
PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021) 123

Monitoring Scientific Python Usage on a
Supercomputer

Rollin Thomas‡∗, Laurie Stephey‡∗, Annette Greiner‡, Brandon Cook‡

F

Abstract—In 2021, more than 30% of users at the National Energy Research
Scientific Computing Center (NERSC) used Python on the Cori supercomputer.
To determine this we have developed and open-sourced a simple, minimally in-
vasive monitoring framework that leverages standard Python features to capture
Python imports and other job data via a package called "Customs". To analyze
the data we collect via Customs, we have developed a Jupyter-based analysis
framework designed to be interactive, shareable, extensible, and publishable via
a dashboard. Our stack includes Papermill to execute parameterized notebooks,
Dask-cuDF for multi-GPU processing, and Voila to render our notebooks as
web-based dashboards. We report preliminary findings from Customs data col-
lection and analysis. This work demonstrates that our monitoring framework can
capture insightful and actionable data including top Python libraries, preferred
user software stacks, and correlated libraries, leading to a better understanding
of user behavior and affording us opportunity to make increasingly data-driven
decisions regarding Python at NERSC.

Index Terms—HPC, Python monitoring, GPUs, dashboards, parallel, Jupyter

Introduction

The National Energy Research Scientific Computing Center
(NERSC) is the primary scientific computing facility for the US
Department of Energy’s Office of Science. Some 8,000 scientists
use NERSC to perform basic, non-classified research in predict-
ing novel materials, modeling the Earth’s climate, understanding
the evolution of the Universe, analyzing experimental particle
physics data, investigating protein structure, and more [OA20].
NERSC procures and operates supercomputers and massive stor-
age systems under a strategy of balanced, timely introduction of
new hardware and software technologies to benefit the broadest
possible portion of this workload. While procuring new systems
or supporting users of existing ones, NERSC relies on detailed
analysis of its workload to help inform strategy.

Workload analysis is the process of collecting and marshaling
data to build a picture of how applications and users really
interact with and utilize systems. It is one part of a procurement
strategy that also includes surveys of user and application require-
ments, emerging computer science research, developer or vendor
roadmaps, and technology trends. Understanding our workload

* Corresponding author: rcthomas@lbl.gov, lastephey@lbl.gov
‡ National Energy Research Scientific Computing Center, Lawrence Berkeley
National Laboratory, 1 Cyclotron Road MS59-4010A, Berkeley, California,
94720
* Corresponding author: rcthomas@lbl.gov, lastephey@lbl.gov

Copyright © 2021 Rollin Thomas et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

helps us engage in an informed way with stakeholders like funding
agencies, vendors, developers, users, standards bodies, and other
high-performance computing (HPC) centers. In particular, work-
load analysis informs non-recurring engineering contracts where
NERSC partners with external software developers to address gaps
in system programming environments. Actively monitoring the
workload also enables us to identify suboptimal or potentially
problematic user practices and address them through direct inter-
vention, improving documentation, or simply making it easier for
users to use the software better. Measuring the relative frequency
of use of different software components can help us streamline
delivery, retiring less-utilized packages, and promoting timely
migration to newer versions. Detecting and analyzing trends in
user behavior with software over time also helps us anticipate
user needs and prepare accordingly. Comprehensive, quantitative
workload analysis is a critical tool in keeping NERSC a productive
supercomputer center for science.

With Python assuming a key role in scientific computing, it
makes sense to apply workload analysis to Python in production
settings like NERSC’s Cray XC-40 supercomputer, Cori. Once
viewed in HPC circles as merely a cleaner alternative to Perl
or Shell scripting, Python has evolved into a robust platform
for orchestrating simulations, running complex data processing
pipelines, managing artificial intelligence workflows, visualizing
massive data sets, and more. Adapting workload analysis practices
to scientific Python gives its community the same data-driven
leverage that other language communities at NERSC already
enjoy.

This article documents NERSC’s Python workload analysis
efforts, part of an initiative called Monitoring of Data Services
(MODS) [MODS], and what we have learned during this process.
In the next section, we provide an overview of related work
including existing tools for workload data collection, management,
and analysis. In Methods, we describe an approach to Python-
centric workload analysis that uses built-in Python features to
capture usage data, and a Jupyter notebook-based workflow for
exploring the data set and communicating what we discover. Our
Results include high-level statements about what Python packages
are used most often and at what scale on Cori, but also some
interesting deeper dives into use of certain specific packages
along with a few surprises. In the Discussion, we examine the
implications of our results, share the strengths and weaknesses
of our workflow and our lessons learned, and outline plans for
improving the analysis to better fill out the picture of Python at
NERSC. The Conclusion suggests some areas for future work.

https://www.nersc.gov/about/
mailto:rcthomas@lbl.gov, lastephey@lbl.gov
mailto:rcthomas@lbl.gov, lastephey@lbl.gov


124 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Related Work

The simplest approach used to get a sense of what applications
run on a supercomputer is to scan submitted batch job scripts
for executable names. In the case of Python applications, this
is problematic since users often invoke Python scripts directly
instead of as an argument to the python executable. This method
also provides only a crude count of Python invocations and gives
little insight into deeper questions about specific Python packages.

