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Abstract—In this paper a Time of Flight (ToF) camera specific data processing
pipeline is presented, followed by real life applications using artificial intelligence.
These applications include use cases such as gesture recognition, movement
direction estimation or physical exercises monitoring. The whole pipeline for
the body pose estimation is described in details, starting from generating and
training phases to the pose estimation and deployment. The final deployment
targets were Nvidia Xavier NX and AGX platforms receiving data from an Analog
Devices ToF camera.

Index Terms—transfer learning, ToF, python

Introduction

In recent years the evolution of deep neural networks has affected
the way in which Time of Flight (ToF) images are processed.
Images from ToF cameras are usually obtained as synchronized
depth and infrared (IR) image pairs. The customization of the
existing deep nets to the IR and depth images allows us to reuse
the existing models and techniques from this emerging domain.
The applications targeted are ranging from person detection,
counting, activity analysis to volumetric measurements, mapping
and navigation with mobile agents. In the following parts the
introduction to the specific ToF imaging, custom data processing
and CNN based solutions are presented [TC21]. Although for the
2D data a bunch of CNN based solutions exists, for the 3D data
[GZWY20] only some base architectures were widespread such as
Pointnet [QSMG17], while for the calibration between different
sensing modalities can be done in an efficient way according to
[FTK19].

ToF specific imaging

The 2D image processing part is a customized IR image module
based on transfer learning for bounding box estimation, skeleton
extraction and hardware specific model translation. The latter is
relevant in order to have a light-weight embedded solution running
on limited floating-point precision hardware platforms such as
Jetson Nvidia Family. As the existing CNN models are mainly
with the focus on colour images, thus ones has to adopt transfer
learning as a method to finetune the existing CNN models such as
VGG, MobileNet for the infrared or depth images specific to ToF
cameras. This solution seemed to be effective in terms of precision
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Fig. 1: Exemplification of ToF camera

and runtime on embedded devices (e.g Jetson NX or AGX). For
the skeleton detection part we relied on the real-time Tensorflow
optimized module for the Jetson product family, however for the
generic GPU enabled devices we had to tailor our models since
these are custom solutions.

Custom pipeline for ToF data

The main role of the depth image preprocessing part is the filtering
and bounding box estimation for the 3D ROI. The filtering is
essential for the embedded device in order to reduce the com-
putational overload. For the filtering pipeline we considered three
interconnected filters: voxel, pass-through and outlier filter as this
is visible in Figure 2. All these implementations are open source
library based variants. The details of the filtering were reported in
[TC21].

Low level ToF image pre-processing - ToFNest

In ToFNest we are approximating surface normals from depth
images, recorded with Time-of-Flight cameras. The approximation
is done using a neural network. The base of our neural network is
the PyTorch library, since the whole process is done using Python
3.6 as our programming language. Using PyTorch we have created
a Feature Pyramid Network type model ([LDG+17]).

The main pipeline of the data was the following: first we read
the depth images with OpenCV (alongside the depth information
we could also use the infrared information or the rgb information
from the camera as well, thus adding more information to work
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Fig. 2: Processing pipeline for ToF camera

Fig. 3: Exemplification of ToF normal estimation

with), then we prepare them with numpy. From a numpy array
it is easy to convert it to a torch tensor on the GPU, which then
creates the predictions about the surface normals. An example of
the prediction can be seen in Figure 3, where the direction of the
normal vectors are decoded with RGB images.

The following code represents the loss:
pred=pred*2-1
gt=gt*2-1
inner_product = (pred * gt).sum(dim=1).unsqueeze(1)
cos = inner_product / 2
angle = torch.acos(cos)
if not args.orient_normals:

angle[angle>1.57]=3.14-angle[angle>1.57]
loss = torch.mean(angle)
return loss

The results were accurate relative to other techniques, but the time
was much less. The time being less means that at least 100 times
faster. This can be due to the fact, that this method works with
images, instead of point clouds as other methods do. This makes
it much faster, as this was reported in [MKT21].

Our method was evaluated by verifying only the angles be-
tween the lines, not the exact directions of the vectors (this was
the case in the other methods as well), but we can train that,
although the results are going to get worse.

Furthermore, in order to get a real-time visualization about the
predictions, we used rospy to read the images from ROS topics,
and also to publish the normal estimation values to another ROS
topic, that we could visualize using Rviz. This can be seen in the
demo video.

Low level ToF image pre-processing - ToFSmooth

This whole pipeline and network, with some minor modifications
can be also used to smoothen the depth image, thus making the
point cloud smoother as well.

For the dataset we added gaussian noise of 5 and 10 cm
to the original data, while we smoothed the original data with
PointCloudDenoising ([PFVM20]) method.

