings
related to bipolar coordinates. These coordinates are described
in [PHW33] and are commonly used in elasticity theory (e.g.
[L13] and [TG10]). For this contribution, we slighty adapted this

Fig. 6: Flow velocity in eccentric annulus (z-plane); here the fluid
moves with uR = 0.4 m/s along the inner cylinder, as required by
Equation (2)

transformation in such a way that it can be applied to the eccentric
annulus of Figure 3. The mapping is given by

z = c · tan
(w

2

)
− iγ (with w = ξ + iη) , (12)

where γ, c are constants from [PHW33] which are explicitly given
in [W06] and [SL78]; the term iγ is added by the authors. Using
this transformation, a properly chosen rectangular domain gets
mapped onto an eccentric annulus; see Figure 7 for the domain in
the w-plane. The boundaries are color-coded in order to visualize
how the mapped borders are traversed in the z-plane. In addition
the vertices are labelled and some coordinate lines are highlighted
as well.

Fig. 7: Rectangular domain in w-plane with color-coded boundaries,
labelled vertices and some coordinate lines

This domain gets transformed as shown in Figure 8. The
vertices A and C (as well as D and F) are mapped onto the same
respective points, i.e. A′=C′ and D′=F ′. The color-coding shows
that inner and outer cylinder are traversed counter-clockwise when
moving in positive ξ -direction in the w-plane.

Furthermore the left and right vertical boundaries in the w-
plane are identified in the z-plane, so periodic boundary conditions
need to be applied to any PDE one wants to solve on the simple
rectangle.
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Fig. 8: Mapped boundaries and coordinate lines in z-plane; the color-
coding visualizes how the mapped borders are traversed here

Please note that for demonstrational purposes the radius of the
inner circle in Figure 8 is reduced in order to indicate how the
coordinate lines are distorted. For conformal mappings however,
although distances between corresponding points and lengths of
curves are changing, the intersecting angle between any two curves
is preserved.

Further details on the relation between conformal mappings
and bipolar coordinates can be found in e.g. [CTL09]. Inverting
Equation (12) and separating real and imaginary parts as in the
previous Section one gets

ξ = −arctan2

(
2cx,c2− x2− (γ + y)2

)
(13)

η =
1
2

ln
(

x2 +(y+ γ + c)2

x2 +(y+ γ− c)2

)
. (14)

Here, arctan2(y,x) is the 2-argument arctangent which returns the
polar angle of a point with Cartesian coordinates (x,y).

The constants from [W06] and [SL78] read as

F =
1

2b

(
R2

2−R1
2 +b2) (15)

c =
√

F2−R2
2 (16)

α =
1
2

ln
(

F + c
F− c

)
(17)

β =
1
2

ln
(

F−b+ c
F−b− c

)
(18)

γ = c coth(α) . (19)

In the w-plane the corresponding Stokes-problem within the rect-
angular domain of Figure 7 is then prescribed by

−µ∆u = 0 for ξ ,η ∈ [−π,π]× [α,β ]

u = 0 for η = α

u = uR for η = β

u(−π,η) = u(π,η)

∂u(−π,η)

∂ξ
=

∂u(π,η)

∂ξ
. (20)

The last two equations specify the periodic boundary conditions
one has to supply additionally. The solution to the system of
equations (20) is easily obtained and given by the simple relation

u(ξ ,η) =
uR (η−α)

β −α
. (21)

Figure 9 shows a Matplotlib-visualization of the velocity
distribution in the w-plane which is constant along ξ and increases
linearly with η .

Fig. 9: Flow velocity in rectangular domain (w-plane); here the
proper boundary condition uR = 0.4 m/s is applied to the upper
boundary

By again expressing η in terms of x and y, one obtains the very
same velocity distribution in the eccentric annulus (in the z-plane)
as already depicted in Figure 6.

It is interesting to remark, that Equations (11) and (21) look
somehow related to each other due to the logarithm in both
relations. However it is not immediately evident that they are
actually identical. Nevertheless, due to existence and uniqueness
theorems for the Stokes equation from [L14], one knows that
relations (11) and (21) are in fact the same.

Figure 10 compares these two analytically obtained velocities
with results from a 3D computational fluid dynamics simulation
(using ANSYS CFX) solving the full Navier-Stokes system. For
these computations a velocity of uR =−0.4 m/s is prescribed onto
the inner cylinder as boundary condition. All obtained velocities
are evaluated along the symmetry axis of the annulus across the
larger gap. The inner boundary is then reached on the left side, the
outer boundary is hit on the right side of this Figure.

As one can see, the two analytical approaches lead to the same
velocity distribution across the larger gap and both boundary con-
ditions are met exactly. On the other hand, due to the finite mesh
size particularly at the outer radius R2, the boundary condition
there is only approximately satisfied.

