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Cell Tracking in 3D using deep learning
segmentations
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Abstract—Live-cell imaging is a highly used technique to study cell migra-
tion and dynamics over time. Although many computational tools have been
developed during the past years to automatically detect and track cells, they
are optimized to detect cell nuclei with similar shapes and/or cells not cluster-
ing together. These existing tools are challenged when tracking fluorescently
labelled membranes of cells due to cell's irregular shape, variability in size
and dynamic movement across Z planes making it difficult to detect and track
them. Here we introduce a detailed analysis pipeline to perform segmentation
with accurate shape information, combined with BTrackmate, a customized
codebase of popular ImageJ/Fiji software Trackmate, to perform cell tracking
inside the tissue of interest. We developed VollISeg, a new segmentation method
able to detect membrane-labelled cells with low signal-to-noise ratio and dense
packing. Finally, we also created an interface in Napari, an Euler angle based
viewer, to visualize the tracks along a chosen view making it possible to follow
a cell along the plane of motion. Importantly, we provide a detailed protocol
to implement this pipeline in a new dataset, together with the required Jupyter
notebooks. Our codes are open source available at [Git].

Index Terms—3D segmentation, cell tracking, deep learning, irregular shaped
cells, fluorescent microscopy.

Introduction

Live-cell imaging is a highly used technique to study cell mi-
gration and dynamics over time. The image analysis workflow
of volumetric (3D) imaging of cells via fluorescence microscopy
starts with an accurate detection and segmentation of cells fol-
lowed by cell tracking and track analysis. Broadly speaking the
task of segmentation can be separated into semantic segmentation
(classifying pixels as background or pixels belonging to the cell) or
instance segmentation (classifying pixels belonging to individual
cells by assigning a unique label to each cell). Segmentation is
complicated due to presence of multiple objects in the image,
overlapping object pixels and non-homogeneous intensity distri-
bution. Several methods have been proposed for such automated
detection and segmentation tasks such as the traditional intensity
based thresholding, watershed transform [BM18] and of recent
machine learning methods based on random-forest classifiers and
support vector machines [BKK " 19]. It was shown in [RHH20]
that conventional computer vision and machine learning based
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techniques alone will almost always lead to sub-optimal segmen-
tation and that methods based on deep learning have improved
the accuracy of segmentation for natural and biomedical images
alike. For the purpose of semantic segmentation U-Net [RFB15]
has emerged as the most widely used network for biological
applications. This network also forms the backbone of another
successful network to do cell nuclei segmentation in 3D, Stardist
[SWBM18] [WSH20]. Stardist directly predicts a shape repre-
sentation as star-convex polygons for cell nuclei in 2D and 3D.
However, cell membrane segmentation is especially challenging
as opposed to nuclei segmentation due to fewer boundary pixels
and the need to separate touching cells. To predict cell contours
together with cell centroids, Eschweiler et al. proposed a 3D U-
Net network using centroids as seeds for watershed in 3D confocal
microscopy images [ESC' 18]. The drawback of this approach is
misclassification due to sub-optimal seeding. Another approach
proposed by Wolny et al., is to directly predict the cell boundaries
using a 3D U-Net followed by a volume partitioning algorithm to
segment each cell based on the boundary prediction [WCV20].
This approach requires well defined cell boundaries, which may
create segmentation errors in low signal-to-noise imaging condi-
tions.

To address the issues with existing segmentation algorithms
just described, we developed Vollseg. In brief we use Stardist in
3D to obtain a star convex shape approximation for the cells and
extract the cell centroids from these polygons. We also train a 3D
U-Net model to obtain a semantic segmentation map of the cells.
We then perform a marker controlled watershed on the probability
map of Stardist using the U-Net segmentation as a mask image to
prevent the overflow of segmentation regions. To avoid the error of
sub-optimal seeding we developed a seed pooling approach taking
advantage of strength of both the Stardist and U-Net networks.
We benchmark our segmentation result on a challenging dataset
comprised of epithelial cells of mouse embryonic mammary
glands with membrane labelling. These cells are highly irregular
in shape and have a low signal-to-noise ratio to obtain an accurate
segmentation only based on the boundary information. Using this
dataset, we obtain different metrics showing that our approach
is able to obtain shape approximation for the overlapping cells
that go beyond the star convex shape. The complete segmentation
pipeline is illustrated in Figure 1.