Software environment modules [Fur91] are a common way for
HPC centers to deliver software to users. Environment modules
operate primarily by setting, modifying, or deleting environment
variables upon invocation of a module command (e.g. module
load, module swap, or module unload) This provides an
entrypoint for software usage monitoring. Staff can inject code
into a module load operation to record the name of the module
being loaded, its version, and other information about the user’s
environment. Lmod, a newer implementation of environment mod-
ules [Mcl11], provides documentation on how to configure it to
use syslog and MySQL to collect module loads through a hook
function. Counting module loads as a way to track Python usage
has the virtue of simplicity. However, users often include module
load commands in their shell resource files (e.g., .bashrc), meaning
that user login or shell invocation may trigger a detection even
if the user never actually uses the trigger module. Furthermore,
capturing information at the package level using module load
counts would also require that individual Python packages be
installed as separate environment modules. Module load counts
also miss Python usage from user-installed Python environments
or in containers.

Tools like ALTD [Fah10] and XALT [Agr14] are commonly
used in HPC contexts to track library usage in compiled appli-
cations. The approach is to introduce wrappers that intercept the
linker and batch job launcher (e.g. srun in the case of Slurm
used at NERSC). The linker wrapper can inject metadata into
the executable header, take a census of libraries being linked in,
and forward that information to a file or database for subsequent
analysis. Information stored in the header at link time is dumped
and forwarded later by the job launch wrapper. On systems where
all user applications are linked and launched with instrumented
wrappers, this approach yields a great deal of actionable informa-
tion to HPC center staff. However, popular Python distributions
such as Anaconda Python arrive on systems fully built, and can
be installed by users without assistance from center staff. Later
versions of XALT can address this through an LD_PRELOAD set-
ting. This enables XALT to identify compiled extensions that are
imported in Python programs using a non-instrumented Python,
but pure Python libraries currently are not detected. XALT is an
active project so this may be addressed in a future release.

[Mac17] describes an approach to monitoring Python pack-
age use on Blue Waters using only built-in Python features:
sitecustomize and atexit. During normal Python inter-
preter start-up, an attempt is made to import a module named
sitecustomize that is intended to perform site-specific cus-
tomizations. In this case, the injected code registers an exit handler
through the atexit standard library module. This exit handler
inspects sys.modules, a dictionary that normally describes all
packages imported in the course of execution. On Blue Waters,
sitecustomize was installed into the Python distribution
installed and maintained by staff. Collected information was stored
to plain text log files. An advantage of this approach is that

Fig. 1: NERSC infrastructure for capturing Python usage data.

sitecustomize failures are nonfatal, and placing the import
reporting step into an exit hook (as opposed to instrumenting
the import mechanism) means that it minimizes interference with
normal operation of the host application. The major limitation
of this strategy is that abnormal process terminations prevent
the Python interpreter from proceeding through its normal exit
sequence and package import data are not recorded.

Of course, much more information may be available through
tools based on the extended Berkeley Packet Filter and the BPF
compiler collection, similar to the pythoncalls utility that
summarizes method calls in a running application. While eBPF
overheads are very small, this approach requires special compi-
lation flags for Python and libraries. Effort would be needed to
make the monitoring more transparent to users and to marshal
the generated data for subsequent analysis. This could be an
interesting and fruitful approach to consider. Obviously, solutions
that can overly impact application reliability or place an undue
burden on system administrators and operations staff should be
avoided. The fullest picture we currently can obtain comes from
a combination of non-intrusive tooling and follow-up with users,
using the story we can put together from the data we gather as a
starting point for conversation.

Methods

Users have a number of options when it comes to how they
use Python at NERSC. NERSC provides a "default" Python to
its users through a software environment module, based on the
Anaconda Python distribution with modifications. Users may load
this module, initialize the Conda tool, and create their own cus-
tom Conda environments. Projects or collaborations may provide
their users with shared Python environments, often as a Conda
environment or as an independent installation altogether (e.g.
using the Miniconda installer and building up). Cray provides
a basic "Cray Python" module containing a few core scientific
Python packages linked against Cray MPICH and LibSci libraries.
Python packages are also installed by staff or users via Spack
[Gam15], an HPC package manager. NERSC also provides Shifter
[Jac16], a container runtime that enables users to run custom
Docker containers that can contain Python built however the
author desires. With a properly defined kernel-spec file, a user
is able to use a Python environment based on any of the above
options as a kernel in NERSC’s Jupyter service. The goal is to
gather data for workload analysis across all of these options.

https://lmod.readthedocs.io/en/latest/300_tracking_module_usage.html
https://lmod.readthedocs.io/en/latest/300_tracking_module_usage.html
https://ebpf.io/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc


MONITORING SCIENTIFIC PYTHON USAGE ON A SUPERCOMPUTER 125

Monitoring all of the above can be done quite easily by
using the strategy outlined in [Mac17] with certain changes.
Fig. 1 illustrates the infrastructure we have configured. As in
[Mac17] a sitecustomize that registers the atexit han-
dler is installed in a directory included into all users’ Python
sys.path. The sitecustomize module is installed directly
on each compute node and not served over network, in order
to avoid exacerbating poor performance of Python start-up at
scale. We accomplish this by installing it and any associated
Python modules into the node system images themselves, and
configuring default user environments to include a PYTHONPATH
setting that injects sitecustomize into sys.path. Shifter
containers include the monitoring packages from the system image
via runtime volume mount. Users can opt out of monitoring simply
by unsetting or overwriting PYTHONPATH. We took the approach
of provisioning a system-wide PYTHONPATH because we cast a
much wider collection net (opt-out) than if we depend on users to
install sitecustomize (opt-in). This also gives us a centrally
managed source of truth for what is monitored at any given time.