In the next Section, the corresponding flow force is obtained
with SymPy-driven postprocessing and then compared again to
the forces obtained by 3D-CFD and numerical evaluation.

Postprocessing

Force calculation and comparison with 3D-CFD

The relation for the annular flow force that acts upon the armature
in Figure 4 is well known ([PHW33] or a more recent work



90 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

7.46 7.48 7.50 7.52 7.54 7.56 7.58 7.60
y in mm

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

u 
in

 m
/s

@ larger gap
analytical bipolar
analytical moebius
cfd

Fig. 10: Flow velocity across the large gap within an eccentric
annulus (eccentricity ε = 0.5); armature on the left, polecap on the
right

[LGK21]) and is given by

Fe =−
l∫

0

2π∫
0

(
µ ρ

d
dρ

u(ρ)
)

ρ=R
dϕ dz . (22)

This equation can be implemented in SymPy using the velocity
distribution from Equation (11).

>>> u_w = u_R * sym.log(rho)/sym.log(R)
>>> u_w

uR
ln(ρ)
ln(R)

Using the diff, subs and integrate functions from SymPy
then leads to

>>> Fe = mu * sym.diff(u_w, rho)
>>> Fe = (rho * Fe).subs(rho, R)
>>> Fe = sym.integrate(Fe, (z, 0, l))
>>> Fe = -sym.integrate(Fe, (phi, 0, 2 * pi))
>>> Fe

−2π
lµuR

ln(R)

Substituting the relation for R into Fe, the flow force of the
eccentric annular Couette flow is obtained. It can be manually
adapated to the esthetic preferences of the authors, e.g.

FCouette = −2π
lµuR

ln[(c f R2)/R1]
(23)

c f = −1
2

(
c1c2 +

√(
1− c2

1

)(
1− c2

2

)
+1
)

c1 =
R1

R2
+

b
R2

c2 = −R1

R2
+

b
R2

.

Equation (23) therefore answers the second question posed in
the Introduction: The flow force is decisively influenced by the
eccentricity.

Alternatively, the Couette flow force can be derived from
Equation (21), which is obtained from solving the equivalent
Stokes-problem in bipolar coordinates and for this case it is given
by

FCouette2 =−2π
lµuR

β −α
. (24)

Parameter Value Unit

µ 11.53 mPa · s
l 11.95 mm
ρ 807 kg/m3

TABLE 2: Additional fluid- and geometry-parameters used for the
3D-CFD simulations

With the data in Table 1 and Table 2, Figure 11 shows a compari-
son between the analytically obtained relations (23) and (24) and
results from 3D-CFD simulations of the full Navier-Stokes system
for a wide range of different eccentricities.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.020

0.025
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0.040

|F
| i

n 
N
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Fig. 11: Flow force according to Equation (22), acting on the inner
cylinder of an annulus with varying eccentricity ε

Again, both analytical relations agree perfectly but since the
numerical CFD-results for the velocity slightly diverge from the
analytical solution especially towards the outer boundary (as seen
in Figure 10), the flow force computed from this data also shows
smaller deviations.

Taylor-expansions and small gaps

Equation (23) is even defined for the concentric case. Substituting
b = 0 into this relation and simplifying the resulting expression
leads to

Fc =−uR
2πµl

ln(R2/R1)
. (25)

In order to finally answer the first question of the Introduction, i.e.
how Equation (1) is related to the Stokes equation, the series
function of SymPy is used. With series, a Taylor-expansion of
Fc in δ = R2−R1 around δ = 0 can be performed

>>> sym.series(Fc.subs(R2, R1 + delta), delta, 0, 2)

πδ lµuR

6R1
−πlµuR−

2πR1lµuR

δ
+O

(
δ

2) (26)

The answer to the aforementioned question then is: (1) is the
leading term of a Taylor-expansion of the concentric annular
Couette flow force around δ = 0.

The contribution of this article closes with some additional
remarks on eccentric annular Poiseuille flow and new possibilities
of combining the results of the last Sections with results from
[PHW33] and [LGK21].
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Additional remarks on Poiseuille flow

Eccentric annular Poiseuille flow velocity

In various circumstances Couette flow may also induce a sec-
ondary flow driven by a pressure difference; a so-called Poiseuille
flow. This particular type is of interest in many areas and
we’ll briefly show how the corresponding solution presented
in [PHW33] is derived conceptually as well as how it can be
implemented with the help of SymPy.