For analysis of the cell migration behavior we need to reliably
track the cells and obtain certain attributes such as signal intensity
or changes over time of the distance between the cells and tissue
boundary. Cell tracking is challenging due to erratic volumetric
motion, occlusion and cell divisions. Tracking using only the
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A) Input raw image of
irregular shaped cells in 3D

C) Semantic segmentation
using U-Net

Y

D) Seed pooling from Stardist
and U-Net

B) Star-convex polygons
using Stardist

|

F) 3D segmentation of irregular
shaped cells

E) Probability map using
Stardist

Fig. 1: Schematic representation showing the segmentation approach
used in VollSeg. First, we input the raw fluorescent image in 3D (A)
and pre-process it to remove noise. Next, we obtain the star convex
approximation to the cells using Stardist (B) and the U-Net prediction
labelled via connected components (C). We then obtain seeds from the
centroids of labelled image in B, for each labelled region of C in order
to create bounding boxes and centroids. If there is no seed from B in
the bounding box region from U-Net, we add the new centroid (shown
in yellow) to the seed pool (D). Finally, we do a marker controlled
watershed in 3D using skimage implementation on the probability
map shown in (E) to obtain the final cell segmentation result (F). All
images are displayed in Napari viewer with 3D display view.
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centroid information may lead to wrong cell assigmements, hence
we need to include other cell attributes such as the shape and
intensity information while making the links between the cells
in successive time frames. Trackmate is a popular tracking soft-
ware that uses customizable cost matrix for solving the linear
assignment problem and uses Jagman linker as a second step to
link segments of dividing and merging cells [TPST17]. In this
paper, we introduce BTrackmate, a Fiji/Image] plugin to track the
previously segmented cells. The major advantage of BTrackmate
is the ability to track the cells inside a tissue. It allows the input of
the cell and tissue segmentation image files and/or a csv file of the
cell attributes. Furthermore, we also add some biological context
in the tracking process where after segment linking is done a track
inspector removes segments that are shorter than a user defined
time length. Such short segments are unlikely to be true division
events if they are too short and manually removing them can be
tedious when many tracks are present. The users can choose this
parameter in time units and can set it to 0 if removing such short
segments is not required.

Finally, the tracking results obtained with BTrackmate are
saved as an xml file that can be re-opened in an Euler angle based
viewer in python called Napari, allowing volumetric viewing of
the tracked cells using the track layer feature [UVCL20]. We made
a python package called napatrackmater to export the track xml
file as tracks layer in Napari for dividing and non-dividing tracks.
We provide a customized Napari widget to view selected tracks
and obtain their cell migration attributes.

Material and Methods
Preparation of the dataset

We used fluorescent microscopy images of mouse embryonic
mammary glands stabilized in an ex vivo culture previously
collected in the laboratory of Dr. S. Fre at Institut Curie. All
images were acquired with an inverted confocal laser scanning
microscope (e.g. Zeiss LSM780/880) equipped with long-working
distance objectives to acquire high-resolution 3D image stacks. We
acquired images of pixel size (22, 512, 512) with calibration of (3,
0.52, 0.52) micrometer. The quality at which these images are
acquired is determined by the spatial resolution of the used optical
device, desired temporal resolution, duration of the experiment and
depth of the acquired Z-stacks. We perform unsupervised image
denoising [KBJ19] on our dataset, an algorithm we chose based
on its performance compared to other methods [Ric72], [Luc74].
Post-restoration of the 3D images, we developed a method to per-
form the segmentation of the cells using deep learning techniques.
We created a training dataset with hand drawn segmentation of
14 Z-stacks. We performed data augmentation on the microscopy
images by denoising, adding Poisson and Gaussian noise, random
rotations and flips to create 700 Z-stacks. We chose a patch size
of (16, 128, 128) and created 11,264 patches for training Stardist
and U-Net network. For the Stardist network we chose 192 rays
to have a better shape resolution for the irregular shaped cells.