Customs: Inspect and Report Packages

To organize sitecustomize logic we have created a Python
package we call Customs, since it is for inspecting and reporting
on Python package imports of particular interest. Customs can be
understood in terms of three simple concepts. A Check is a simple
object that represents a Python package by its name and a callable
that is used to verify that the package (or even a specific module
within a package) is present in a given dictionary. In production
this dictionary should be sys.modules but during testing it
can be a mock sys.modules dictionary. The Inspector is a
container of Check objects, and is responsible for applying each
Check to sys.modules (or mock) and returning the names of
packages that are detected. Finally, the Reporter is an abstract
class that takes some action given a list of detected package
names. The Reporter action should be to record or transmit the
list of detected packages, but exactly how this is done depends
on implementation. Customs includes a few reference Reporter
implementations and an example of a custom Customs Reporter.

Customs provides an entry point to use in sitecustomize,
the function register_exit_hook. This function takes two
arguments. The first is a list of strings or (string, callable) tuples
that are converted into Checks. The second argument is the type of
Reporter to be used. The exit hook can be registered multiple times
with different package specification lists or Reporters if desired.

The intended workflow is that a staff member creates a list
of package specifications they want to check for, selects or
implements an appropriate Reporter, and passes these two objects
to register_exit_hook within sitecustomize.py. In-
stalling sitecustomize to system images generally involves
packaging the software as an RPM to be installed into node
system images and deployed by system administrators. When a
user invokes Python, the exit hook will be registered using the
atexit standard library module, the application proceeds as
normal, and then at normal shutdown sys.modules is inspected
and detected packages of interest are reported.

Message Logging and Storage

NERSC has developed a lightweight abstraction layer for message
logging called nerscjson. It is a simple Python package that
consumes JSON messages and forwards them to an appropriate
transport layer that connects to NERSC’s Operations Monitoring

Field Description

executable Path to Python executable used by this process
is_compute True if the process ran on a compute node
is_shifter True if the process ran in a Shifter container
is_staff True if the user is a member of NERSC staff
job_id Slurm job ID
main Path to application, if any
num_nodes Number of nodes in the job
qos Batch queue of the job
repo Batch job charge account
subsystem System partition or cluster
system System name
username User handle

TABLE 1: Additional monitoring metadata

and Notification Infrastructure (OMNI) [Bau19]. Currently this is
done with Python’s standard SysLogHandler from the logging
library, modified to format time to satisfy RFC 3339. Downstream
from these transport layers, a message key is used to identify the
incoming messages, their JSON payloads are extracted, and then
forwarded to the appropriate Elasticsearch index. The Customs
Reporter used on Cori simply uses nerscjson.

On Cori compute nodes, we use the Cray Lightweight Log
Manager (LLM), configured to accept RFC 5424 protocol mes-
sages on service nodes. A random service node is chosen as
the recipient in order to balance load. On other nodes besides
compute nodes, such as login nodes or nodes running user-facing
services, rsyslog is used for message transport. This abstraction
layer allows us to maintain a stable interface for logging while
using an appropriately scalable transport layer for the system.
For instance, future systems will rely on Apache Kafka or the
Lightweight Distributed Metrics Service [Age14].

Cori has 10,000 compute nodes running jobs at very high
utilization, 24 hours a day for more than 340 days in a typical
year. The volume of messages arriving from Python processes
completing could be quite high, so we have taken a cautious
approach of monitoring a list of about 50 Python packages instead
of reporting the entire contents of each process’s sys.modules.
This introduces a potential source of bias that we return to
in the Discussion, but we note here that Python 3.10 will in-
clude sys.stdlib_module_names, a frozenset of strings
containing the names of standard library modules, that could be
used in addition to sys.builtin_module_names to remove
standard library and built-in modules from sys.modules easily.
Ultimately we plan to capture all imports excluding standard and
built-in packages, except for ones we consider particularly relevant
to scientific Python workflows like multiprocessing.

To reduce excessive duplication of messages from MPI-
parallel Python applications, we prevent reporting from processes
with nonzero MPI rank or SLURM_PROCID. Other parallel appli-
cations using e.g. multiprocessing are harder to deduplicate.
This moves deduplication downstream to the analysis phase. The
key is to carry along enough additional information to enable the
kinds of deduplication needed (e.g., by user, by job, by node, etc).
Table 1 contains a partial list of metadata captured and forwarded
along with package names and versions.

Fields that only make sense in a batch job context are set to a
default (num_nodes: 1) or left empty (repo: ""). Basic job

https://github.com/NERSC/customs
https://elasticsearch-py.readthedocs.io/en/7.10.0/


126 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

quantities like node count help capture the most salient features of
jobs being monitored. Downstream joins with other OMNI indexes
or other databases containing Slurm job data (via job_id), iden-
tity (username), or banking (repo) enables broader insights.

In principle it is possible that messages may be dropped along
the way to OMNI, since we are using UDP for transport. To
control for this source of error, we submit scheduled "canary jobs"
a few dozen times a day that run a Python script that imports
libraries listed in sitecustomize and then exits normally.
Matching up those job submissions with entries in Elastic enables
us to quantify the message failure rate. Canary jobs began running
in October of 2020 and from that time until now (May 2021), per-
haps surprisingly, we actually have observed no message delivery
failures.

Prototyping, Production, and Publication

OMNI has a Kibana visualization interface that NERSC staff use
to visualize Elasticsearch-indexed data collected from NERSC
systems, including data collected for MODS. The MODS team
uses Kibana for creating plots of usage data, organizing these
into attractive dashboard displays that communicate MODS high-
level metrics. Kibana is very effective at providing a general
picture of user behavior with the NERSC data stack, but the
MODS team wanted deeper insights from the data and obtaining
these through Kibana presented some difficulty, especially due to
the complexities of deduplication we discussed in the previous
section. Given that the MODS team is fluent in Python, and that
NERSC provides users (including staff) with a productive Python
ecosystem for data analytics, using Python tools for understanding
the data was a natural choice. Using the same environment and
tools that users have access to provides us a way to test how well
those tools actually work.