Our method got pretty close to the ground truth value, in most
of the cases. Although, in the case of the original (originally

Fig. 4: The average error for the original data

Fig. 5: The average error for data with 5 cm gaussian noise

fairly smooth) data resulted slightly worse results, then some
other methods (for instance the PointCloud Library [RC11]), when
we tested the smoothing for much more noisy data, our results
barely changed, while other methods were highly compromised.
A comparison between these cases can be seen in the next image
3 images:

Here we can see that our method kept very much the same

Fig. 6: The average error for data with 10 cm gaussian noise
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Fig. 7: DetectNet structure for training

throughout all the cases same as DeepDepthDenoising method
([SSC+19]), which is the only other method that we have found,
that works with depth images as well, making it about the same as
ours, but a little bit more polished. Also this method performs at
the same speed as ours.

The jump in the error at the end of the scale is due to some
denormalization bias that we need to fine-tune.

CNN based solutions

In this part we describe in details the person detection, action
recognition and volumetric estimation applications.

Person detection from IR imaging

DetectNet is a detection algorithm based on the jetson-inference
repository with people detection focus presented in [LLW+16]
or [XLCH16]. This repository uses NVIDIA TensorRT for effi-
cient implementation of neural networks on the Jetson platform,
improving performance and energy efficiency through graphical
optimizations, kernel fusion and FP16/INT8 accuracy.

Object detection requires a lot of information for training.
DetectNet uses a large dataset, and each image contains multiple
objects. For each object in the image, the trained model must
detect both the object and the corner coordinates of the bounding
box. Since the number of objects can vary in the training image
set, it would be difficult to define the loss function if we choose the
label format with variable length and dimensionality. This problem
has been solved by introducing a 3-dimensional label format that
enables DetectNet to ingest images of any size with a variable
number of objects present.

In the Figure 7 you can see the architecture for the training
process, which is based on 3 important steps:

• data layers ingest the training images and labels
• a fully-convolutional network (FCN) performs feature ex-

traction and prediction of object classes and bounding
boxes per grid square

• loss functions simultaneously measure the error in the
two tasks of predicting the object coverage and object
bounding box corners per grid square

In the final layers of DetectNet the openCV groupRectangles
algorithm is used to cluster and filter the set of bounding boxes
generated for grid squares with predicted coverage values greater
than or equal to gridbox_cvg_threshold, which is specified in the
DetectNet model definition prototxt file.

DetectNet also uses the “Python Layers” interface to calculate
and output a simplified mean Average Precision (mAP) score
for the final set of output bounding boxes. For each predicted
bounding box and each ground truth bounding box the Intersection

Fig. 8: Exemplification of people detection on infrared images based
detection

over Union (IoU) score is computed. IoU is the ratio of the
overlapping areas of two bounding boxes to the sum of their areas.

The pre-trained model accepts 3 channel images – RGB, by
modifying the existing model, we have managed to detect and
track people on the infrared image – 1 channel. With the help of
the OpenCV library and the 3.7 Python programming language
version, we have developed a script that modifies the contrast of
the IR image; thus, we obtained a much better result than if we
had not used this approach. This result can be seen in the Figure
8, where we can see that the people are detected on the IR image
with high confidence.

To be able to run the algorithm in real-time we used the rospy
client. With the help of this API, we have developed an efficient
way to pass a ROS topic as input to our model. The algorithm
was tested on a Jetson AGX, and the camera used was from
Analog Devices (AD-96TOF1-EBZ). The result can be seen in
the attached demo video.

Action recognition from IR images

This is a small tutorial for detecting the skeleton, or rather an
approximation of the joints of a person, from an infrared image.
In our setup we used one of the Analog Devices Time-of-Flight
cameras, which provided us the infrared image, and an NVIDIA
Jetson Xavier NX board, which is a compact system-on-module
(SOM), very well suited for model inference.

As a baseline architecture model, we used the pretrained
model from one of the NVIDIA-AI-IOT’s repositories: https:
//github.com/NVIDIA-AI-IOT/trt_pose . We used the TensorRT
SDK in order to optimize our pretrained model for the Jetson
Xavier NX platform, thus achieving a better performance in our
model inference pipeline.