As far as we know, most of the current literature either refers
to the aforementioned paper only by using its derived results
(e.g. the volume flow relation found in [W06]) or by solving the
Poiseuille problem numerically (as done in [TKM19]). The fact,
that in the current context blood coagulation and hemodynamics
are omnipresent in the media, eccentric annular blood flow in
arteries is extensively studied ([TKM19]) and flow forces that act
upon the arteries are of great medical interest (e.g. [S11]), makes it
even more interesting to retrace the existing formulae of [PHW33],
which are tedious to use when implemented by hand.

In the case of Poiseuille flow, the righthand-side of the corre-
sponding Stokes equation is non-homogeneous (d p 6= 0;uR = 0);
see also Equation (2). Hence, we need to deal with a different
mathematical problem here compared to the previous Sections.

However, it possible to reduce the Poiseuille problem to an
equivalent Couette problem with prescribed velocities on the
boundaries (e.g. [M96]). That is the idea followed by [PHW33],
who seek a solution of the form

u = Ψ− d p
4µl

(x2 + y2) . (27)

Here, Ψ is a harmonic function in the w-plane found by solving
Laplace’s equation in ξ and η . By using the conformal mapping
of Equation (12) an appropriately chosen rectangle in the w-plane
gets mapped onto an eccentric annulus in the z-plane, thereby
preserving the harmonicity of Ψ.

It then follows that ∆u = d p/(µl) in the z-plane and the
boundary conditions for Ψ result from the task of eliminating the
auxiliary term − d p

4µl (x
2 + y2) on the boundaries associated with

inner and outer radius.
For further evaluation, Ψ is decomposed by [PHW33] into a

sum of three harmonic functions

Ψ = 4 ·Ψ1 +4 ·A ·η +4 ·B . (28)

Using this particular form of Ψ, the final relation for the
Poisseuille-flow velocity derived in [PHW33] can be symbolically
expressed via

xi, eta, b = sym.symbols('xi, eta, b', real=True)
A, B, C = sym.symbols('A, B, C', real=True)
alpha, beta, c = sym.symbols('alpha, beta, c',

real=True)
Psi_1, mu, l, dp = sym.symbols('Psi_1, mu, l, dp',

real=True)
k, m, n = sym.symbols('k m n', integer=True)

>>> u = Psi_1 + A * eta + B
>>> u = u - (sym.cosh(eta) - sym.cos(xi))

/ (4 * (sym.cosh(eta) + sym.cos(xi)))
>>> u = (dp/(mu * l)) * c**2 * u
>>> u

c2d p
(

Aη +B+Ψ1− −cos(ξ )+cosh(η)
4cos(ξ )+4cosh(η)

)
lµ

(29)

Afterwards the expressions for the three separate components A, B
and Ψ1 can finally be substituted into (29). In the following code

the SymPy function Sum is used, which simplifies the implemen-
tation of Fourier-type series in analytical formulae significantly.

s1, s2 = sym.symbols('s1, s2', real=True)
Psi_1_ = sym.cos(n * xi)

/ (sym.sinh(n * (beta - alpha))) * (s1 + s2)
Psi_1_ = sym.Sum((-1)**n * (Psi_1_), (n, 1, m))

>>> Psi_1_

m

∑
n=1

(−1)n (s1 + s2)cos(nξ )

sinh(n(β −α))
(30)

with

s1 = e−βn sinh(n(η−α))coth(β )

s2 = −e−αn sinh(n(η−β ))coth(α) .

The constants from [W06], [SL78] and [PHW33] read as

A =
coth(α)− coth(β )

2α−2β

B =
−α (1−2coth(β ))+β (1−2coth(α))

4α−4β
.

Adding the various pieces together, an example of Piercy’s
Poiseuille flow velocity (Equation (27)) in the w-plane is depicted
in Figure 12.

Fig. 12: Flow velocity for the Poiseuille problem in rectangular
domain (w-plane); it vanishes on upper and lower boundary and is
periodic in ξ

And last but not least, again expressing ξ ,η in x and y, the
velocity distribution in the eccentric annulus (i.e. in the z-plane)
together with some isocontours is shown in Figure 13.

The method described here is not only restricted to fluid dy-
namics. In elasticity theory, which inspired the work of [PHW33],
Ψ is the harmonic conjugate of the so-called warping- or St.
Venant torsion-function φ (see [L13] or [M77]), specified by

∂Ψ

∂y
=

∂φ

∂x
and

∂Ψ

∂x
=−∂φ

∂y
.

The warping function helps to describe the elongation of an elastic
cylinder that is also twisted. A practical implementation of φ can
be found in e.g. [B14] and [BPO16] where it is called ninner

1,4 and
where analytical approximations are compared to results from 3D-
simulations obtained with COMSOL.
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Fig. 13: Flow velocity and isocontours for the Poiseuille problem in
eccentric annulus (z-plane); most of the fluid flow occurs through the
large gap

Eccentric Couette-Poiseuille flow: Superposition

The velocity for eccentric Couette-Poiseuille flow can easily be
found by superposing Equation (29) with one of the two Couette
flow velocities derived in this contribution by utilizing SymPy.