Our first requirement was the ability to explore MODS Python
data interactively. However, we also wanted to be able to record
that process, document it, share it, and enable others to re-
run or re-create the results. Jupyter Notebooks specifically target
this problem, and NERSC already runs a user-facing JupyterHub
service that enables access to Cori. Members of the MODS team
can manage notebooks in a Gitlab instance run by NERSC, or
share them with one another (and from Gitlab) using an NBViewer
service running alongside NERSC’s JupyterHub.

Iterative prototyping of data analysis pipelines often starts with
testing hypotheses or algorithms against a small subset of the data
and then scaling that analysis up to the entire data set. GPU-based
tools with Python interfaces for filtering, analyzing, and distilling
data can accelerate this scale-up using generally fewer compute
nodes than with CPU-based tools. The entire MODS Python data
set is currently about 260 GB in size, and while this could fit
into one of Cori’s CPU-based large-memory nodes, the processing
power available there is insufficient to make interactive analysis
feasible. With only CPUs, the main recourse is to scale out to more
nodes and distribute the data. This is certainly possible, but being
able to interact with the entire data set using a few GPUs, far fewer
processes, and without inter-node communication is compelling.

To do interactive analysis, prototyping, or data exploration we
use Dask-cudf and cuDF, typically using 4 NVIDIA Volta V100
GPUs coordinated by a Dask-CUDA cluster. The Jupyter notebook
itself is started from NERSC’s JupyterHub using BatchSpawner
(i.e., the Hub submits a batch job to run the notebook on the
GPU cluster). The input data, in compressed Parquet format, are
read using Dask-cuDF directly into GPU memory. These data are

Fig. 2: Workflow for processing and analyzing Python usage data.

periodically gathered from OMNI using the Python Elasticsearch
API and converted to Parquet. Reduced data products are stored
in new Parquet files, again using direct GPU I/O.

As prototype analysis code in notebooks evolves into some-
thing resembling a production analysis pipeline, data scientists
face the choice of whether to convert their notebooks into scripts
or try to stretch their notebook to serve as a production tool.
The latter approach has the appeal that production notebooks can
be re-run interactively when needed with all the familiar Jupyter
notebook benefits. We decided to experiment with using Papermill
to parameterize notebook execution over months, quarters, and
years of data and submit these notebooks as batch jobs. In each
Jupyter notebook, a Dask-CUDA cluster is spun up and then
shutdown at the end for memory/worker cleanup. Processing all
data for all permutations currently takes about 2 hours on 4 V100
GPUs on the Cori GPU cluster. Fig. 2 illustrates the workflow.

Members of the MODS team can share Jupyter notebooks
with one another, but this format may not make for the best
way to present data to other stakeholders, in particular center
management, DOE program managers, vendors, or users. Voilà
is a tool that uses a Jupyter notebook to power a stand-alone,
interactive dashboard-style web application. We decided to exper-
iment with Voilà for this project to evaluate best practices for its
use at NERSC. To run our dashboards we use NERSC’s Docker
container-as-a-service platform, called Spin, where staff and users
can run persistent web services. Spin is external to NERSC’s HPC
resources and has no nodes with GPUs, but mounts the NERSC
Global Filesystem.

Creating a notebook using a GPU cluster and then using the
same notebook to power a dashboard running on a system without
GPUs presents a few challenges. We found ourselves adopting a
pattern where the first part of the notebook used a Dask cluster
and GPU-enabled tools for processing the data, and the second
part of the notebook used reduced data using CPUs to power
the dashboard visualizations. We used cell metadata tags to direct
Voilà to simply skip the first set of cells and pick up dashboard
rendering with the reduced data. This process was a little clumsy,
and we found it easy to make the mistake of adding a cell and then

https://docs.rapids.ai/api/cudf/stable/dask-cudf.html
https://dask-cuda.readthedocs.io/en/latest/
https://papermill.readthedocs.io/en/latest/
https://voila.readthedocs.io/en/stable/index.html
https://www.nersc.gov/systems/spin/


MONITORING SCIENTIFIC PYTHON USAGE ON A SUPERCOMPUTER 127

forgetting to update its metadata. Easier ways of managing cell
metadata tags would improve this process. Another side-effect of
this approach is that packages may appear to be imported multiple
times in a notebook.

We found that even reduced data sets could be large enough
to make loading a Voilà dashboard slow, but we found ways to
hide this by lazily loading the data. Using Pandas DataFrames
to prepare even reduced data sets for rendering, especially his-
tograms, resulted in substantial latency when interacting with
the dashboard. Vaex [vaex] provided for a more responsive user
experience, owing to multi-threaded CPU parallelism. We did
use some of Vaex’s native plotting functionality (in particular
viz.histogram), but we primarily used Seaborn for plotting
with Vaex objects "underneath" which we found to be a fast
and friendly way to generate appealing visualizations. Sometimes
Matplotlib was used when Seaborn could not meet our needs (to
create a stacked barplot, for example).

Finally, we note that the Python environment used for both data
exploration and reduction on the GPU cluster, and for running the
Voilà dashboard in Spin, is managed using a single Docker image
(Shifter runtime on GPU, Kubernetes in Spin).

Results

Our data collection framework yields a rich data set to exam-
ine and our workflow enables us to interactively explore the
data and translate the results of our exploration into dashboards
for monitoring Python. Results presented come from data col-
lected between January and May 2021. Unless otherwise noted,
all results exclude Python usage by members of NERSC staff
(is_staff==False) and include only results collected from
batch jobs (is_compute==True). All figures are extracted
from the Jupyter notebook/Voilà dashboard.