We also used, some of the Robot Operating System’s (ROS)
tools for retrieving the camera infrared images and by using the
rospy client library API we managed to transfer our infrared
images to the network’s model. While this would have been an
easy step using the CvBridge library, which provides an interface
between ROS and OpenCV, this time was not the case, as we had
some issues with this library. Because we are working on Jetson
Xavier NX board, which comes with the latest OpenCV version,
and CvBridge uses at its core an older version of OpenCv, we
replaced the conversion from sensor_msgs/Image message type to
the OpenCv image array made by CvBridge with a very useful
numpy functionality which allowed us to make this conversion

https://github.com/NVIDIA-AI-IOT/trt_pose
https://github.com/NVIDIA-AI-IOT/trt_pose
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Fig. 9: Exemplification of skeleton detection on infrared images

flawlessly, while still achieving the same functionality and per-
formance, because in fact, this was only a slight alteration of the
underlying Python implementation of the CvBridge package. So,
we replaced:

ir_image = CvBridge().imgmsg_to_cv2(image_msg,-1)

with:

ir_image = numpy.frombuffer(
image_msg.data,
dtype=numpy.uint8).reshape(

image_msg.height,
image_msg.width,
-1)

After making this conversion, we preprocessed the infrared image
before feeding it to the neural network, using the OpenCv library.
After this step we supply the model input with this preprocessed
image, and we obtained the results which can be seen in the Figure
9.

Furthermore, as a side quest, because we tested the TensorRT
SDK and we saw some good results in our model’s inference,
we decided to extend the infrared people detection application by
integrating it with NVIDIA’s Deepstream SDK. While this SDK
brings further optimization to our model’s inference performance
and optimize the image flow along the inference pipeline by trans-
ferring the image on GPU for any kind of preprocessing required
before it enters the model and even allowing us to serve multiple
images, from multiple cameras, without a very drastic change in
the model’s inference speed. Even though these functionalities
are important, we were interested by another functionality which
the Deepstream SDK supports, this being the fact that is able to
provide communication with a server and transmit the output of
the neural network’s model, which runs on the Jetson platform,
to the server, for further data processing. This can be very useful
in applications where we want to gather some sort of statistics
or when our application has to make some decisions based on
the output of our trained model, but we don’t want to affect
the Jetson’s inference performance by overwhelming it with other
processes. In the Figure 10, can be seen the result of the people
detection algorithm made by using the Deepstream SDK, and
below is the network’s output received on our custom configured
server when a person is detected:

{
"object" : {
"id" : "-1",
"speed" : 0.0,
"direction" : 0.0,

Fig. 10: People detection algorithm running with the Deepstream
SDK on the Jetson Xavier NX board

"orientation" : 0.0,
"person" : {

"age" : 45,
"gender" : "male",
"hair" : "black",
"cap" : "none",
"apparel" : "formal",
"confidence" : -0.10000000149011612

},
"bbox" : {

"topleftx" : 147,
"toplefty" : 16,
"bottomrightx" : 305,
"bottomrighty" : 343

},
"location" : {
"lat" : 0.0,
"lon" : 0.0,
"alt" : 0.0

},
"coordinate" : {

"x" : 0.0,
"y" : 0.0,
"z" : 0.0

}
}

Volumetric estimates for depth images

The goal of this research is to estimate the volume of objects using
only depth images recorded with Time-of-Flight cameras. As a
simplifying feature, we consider only box shaped objects, with
clearly definable perpendicular planes. Two methods have been
determined.The first method uses RANSAC algorithm to detect
planes while the other one uses the ideas from [SSG+20].

The first algorithm iteratively finds the largest plane using
RANSAC and uses euclidean extraction to remove it from the
point cloud. Once the planes are determined and checked to see
if they are perpendicular, the intersection lines of the planes
are determined by projecting between them. The projections
approximate a line and the points with the largest component
difference determine the length of the line. This way iteratively
the 3 intersecting line lengths can be determined once the planes
are determined and checked for orthogonality.

An important observation is that it can compute the volume
using 2 planes instead of 3. This is due to the fact that if 2 planes
are orthogonal, the common line between them will be determined
by 2 points that are also corner points for the object. By selecting
a corner point and the two perpendicular planes, a third plane can
be determined that is perpendicular to the other two and it contains
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Fig. 11: Planar detection

the chosen point. Once the virtual third plane has been computed,
the algorithm resumes as in the case with 3 determined planes.