The following relation

uCoue−Pois =
c2d p

(
Ψ− −cos(ξ )+cosh(η)

cos(ξ )+cosh(η)

)
4lµ

+
ud (η−α)

β −α
(31)

shows such a superposed Couette-Poiseuille flow velocity, where
both velocities where obtained by using the bipolar coordinate
transformation (12) that maps rectangles onto eccentric annuli.

Combining Equation (24) with the flow force from [PHW33],
the overall exact analytical eccentric annular Couette-Poiseuille
flow force that acts upon the inner cylinder is given by

FCoue−Pois = Fpiercy−
2πlµuR

β −α
(32)

where

FPiercy =−π∆p
(

R1
2− b · c

β −α

)
. (33)

Since the conformal mapping (12) is not defined for the concentric
case b = 0, this drawback also translates to the corresponding
forces in Equations (32) and (33). The relation above therefore is
only defined for eccentric cases.

However, the Couette flow force obtained with the Möbius
transform, i.e. Equation (23), is defined for the concentric case as
well. But since, to our knowledge, no one has ever constructed the
Poiseuille flow velocity using a Möbius transform, the equivalent
flow force (most likely defined for b = 0 too) is not available.

Therefore, the best analytical approximation for the eccentric
Couette-Poiseuille flow force, defined both for the eccentric and
concentric case, that we can present here, is a combination of
Equation (23) and a Taylor-expansion of Equation (33) in the
relative eccentricity ε = b/(R2−R1) around ε = 0.

FCoue−Pois ≈ FCouette +Fc
(
1+a(κ)ε

2) . (34)

Here, Fc is the well known Poiseuille flow force that acts upon the
inner cylinder in the concentric case (e.g. [BSL07]) and a(κ) is a
function of the ratio κ = R1/R2 given by

Fc = −π∆p

(
R1

2−
(
R2

2−R1
2
)

2 ln(R2/R1)

)
(35)

a(κ) = −(1−κ)

(
1−κ2

)
+
(
1+κ2

)
lnκ

2

(
κ2 +

(
1−κ2

)
2lnκ

)
(1+κ) ln2

κ

. (36)

The particular approximation for the eccentric flow force due to a
pressure gradient, i.e. FPiercy ≈ Fc

(
1+a(κ)ε2

)
, was obtained for

the first time in [LGK21].
To conclude this Section it is remarked, that again the useful

SymPy function series can help in figuring out how a(κ) is
approximated in the relevant practical case where R1 ≈ R2.

As shown in [LGK21], a(κ) can be expanded in a Taylor-series
around κ = 1.
>>> sym.series(alpha, kappa, 1, 3)

−1
6
− 5(κ−1)2

36
+

κ

6
+O

(
(κ−1)3 ;κ → 1

)
Hence, for κ ≈ 1

a(κ)≈ κ−1
6

and (34) reduces to

FCoue−Pois ≈ FCouette +Fc

(
1+

κ−1
6

ε
2
)
. (37)

Conclusion

This article showed that classical tools from mathematical physics,
such as conformal mappings and Taylor-expansions, are still
relevant and indispensable in times of digitization and wide use
of numerics.

As an example, SymPy was used as a tool for symbolic
mathematics in order to demonstrate that a popular approximation
of the eccentric annular Couette flow force in modern system
simulation tools is actually the leading-order term in a Taylor-
expansion of the corresponding concentric annular force.

This force is calculated as special case of the more general
eccentric annular Couette flow by postprocessing the resulting
velocity distribution. Here, the velocity profile is analytically
obtained by solving the equivalent Stokes problem with the help
of conformal mappings, i.e. holomorphic functions in the complex
plane.

The utilization of analytical methods is not solely restricted
to fluid dynamics. Another application of SymPy in the context
of PDEs in general could be homogenization. There, asymptotic
expansions are substituted into the PDE and limiting problems are
obtained in an algorithmical way, so SymPy might prove to be a
valuable supporting tool. A starting point could be the introductory
example from [BP89], which is worked out and compared to a
FEM-solution obtained by COMSOL in [B14]. Furthermore, due
to similar equations in axisymmetric electromagnetic problems
(e.g. [LL84]), corresponding usage of conformal mappings and
Taylor-expansions with SymPy is certainly possible there.

The authors think, that these methods may not only be appli-
cable to mathematical physics but could be helpful in other areas
as well, e.g. for understanding neural networks. Already available
work described in [H10] and [H12] points in that direction and
SymPy might be of great help in such areas, too.
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