During the period of observation there were 2448 users run-
ning jobs that used Python on Cori, equivalent to just over 30% of
all NERSC users. 84% of jobs using Python ran on Cori’s Haswell-
based partition, 14% used Cori-KNL, and 2% used Cori’s GPU
cluster. 63% of Python users use the NERSC-provided Python
module directly (including on login nodes and Jupyter nodes) but
only 5% of jobs using Python use the module: Most use a user-
built Python environment, namely Conda environments. Anaconda
Python provides scientific Python libraries linked against the Intel
Math Kernel Library (MKL), but we observe that only about 17%
of MKL-eligible jobs (ones using NumPy, SciPy, NumExpr, or
scikit-learn) are using MKL. We consider this finding in more
detail in Discussion.

Fig. 3 displays the top 20 Python packages in use determined
from unique user imports (i.e. how many users ever use a given
package) across the system, including login nodes and Jupyter
nodes. These top libraries are similar to previous observations
reported from Blue Waters and TACC [Mcl11], [Eva15], but the
relative prominence of multiprocessing is striking. We also
note that Joblib, a package for lightweight pipelining and easy
parallelism, ranks higher than both mpi4py and Dask.

The relatively low rankings for TensorFlow and PyTorch are
probably due to the current lack of GPU resources, as Cori
provides access to only 18 GPU nodes mainly for application
readiness activities in support of Perlmutter, the next (GPU-based)
system being deployed. Additionally, some users that are training
deep learning models submit a chain of jobs that may not be
expected to finish within the requested walltime; the result is

Fig. 3: Top 20 tracked Python libraries at NERSC, deduplicated by
user, across our system.

Fig. 4: Distribution of job size for batch jobs that use Python.

that the job may end before Customs can capture data from the
atexit, resulting in under-reporting.

Fig. 4 shows the distribution of job size (node count) for jobs
that invoked Python and imported one or more of the packages we
monitor. Most of these jobs are small, but the distribution tracks
the overall distribution of job size at NERSC.

Breaking down the Python workload further, Fig. 5 contains
a 2D histogram of Python package counts as a function of job
size. Package popularity in this figure has a different meaning
than in Fig. 3: The data are deduplicated by job_id and package
name to account for jobs where users invoke the same executable
repeatedly or invoke multiple applications using the same libraries.
The marginal axes summarize the total package counts and total
job size counts as a function of job_id. Most Python libraries
we track do not appear to use more than 200 nodes. Perhaps
predictably, mpi4py and NumPy are observed at the largest node
counts. Dask jobs are observed at 500 nodes and fewer, so it
appears that Dask is not being used to scale as large as mpi4py
is. Workflow managers FireWorks [Jai15] and Parsl [Bab19] are
observed scaling to 1000 nodes. PyTorch (torch) appears at
larger scales than TensorFlow and Keras, which suggests users
may find it easier to scale PyTorch on Cori.

While it is obvious that packages that depend on or are



128 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 5: 2D histogram of Python package counts versus job size. The
marginal x-axis (right) shows the total package counts. The marginal
y-axis (top) shows the total job counts displayed on a log scale. Here
we measure number of unique packages used within a job rather than
number of jobs, so these data are not directly comparable to Fig. 3
nor to Fig. 4.

Fig. 6: Pearson correlation coefficients for tracked Python libraries
within the same job. Libraries were only counted once per job.
Here we display correlation coefficient values between 0.6 and 0.8
in an effort to highlight a regime in which packages have a strong
relationship but no explicit dependencies.

Fig. 7: Pearson correlation coefficient values for mpi4py (left),
multiprocessing (center), and Dask (right), with all other
Python libraries we currently track.

dependencies of other packages will be correlated within jobs, it is
still interesting to examine the co-occurrence of certain packages
within jobs. A simple way of looking at this is to determine
Pearson correlation coefficients for each tracked library with all
others, assigning a 1 to jobs in which a certain package was used
and 0 otherwise. Fig. 6 shows an example package correlation
heatmap. The heatmap includes only package correlations above
0.6 to omit less interesting relationships and less than 0.8 as a
simple way to filter out interdependencies. Notable relationships
between non-dependent packages include mpi4py and AstroPy,
Seaborn and TensorFlow, FireWorks and Plotly.

We used this correlation information as a starting point for ex-
amining package use alongside mpi4py, multiprocessing,
and Dask, all of which we are especially interested in because
they enable parallelism within batch jobs. We omit Joblib, noting
that a number of packages depend on Joblib and Joblib itself uses
multiprocessing. Fig. 7 presents the correlations of each of
these packages with all other tracked packages.

The strongest correlations observed for mpi4py (Fig. 7,
left) is the domain-specific package AstroPy and its submodule
astropy.io.fits. This suggests that users of AstroPy have
been able to scale associated applications using mpi4py and
that AstroPy developers may want to consider engaging with
mpi4py users regarding their experiences. Following up with
users generally reveals that using mpi4py for "embarrassingly
parallel" calculations is very common: "My go-to approach is
to broadcast data using mpi4py, split up input hyperparam-
eters/settings/etc. across ranks, have each rank perform some
number of computations, and then gather all the results (which
are almost always NumPy arrays) using mpi4py." Very few users
report more intricate communication patterns.