An advantage of this method is that it uses readily available
and studied functions for processing pointclouds. For a simple
case of a box and floor plane, the algorithm accuracy depends on
the level of noise the pointcloud has. The following code snip-
pets ilustrate the functionality of the Planar Segmenting Volume
computation method using 2 planes.
1 def volume_main(perp_thresh,min_nr_points,input_pcd)
2 floor=pcl_Planar_Ransac(input_pcd)
3 input_pcd=Euclidean_extraction(input_pcd)
4 if (pcl_Planar_Ransac(input_pcd)>min_nr_points)
5 plane_1=Planar_Ransac(input_pcd)
6 input_pcd=Euclidean_extraction(input_pcd)
7 if(pcl_Planar_Ransac(input_pcd)>min_nr_points)
8 plane_2=pcl_Planar_Ransac(input_pcd)
9 if(cos(plane_1 * plane_2)<perpendicular_threshold>)

10 Volume=compute_volume_2_planes(plane1_plane2)
11 else
12 (p_A, p_B)=line_points(plane_1,plane_2)
13 plane_3=com_perp_plane_point(plane_1,plane_2,p_A)
14 if(cos(plane_1*plane_3)<perpendicular_threshold>)
15 Volume=compute_volume_2_planes(plane_2,plane_3)

1 def compute_volume_2_planes(plane_A,plane_B):
2 (p_AB_1, p_AB_2)=line_points(plane_A,plane_B)
3 plane_C=com_perp_plane_point(plane_A,plane_B,p_AB_1)
4 (p_AC_1,p_AC_2)=line_points(plane_A,plane_C)
5 (p_BC_1,p_BC_2)=line_points(plane_B,plane_C)
6 L1=distance(p_AB_1, p_AB_2)
7 L2=distance(p_AC_1, p_AC_2)
8 L3=distance(p_BC_1, p_BC_2)
9 Volume=L1*L2*L3

1 def line_points(plane_A,plane_B):
2 line_AB_pcd=pcl_project_inliers(plane_A,plane_B)
3 line_BA_pcd=pcl_project_inliers(plane_B,plane_A)
4 line_pcd=concat(line_AB_pcd,line_BA_pcd)
5 (abs_diff_x,p_AB_1_x,p_AB_2_x)=max_diff_x(line_pcd)
6 (abs_diff_y,p_AB_1_y,p_AB_2_y)=max_diff_y(line_pcd)
7 (abs_diff_x,p_AB_1_z,p_AB_2_z)=max_diff_z(line_pcd)
8 diff=max_diff(abs_diff_x,abs_diff_y,abs_diff_z)
9 (pointA, pointB)=points_max_diff(diff)

The downside of this method is that it can compute the volume
only for one box. Noise and other objects in the scene can totally
disrupt the volumetric estimate.

Due to these shortcomings, a new method for measuring the
volume is studied, based on the work by [SSG+20]. Their paper,
details an algorithm that uses pointclouds with normals computed
in each point in order to determine collections of point pairs
for which their normals satisfy the orthogonality constraint. The
point pair collections will approximate the orthogonal planes.
By determining the points contained by each orthogonal plane,

Fig. 12: Limitations of planar segmentation

Fig. 13: Corner detection

projections can be made that approximate the intersecting lines of
the orthogonal planes. By selecting the 3 lines that have the edge
points closest to each other, volume of a box can be computed.
The advantage of this method is that it allows the computation
of the volume for multiple box shaped objects. The following
code snippets show the usage of the Sommer’s plane determination
method to compute the volume.

1 def comp_vol_ortho(pcd,dmin,dman,votes,seg,thresh):
2 all_lines=sommer_planes(pcd,dmin,dman,votes,seg)
3 all_triplets=find_line_triplet(thresh,all_lines)
4 for i in all_triplets:
5 line_1=distance(all_triplets[i][0])
6 line_2=distance(all_triplets[i][1])
7 line_3=distance(all_triplets[i][2])
8 Volume[i]=line_1*line_2*line_3

1 def find_line_triplet(thresh):
2 for i in range(0,size(all_lines-3)):
3 for j in range(i+1,size(all_lines-2)):
4 for k in range(j+1,size(all_lines-1)):
5 avr_p=(all_lines[i]+all_lines[j]+all_lines[k])/3
6 if dist_each_to_avr(avr_p)<threshold:
7 add_triplet(all_triplets)

Volume estimation using enhanced planar/corner detections was
done using the training from [SSG+20]. The largest benefit of this
method is that it does not rely on RANSAC and it can compute
the volume for multiple objects.

This permits in further research to consider the idea of moving
the camera in such a way to improve the volumetric measurement
of multiple objects. This problem statement becomes equivalent
to a Next Best View problem in which the view must optimize
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the accuracy or availability of a volumetric measurement. This
translates to the question "In which of the available positions
does the camera need to be placed next in order to improve the
volumetric measurement". A starting point for such an idea would
be to use the neural network architecture used in [ZZL20], but
change the loss function’s objective from reconstruction to volu-
metric accuracy. By creating a scoring function for the volumetric
accuracy, candidate new positions might be evaluated and chosen
based on the input pointcloud.

Conclusion

In this paper we provided some guidelines for the ToF specific im-
age processing using Python libraries. The demos are ranging from
basic pointcloud processing to people detection and enhanced
volume estimation.
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