Parameter Setting

Stardist predicts object instances based on probability threshold
and non maximal suppression threshold to merge overlapping
predictions. These parameters can be automatically determined
using the optimize threshold program that we provide with the
segmentation package. Higher values of the probability threshold
yield fewer object instances, but avoids false positives. Higher
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values of the overlap threshold would lead to oversegmentation.
We used 32 Z-stacks to determine the optimal parameters of prob-
ability threshold of 0.76 and non maximal suppression threshold
of 0.3.

Segmentation
As illustrated in Figure 1, we first obtain the centroids of the star
convex approximated cell shapes and create a seed pool with these
centroid locations. Even with the optimized threshold values we
find that the seeds can be sub-optimal as many cells instances with
low signal are missed. In order to make the seed pool optimal we
use the U-Net prediction to obtain a binary image of semantic
segmentation, perform connected component analysis to label the
image and obtain bounding boxes (computed using scikit-image
[vdWSN™14], version 0.18.x) for each label in 3D. For each
bounding box we search for a seed from the Stardist predicted
seed pool. If a Stardist seed is found inside the bounding box,
the centroid of the U-Net predicted bounding box is rejected else
the centroid is added to the seed pool to make a complete set of
seeds that we use to start a watershed process in 3D. We use the
probability map of Stardist to start the watershed process to obtain
a better shape approximation for the irregular shaped cells that
goes beyond the star convex shape.

The code for the merging of U-Net and Stardist seeds is the
following:

def iou3D (box_unet, centroid_star):

len (centroid_star)
False

ndim =
inside =

Condition =
p, ndim)
for p in range (0, ndim) ]

[Conditioncheck (centroid_star, box_unet,

inside = all (Condition)
return inside

def Conditioncheck (centroid_centroid, box_unet,
p, ndim) :
condition = False

if centroid_star[pl]
and centroid_star[p]

>= box_unet [p]
<= box_unet[p + ndim]:

condition = True

return condition

The code for doing watershed in 3D using the complete set of
seeds on the probability map of Stardist is the following:

def WatershedwithMask3D (Image, Label, mask, grid):
#1. je = Probability
#Le = Label segqr rdist

#Mask = U-Net predicted image post binarization
properties = measure.regionprops (Label, Image)
binaryproperties =

measure.regionprops (label (mask), Image)

Coordinates = [prop.centroid for prop in properties]
BinaryCoordinates = [prop.centroid for

prop in binaryproperties]

Binarybbox =

[prop.bbox for prop in binaryproperties]

Coordinates = sorted(Coordinates ,

key=lambda k: [k[0], k[1], k[2]])

if len(Binarybbox) > 0:

for i in range (0, len(Binarybbox)):
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box = Binarybbox[i]
inside = [iou3D (box, star)

for star in Coordinates]

if not any(inside)

Coordinates.append (BinaryCoordinates[i])

Coordinates.append((0,0,0)
Coordinates = np.asarray (Coordinates)
coordinates_int = np.round(Coordinates) .astype (int)

markers_raw = np.zeros_like (Image)
markers_raw[tuple (coordinates_int.T)] = 1

+ np.arange (len (Coordinates))

markers = morphology.dilation (
markers_raw.astype ('uintl6'), morphology.ball(2))

watershedImage = watershed(-Image, markers,
mask = mask.copy())
return watershedImage, markers

Performance Metrics

Accuracy of segmentation results is assesed by comparing the ob-
tained labels to the ground truth (GT) labels. The most commonly
used metric is to compute intersection over union (IOU) score
between the predicted and the GT label image. We define GT,
labels and IOU score as:

GT = {gt}, SEG = {seg} are two sets of segmented objects.

10U (a,b) is the value of the IOU operation between two
segmented objects a and b.