Next we consider multiprocessing. The conda tool
uses multiprocessing but even after filtering out those cases,
it remains one of the most popular Python libraries in use on
Cori. In Fig. 7 (center), we do not see any particularly strong



MONITORING SCIENTIFIC PYTHON USAGE ON A SUPERCOMPUTER 129

relationships as we did with mpi4py. The primary correlation
visible here is with SciPy, which has some built-in support for
inter-operating with multiprocessing, for instance through
scipy.optimize. To learn more we followed up with several
of the top multiprocessing users. One reported: "I’m using
and testing many bioinformatics Python-based packages, some of
them probably using Python multiprocessing. But I’m not
specifically writing myself scripts with multiprocessing."
Another reported: "The calculations are executing a workflow for
computing the binding energies of ligands in metal complexes.
Since each job is independent, multiprocessing is used to
start workflows on each available processor." As a package that
users directly interact with, and as a dependency of other packages
in scientific Python, multiprocessing is a workhorse.

Finally we consider Dask, a Python package for task-based
parallelism and analytics at scale. Users are increasingly interested
in cluster runtimes where they queue up work, submit the work
to the scheduler as a task graph, and the scheduler handles
dependencies and farms out the tasks to workers. Dask also inter-
operates with GPU analytics libraries from NVIDIA as part of
RAPIDS, so we are naturally interested in its potential for our
next system based in part on GPUs. As noted, large jobs using
Dask are generally smaller than those using mpi4py (500 nodes
versus 3000+ nodes), which may indicate a potential gap in
scalability on Cori. The correlation data shown in Fig. 7 (right)
indicate an affinity with the weather and climate community,
where netCDF4 and xarray seem particularly important. We
reached out to several Dask users to learn more. One responded:
"I don’t remember having any Python Dask-related jobs running in
the past 3 months." After some additional discussion and analysis,
we discovered the user was using xarray which we believe was
using Dask unbeknownst to the user. This kind of response from
"Dask users" was not uncommon.

Discussion

Our results demonstrate that we are able to collect useful data on
Python package use on Cori, tag it with additional metadata useful
for filtering during analysis, and conduct exploratory analysis of
the data that can easily evolve to production and publication.
The results themselves confirm many of our expectations about
Python use on Cori, but also reveal some surprises that suggest
next actions for various stakeholders. Such surprises suggest new
opportunities for engagements between NERSC, users, vendors,
and developers of scientific Python infrastructure.

We observe that Python jobs on Cori mostly come from
environments that users themselves have provisioned, and not di-
rectly from the Python software environment module that NERSC
provides. Our expectation was that the fraction of jobs running
from such environments would be high since we knew through
interacting with our users that custom Conda environments were
very popular. A major driver behind this popularity is that users
often want versions of packages that are newer than they what can
get from a centrally-managed Python environment. But rather than
take that as a cue that we should be updating the NERSC-provided
Python environment more often, finding new ways to empower
users to manage their own software better has become our priority
instead. This currently includes continuing to provide easy access
to Conda environments, locations for centralized installations (i.e.
shared by a collaboration), and improved support for containerized
environments. However we are constantly reevaluating how best
to support the needs of our users.

Other results indicate that this may need to be done carefully.
As mentioned in the Results, only about 17% of jobs that use
NumPy, SciPy, scikit-learn, or NumExpr are using versions of
those packages that rely on OpenMP-threaded, optimized Intel
MKL. Given that Cori’s CPU architectures come from Intel,
we might expect the best performance to come from libraries
optimized for that architecture. We caution that there are a
number of hypotheses to consider behind this observation, as it
is a question of how well-educated users are on the potential
benefits of such libraries. The surprising reliance of our users on
multiprocessing and the tendency of users to use mpi4py
for embarrassing parallelism suggest that users may find it easier
to manage process parallelism than OpenMP thread parallelism in
scientific Python. Another consideration is that users value ease in
software installation rather than performance. Many Conda users
rely heavily on the conda-forge channel, which does have a
much greater diversity of packages as compared to the defaults
channel, and will install libraries based on OpenBLAS. Users may
be willing or able to tolerate some performance loss in favor of
being able to easily install and update their software stack. (There
are no easy answers or quick fixes to this problem of facilitating
both easy installation and good performance, but this is a major
goal of our efforts to support Python at NERSC.) Finally, many
users install complex packages designed for use on a wide range
of systems; many of these packages such as GPAW may use
OpenBLAS rather than MKL. Having seen that MKL adoption
is low, our goal is to try to better understand the factors leading to
this and ensure that users who can benefit from MKL make good
choices about how they build their Python environments through
documentation, training, and direct recommendation.

While some discoveries suggest next actions and user engage-
ment for NERSC staff, others suggest opportunities for broader
stakeholder action. The importance of multiprocessing to
users on nodes with large core count suggests an opportunity
for developers and system vendors. Returning to the observation
that jobs using AstroPy have an tendency to also use mpi4py,
we conclude that users of AstroPy have been able to scale their
AstroPy-based applications using MPI and that AstroPy develop-
ers may want to consider engaging with our users to make that
interaction better. Examining the jobs further we find that these
users tend to be members of large cosmology experiments like
Dark Energy Survey [Abb18], Dark Energy Spectroscopic Instru-
ment [DESI], the Dark Energy Science Collaboration [DESC], and
CMB-S4 [Aba16]. The pattern appears over many users in several
experiments. We also note that the use of astropy.io.fits
in MPI-enabled Python jobs by astronomers suggests that issues
related to FITS I/O performance in AstroPy on HPC systems may
be another area of focus.

While the results are interesting, making support decisions
based on data alone has its pitfalls. There are limitations to the
data set, its analysis, and statements we can make based on the
data, some of which can be addressed easily and others not. First
and foremost, we address the limitation that we are tracking a
prescribed list of packages, an obvious source of potential bias.
The reason for prescribing a list is technical: Large bursts of
messages from jobs running on Cori at one time caused issues
for OMNI infrastructure and we were asked to find ways to limit
the rate of messages or prevent such kinds of bursts. Since then,
OMNI has evolved and may be able to handle a higher data rate,
making it possible to simply report all entries in sys.modules
excluding built-in and standard modules (but not entirely, as

https://wiki.fysik.dtu.dk/gpaw/install.html


130 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

multiprocessing would go undetected). One strategy may
be to forward sys.modules to OMNI on a very small random
subset of jobs (say 1%) and use that control data set to estimate
bias in the tracked list. It also helps us control for a major concern,
that of missing out on data on emerging new packages.

Another source of bias is user opt-out. Sets of users who
opt out tend to do so in groups, in particular collaborations or
experiments who manage their own software stacks: Opting out
is not a random error source, it is another source of systematic
error. A common practice is for such collaborations to provide
scripts that help a user "activate" their environment and may
unset or rewrite PYTHONPATH. This can cause undercounts in
key packages, but we have very little enthusiasm for removing the
opt-out capability. Rather, we believe we should make a positive
case for users to remain opted in, based on the benefits it delivers
to them. Indeed, that is a major motivation for this paper.

A different systematic undercount may occur for applications
that habitually run into their allocated batch job wallclock limit. As
mentioned with TensorFlow, we confirmed with users a particular
pattern of submitting chains of dozens of training jobs that each
pick up where the previous job left off. If all these jobs hit
the wallclock limit, we will not collect any data. Counting the
importance of a package by the number of jobs that use it is
dubious; we favor understanding the impact of a package from the
breadth of the user community that uses it. This further supports
the idea that multiple approaches to understanding Python package
use are needed to build a complete picture; each has its own
shortcomings that may be complemented by others.

Part of the power of scientific Python is that it enables its
developers to build upon the work of others, so when a user
imports a package it may import several other dependencies. All of
these libraries "matter" in some sense, but we find that often users
are importing those packages without even being aware they are
being used. For instance, when we contacted users who appeared
to be running Dask jobs at a node count of 100 or greater, we
received several responses like "I’m a bit curious as to why I
got this email. I’m not aware to have used Dask in the past,
but perhaps I did it without realizing it." More generally, large-
scale jobs may use Python only incidentally for housekeeping
operations. Importing a package is not the same as actual use,
and use of a package in a job running at scale is not the same as
that package actually being used at scale.

Turning to what we learned from the process of building our
data analysis pipeline, we found that the framework gave us ways
to follow up on initial clues and then further productionize the
resulting exploratory analysis. Putting all the steps in the anal-
ysis (extraction, aggregation, indexing, selecting, plotting) into
one narrative improves communication, reasoning, iteration, and
reproducibility. One of our objectives was to manage as much of
the data analysis as we could using one notebook for exploratory
analysis with Jupyter, parameterized calculations in production
with Papermill, and shared visualization as a Voilà dashboard. Us-
ing cell metadata helped us to manage both the computationally-
intensive "upstream" part of the notebook and the less expensive
"downstream" dashboard within a single file. One disadvantage of
this approach is that it is very easy to remove or forget to apply cell
tags. This could be addressed by making cell metadata easier to
apply and manage. The Voilà JupyterLab extension helps with this
problem by providing a preview of a dashboard rendering before
it is published to the web. Another issue with the single-notebook
pattern is that some code may be repeated for different purposes.

This is not a source of error necessarily, but it can cause confusion.
All of these issues disappear if the same hardware could be used
to run the notebook in exploratory analysis, pipelined production,
and dashboard phases, but these functions are simply not available
in a single system at NERSC today.

Conclusion

We have taken our first small steps in understanding the Python
workload at NERSC in detail. Instrumenting Python to record how
frequently key scientific Python packages are being imported in
batch jobs on Cori confirmed many of our assumptions but yielded
a few surprises. The next step is acting on the information we have
gathered, and of course, monitoring the impact those actions have.

Using Python itself as a platform for analyzing the Python
workload poses a few challenges mostly related to supporting
infrastructure and tooling. With a few tricks, we find that the
same Jupyter notebooks can be used for both exploratory and
production data analysis, and also to communicate high-level
results through dashboards. We initiated this project not only to
perform Python workload analysis but to test the supposition that
users could assemble all the pieces they needed for a Python-based
data science pipeline at NERSC. Along the way, we identified
shortcomings in our ecosystem, and this motivated us to develop
tools for users that fill those gaps, and gave us direct experience
with the very same tools our users use to do real science.

In the near future, we will expand Python workload analysis
to Perlmutter, a new system with CPU+GPU and CPU-only nodes
to identify users of the CPU nodes who might be able to take
advantage of GPUs. Other future plans include examining Python
use within the context of specific science areas by linking our data
with user account and allocation data, and using natural language
processing and machine learning to proactively identify issues that
users have with Python on our systems. Another interesting avenue
to pursue is whether the monitoring data we gather may be of
use to users as an aid for reproducible computational science.
If users are able to access Python usage data we collect from
their jobs, they could use it to verify what Python packages and
package versions were used and obtain some degree of software
provenance for reproducing and verifying their results.