A threshold score value 7 € [0, 1] is used to determine the true
positive (TP), false positives (FP) and false negatives (FN) defined
as:

TP = {seg € SEG,3 gt € GT, IOU (gt,seg) > 1}
FP = {seg € SEG,V gt € GT, IOU (gt,set) < 1}

FN = {gt € GT,V seg € SEG, 10U (gt,seg) < T}

We use the Stardist implementation to compute accuracy
scores which uses the hungarian method (scipy implementation)
[Kuh55] to compute an optimal matching to do a one to one
assingement of predicted label to GT labels. This implementation
avoids finding multiple TP for a given instance of GT. We also
compute precision (TP/(TP + FP)), recall (TP / (TP + FN)), F1
score (geometric mean of precision and recall) and accuracy score
AP, = ﬁ. To evaluate the accuracy of our method in
resolving the shape of the cells we compute the mean squared error
(MSE) and structural similarity index measurment (SSIM) be-
tween the GT and obtained segmentation images post-binarization
operation on the obtained instance segmentation maps. MSE
shows a low score if the image is structurally closer to GT. SSIM
score is higher if the two images are structurally more similar to
each other.

Detailed Procedure

The software package we provide comes with training and predic-
tion notebooks for training the base U-Net and Stardist networks
on your own dataset. We provide jupyter notebooks to do so on
local GPU servers and also on Google Colab.
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Network Training: In the first Jupyter notebook we create
the dataset for U-Net and Stardist training. In the first cell of the
notebook the required parameters are the path to your data that
contains the folder of Raw and Segmentation images to create
training pairs. Also to be specified is the name of the generated
npz file along with the model directory to store the hS files of the
trained model and the model name.

Data_dir = '/data/'
NPZ_filename = 'VollSeg'
Model_dir = '/data/'
Model_Name = 'VollSeg'

The model parameters are specified in the next notebook cell.
These parameters are described as follows:

1) NetworkDepth = Depth of the network, with each increas-
ing depth the image is downsampled by 2 hence the XYZ
dimension of the data / 27depth has to be greater than 1.

2) Epochs: training for longer epochs ensures a well con-
verged network and requires longer GPU runtimes.

3) Learning rate is the parameter which controls the step
size used in the optimization process and it should not be
greater than 0.001 at the start of the training.

4) Batch size controls the number of images used for doing
stochastic gradient descent and is a parameter limited by
the GPU memory available, batch size < 10 should be
optimal.

5) Patch X, Y, Z is the size used for making patches out of
the image data. The original image is broken down into
patches for training. Patch size is chosen based on having
enough context for the network to learn the details at
different scales.

6) Kernel is the receptive field of the neural network, usual
choices are 3, 5 or 7. This is the size of the convolutional
kernel used in the network.

7) n_patches_per_image is the number of patches sampled
for each image to create the npz file, choose an optimal
value so that the file fits in the RAM memory.

8) Rays stand for the number of rays used to learn the
distance map, low rays decreases the spatial resolution
and high rays are able to resolve the shape better.

9) use_gpu_opencl is a boolean parameter that is set true if
you want to do some opencl computations on the GPU,
this requires GPU tools python package.

10) Before starting the U-Net training an npz file containing
the paried Raw and Binary segmentation images needs to
be created, by setting GenerateNPZ = True such a file is
created.

11)  If there are multiple GPU’s available, the training of U-
Net and Stardist can be split between the GPU’s. Set
TrainUNET = True for training a U-Net network, create
a copy of the notebook and only set TrainSTAR = True
for training a Stardist network. If there are no multiple
GPU’s available, set all of these parameters in 10) and
11) to be True to create and train both the networks in a
single notebook run.

The code to set the parameters is the following:

#Network training parameters
NetworkDepth = 3

Epochs = 100
LearningRate =
batch_size = 5
PatchX = 128
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Patchy = 128

Patchz = 16

Kernel = 3
n_patches_per_image = 16
Rays = 192

startfilter = 48
use_gpu_opencl = True
GenerateNPZ = True
TrainUNET = False
TrainSTAR = False

After the network has been trained it will save the configuration
files of the training for both the networks along with the weight
vector file as hS files that will be used by the prediction notebook.
For running the network prediction on XYZ shape images use the
prediction notebook either locally or on Colab. In this notebook
you only have to specify the path to the image and the model
directory. The only two parameters to be set here are the number
of tiles (for creating image patches to fit in the GPU memory)
and min_size in pixel units to discard segmented objects below
that size. We perform the watershed operation on the probability
map as a default. However, this operation can also be changed to
use the distance map coming out of Stardist prediction instead by
setting *UseProbability’ variable to false. The code below operates
on a directory of XYZ shape images:

ImageDir = 'data/tiffiles/'
Model_Dir = 'data/'

SaveDir = ImageDir + 'Results/'
UNETModelName = 'UNETVollSeg'
StarModelName = 'VollSeg'
NoiseModelName = 'NoiseVoid'

UnetModel = CARE (config = None,

name = UNETModelName,

basedir = Model_Dir)

StarModel = StarDist3D (config = None,
name = StarModelName,

basedir = Model_Dir)

NoiseModel = N2V (config=None,
name=NoiseModelName,
basedir=Model_Dir)

Raw_path =
os.path. join (ImageDir,
filesRaw =

glob.glob (Raw_path)
filesRaw.sort
min_size = 50

n_tiles = (1,1,1)

for fname in filesRaw:

s tif")

SmartSeedPrediction3D (ImageDir,

SaveDir, fname,

UnetModel, StarModel, NoiseModel,
min_size = min_size,

n_tiles = n_tiles,

UseProbability = False)

Tracking

After we obtain the segmentation using VollSeg, we create a csv
file of the cell attributes that include their location, size and volume
inside a region of interest. For large datasets memory usage could
be of concern while loading the images into memory, hence inputs
via csv could prove helpful. Tracking is performed in ImagelJ/Fiji,
an image processing package. We developed our code over the
existing tracking solution called Trackmate [TPS " 17]. Trackmate
uses linear assignment problem (LAP) algorithm to do linking
of the cells and uses Jagman linker for linking the segments for
dividing and merging trajectories. It also provides other trackers
such as the Kalman filter to do tracking of non-dividing cells.



Fig. 2: Trackscheme display for the C. elegans dataset.

Trackmate comes with a fully interactive track editing interface
with graph listener to show the selected cell in the trackscheme
and vice versa, to click on the graph and have the selected cell
being highlighted in the image, making the process of track editing
interactive. Post-editing the tracks are saved as an xml file which
can then be loaded back into the program to do more track editing
if needed. When a cell divides, the track is splitted up in two
tracklets. In order to aid in track editing, we introduced a new
parameter of minimum tracklet length to remove tracklets in a
track that are short in the time dimension. This introduces a
biological context of not having very short trajectories, reducing
the track editing effort to correct for the linking mistakes made by
the program. For testing our tracking program we used a freely
available dataset from the cell tracking challenge of a developing
C. elegans embryo [Cel] [MBB08]. Using our software we can
remove cells from tracking which do not fit certain criteria such
as being too small (hence most likely a segmentation mistake) or
being low in intensity or outside the region of interest such as
when we want to track cells only inside a tissue. For this dataset
we kept 12,000 cells and after filtering short tracks kept about 50
tracks with and without division events.

For this dataset the track scheme along with overlayed tracks is
shown in Figure 2. Selected node in the trackscheme is highlighted
in green and vice versa. Extensive manual for using the track
editing is available on ImageJ/Fiji wiki [Tin].

Results
Quantitative Comparisons between Segmentation Methods

We compare our proposed VollSeg segmentation approach to two
commonly used methods for cell segmentation of fluorescent mi-
croscopy images, 3D Stardist [SWBM18] [WSH"20] and 3D U-
Net [RFB15]. A 3D cell rendering using all analyzed segmentation
methods is shown in the Figure 3. Stardist in 3D was previously
compared to other classical method, the IFT watershed, and it was
shown to perform better than the classical method, hence we use
Stardist as a baseline for comparison. To assess the performance of
our segmentation, we compute the metrics described in material
and methods section. VollSeg and Stardist methods perform at
comparable accuracy, but higher than U-Net, as shown in Figure
4 A. This is expected, as U-Net can not perform instance seg-
mentation of overlapping cells. In addition, when quantifying the
Fl-score in Figure 4 B, U-Net obtains the lowest score because it
detects less TP segmented pixels in comparision to VollSeg and
Stardist as shown in Figure 4 C. However, Stardist has the highest
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Probability Map

Stardist VollSeg

Fig. 3: Visual 3D segmentation comparison between the Ground
truth (GT) image, Stardist, U-Net and VollSeg results. The images
are displayed in Napari viewer with 3D display view.

mean squared error as it is unable to detect the irregular shape
while U-Net and Vollseg have similar performance, as shown in
Figure 5 A. This result can also be seen from structural similarity
index measurement, shown in Figure 5 B. In conclusion, VollSeg
is able to strength the shape accuracy from U-Net and the ability
to separate the overlapping instances from Stardist.