We anticipate that developers of scientific Python software
may find the information we gather to be informative. Readers
can view the public MODS Python dashboard at https://mods.
nersc.gov/public/

Acknowledgments

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No. DE-
AC02-05CH11231. We thank our colleagues Brian Austin, Tiffany
Connors, Aditya Kavalur, and Colin MacLean for discussions on
workload analysis, process monitoring, and Python. We also thank
the Vaex developers for their help and advice, and the Dask-cuDF
and cuDF developers for their responsiveness to issues and advice
on effective use of Dask-cuDF and cuDF. Finally we thank our
users who were kind enough to provide feedback to us and allow
us to use their quotes about how they are using Python at NERSC.

https://mods.nersc.gov/public/
https://mods.nersc.gov/public/


MONITORING SCIENTIFIC PYTHON USAGE ON A SUPERCOMPUTER 131

REFERENCES

[Aba16] K. N. Abazajian, et al., CMB-S4 Science Book, First Edition, 2016.
<https://arxiv.org/abs/1610.02743>

[Abb18] T. M. C. Abbott, et al., Dark Energy Survey year 1 results: Cosmo-
logical constraints from galaxy clustering and weak lensing Physical
Review D, 98, 043526, 2018. <https://doi.org/10.1103/PhysRevD.98.
043526>

[Age14] A. Agelastos, et al., Lightweight Distributed Metric Service: A
Scalable Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications, Proc. IEEE/ACM International
Conference for High Performance Storage, Networking, and Anal-
ysis, SC14, New Orleans, LA, 2014. <https://doi.org/10.1109/SC.
2014.18>

[Agr14] K. Agrawal, et al., User Environment Tracking and Problem Detec-
tion with XALT, Proceedings of the First International Workshop on
HPC User Support Tools, Piscataway, NJ, 2014. <http://doi.org/10.
1109/HUST.2014.6>

[Bab19] Y. Babuji, et al., Parsl: Pervasive Parallel Programming in Python,
28th ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), Phoenix, AZ, 2019. <https://
doi.org/10.1145/3307681.3325400>

[Bau19] E. Bautista, et al., Collecting, Monitoring, and Analyzing Facility and
Systems Data at the National Energy Research Scientific Computing
Center, 48th International Conference on Parallel Processing: Work-
shops (ICPP 2019), Kyoto, Japan, 2019. <https://doi.org/10.1145/
3339186.3339213>

[DESI] The DESI Collaboration, The DESI Experiment Part I: Science,
Targeting, and Survey Design, Science Final Design Report, <https:
//arxiv.org/abs/1611.00036>

[Eva15] T. Evans, A. Gomez-Iglesias, and C. Proctor, PyTACC: HPC Python
at the Texas Advanced Computing Center, Proceedings of the 5th
Workshop on Python for High-Performance and Scientific Com-
puting, SC15, Austin, TX, 2015 <https://doi.org/10.1145/2835857.
2835861>

[Fah10] M. Fahey, N Jones, and B. Hadri, The Automatic Library Tracking
Database, Proceedings of the Cray User Group, Edinburgh, United
Kingdom, 2010. <https://doi.org/10.1145/1838574.1838582>

[Fur91] J. L. Furlani, Modules: Providing a Flexible User Environment,
Proceedings of the Fifth Large Installation Systems Administration
Conference (LISA V), San Diego, CA, 1991.

[Gam15] T. Gamblin, et al., The Spack Package Manager: Bringing Order to
HPC Software Chaos, in Supercomputing 2015, SC15, Austin, TX,
2015. <https://doi.org/10.1145/2807591.2807623>

[Jac16] D. M. Jacobsen and R. S. Canon, Shifter: Containers for HPC, in
Cray Users Group Conference (CUG16), London, United Kingdom,
2016

[Jai15] Jain, A., et al., FireWorks: a dynamic workflow system designed for
high-throughput applications. Concurrency Computat.: Pract. Exper.,
27: 5037–5059, 2015. <https://doi.org/10.1002/cpe.3505>

[DESC] LSST Dark Energy Science Collaboration, Large Synoptic Survey
Telescope: Dark Energy Science Collaboration, White Paper, 2012.
<https://arxiv.org/abs/1211.0310>

[Mac17] C. MacLean. Python Usage Metrics on Blue Waters Proceedings of
the Cray User Group, Redmond, WA, 2017.

[vaex] A. Maarten. and J. V. Breddels, Vaex: big data exploration in the
era of Gaia, Astronomy & Astrophysics, 618, A13, 2018. <https:
//arxiv.org/abs/1801.02638v1>

[Mcl11] R. McLay, K. W. Schulz, W. L. Barth, and T. Minyard, Best practices
for the deployment and management of production HPC clusters
in State of the Practice Reports, SC11, Seattle, WA, 2011. <https:
//doi.acm.org/10.1145/2063348.2063360>

[MODS] NERSC 2017 Annual Report. pg 31. <https://www.nersc.gov/assets/
Uploads/2017NERSC-AnnualReport.pdf>

[OA20] NERSC Operational Assessment. In press, 2020.

https://arxiv.org/abs/1610.02743
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1109/SC.2014.18
https://doi.org/10.1109/SC.2014.18
http://doi.org/10.1109/HUST.2014.6
http://doi.org/10.1109/HUST.2014.6
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3339186.3339213
https://doi.org/10.1145/3339186.3339213
https://arxiv.org/abs/1611.00036
https://arxiv.org/abs/1611.00036
https://doi.org/10.1145/2835857.2835861
https://doi.org/10.1145/2835857.2835861
https://doi.org/10.1145/1838574.1838582
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1002/cpe.3505
https://arxiv.org/abs/1211.0310
https://arxiv.org/abs/1801.02638v1
https://arxiv.org/abs/1801.02638v1
https://doi.acm.org/10.1145/2063348.2063360
https://doi.acm.org/10.1145/2063348.2063360
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf

	Introduction
	Related Work
	Methods
	Customs: Inspect and Report Packages
	Message Logging and Storage
	Prototyping, Production, and Publication

	Results
	Discussion
	Conclusion
	Acknowledgments
	References