Track Analysis
After obtaining the tracks from BTrackmate, we save them as
Trackmate xml file, which contains the information about all the
cells in a track. Since the cells can be highly erratic in their
volumetric motions, we use Napari, an Euler angle based viewer,
to visualize such tracks from different reference positions. We
made a python package to export the xml files previously saved
in ImagelJ/Fiji and convert them into the tracks layer of Napari.
We made a customised widget based graphic user interface (GUI)
to view selected tracks, display the track information and save the
cell track along user selected view, as shown in Figure 6 A. On the
top left panel, the image and tracks layer properties are displayed
and can be changed (1). In the bottom left, there is a dropdown
menu enlisting all the tracks (2). Users can select the track to be
displayed in the central window and it can be switched between
the hyperstack and the 3D view (3). The user can also choose to
view all the tracks at once and then toggle the visibilty of the
tracks using the eye icon next to the image and tracks layer (4).
On the top right panel, we show two plots displaying the track
information (5). The 3D central view can be rotated and translated
to view the tracks along the plane of motion of the cells and the
selected view can be saved as an animation using the bottom right
animation panel (6). For the cells that divide we show the intensity
variation and associated fast fourier transform for each tracklet.
We provide two example jupyter notebooks with the package.
In the first one we compute the cell distance from the tissue bound-
ary change over time for dividing and non-dividing trajectories.
The user selects a track of interest and it displays two plots next
to the track view that show the distance change over time for
the whole track (non-dividing trajectory) and the starting and end
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Fig. 4: Segmentation comparision metrics between VollSeg (in blue),
Stardist (in orange) and U-Net (in green). We plot (A) accuracy (as
percentage), (B) F1 score (as percentage) and (C) true positive rates
(as number of pixels) for all the networks.
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A) Mean Squared error
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B) Structural similarity index measurement
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Fig. 5: We plot Mean Squared error (MSE) (A) and Structural
similarity index measurement (SSIM) (B) comparing between VollSeg
(in blue), Stardist (in orange) and U-Net (in green).

location of the cells, as shown in Figure 7. For the tracks with
multiple events of cell division we show the distance change over
time of each tracklet. In the localization plot the parent tracklet
start and end location is shown in green while all the daughter cells
start and end locations are shown in red. In the second example
notebook, the plots show intensity change in the track over time
along with the associated frequency of intensity oscillation present
in each tracklet. The frequency associated with each tracklet is
computed using the scipy implementation of fast fourier transform.
The results of track analysis can be saved as plots, mp4 files of
the track animation or csv files.

Conclusions

We have presented a workflow to do segmentation, tracking and
track analysis of cells in 3D with irregular shape and intensity
distribution. For performing segmentation we developed VollSeg,
a jupyter notebook based python package that combines the
strengths of semantic and instance deep learning segmentation
methods. Post-segmentation we create a csv file containing the
information about the cells inside a region of interest which serves
as an input to Btrackmate, the Imagel/Fiji plugin we created
for doing the tracking. The tracking software uses existing track
editing interface of Trackmate and saves the track information as
an xml file. To view and analyze such volumetric tracks we created
napatrackmater, a python package to export such trajectories as



Fig. 6: Napari widget to view tracks and plot track information in
non-dividing trajectories (A) and dividing trajecrtories (B). For the
selected track we see the intensity change over time and its associated
fast Fourier transform.

Tracks32 139 15100 -322)

Fig. 7: Napari widget to analyze the distance of the cell to the
boundary. The left plot displays the distance of the daughter cells
to the boundary, while the right plot shows the start and end distance
localization of the mother cell (in green) and daughter cells (in red).

track layer of Napari and we provide jupyter notebook based
enviornment for track analysis with two example notebooks.

The tools that we present here can also be useful for segmen-
tation of cells coming from other organisms or imaging modalities
(transmitted light and light sheet imaging) as our method can be
applied to segment cells that go beyond the star convex polyhedra.
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