
PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019) 13

Expert RF Feature Extraction to Win the Army RCO
AI Signal Classification Challenge

Kyle Logue‡∗, Esteban Valles‡, Andres Vila‡, Alex Utter‡, Darren Semmen‡, Eugene Grayver‡, Sebastian Olsen‡,
Donna Branchevsky‡

F

Abstract—Automatic modulation classification is a challenging problem with
multiple applications including cognitive radio and signals intelligence. Most of
the existing efforts to solve this problem are only applicable when the signal to
noise ratio (SNR) is high and/or long observations of the signal are available.
Recent work has focused on applying shallow and deep machine learning (ML)
to this problem. Feature generation, where raw signal information is transformed
prior to attempting classification is a key part of this process. A big question
that researchers face is whether to let the deep learning system infer the
relevant features or build expert features based on expected signal character-
istics. In this paper, we present novel signal feature extraction methods for use
in signal classification via ML. The deep learning and combined approaches
are discussed in a simultaneous publication. Expert features were utilized via
ensemble leaning and shallow neural networks to win the Army Rapid Capability
Office (RCO) 2018 Signal Classification Challenge. The features include both
standard statistical measurements such as variance and kurtosis, as well as
measurements tailored for specific waveform families. We discuss the best
statistical descriptors along with a ranked list of signal features and discuss
individual feature importance. We then demonstrate our implementation of these
features and discuss effectiveness in estimating different modulation classes.
The methods discussed when combined with deep learning are capable of
correctly classifying waveforms at -10 dB SNR with over 63% accuracy and
signals at +10 dB SNR with over 95% accuracy from an Army RCO provided
training set.

Index Terms—modulation, feature extraction, neural networks, machine learn-
ing, decision trees, wireless communication, signals intelligence, feature impor-
tance

Introduction

All conventional communications systems are designed with the
assumption that the transmitter and receiver are cooperative and
have full knowledge of the waveform being exchanged. However,
there are scenarios where the receiver does not know what
waveform (i.e. modulation, coding, etc.) has been transmitted.
Classical examples include cognitive radio network (i.e. a new
terminal enters a network and needs to figure out what waveform
is being used), and signals intelligence (i.e. interception of adver-
sary’s communications). The problem of waveform classifications,
or more narrowly, modulation recognition has been studied for
decades [ModRec]. Given the implication of SIGINT1 applica-
tions before cognitive radio, much of the work had not been

* Corresponding author: kyle.logue@aero.org
‡ The Aerospace Corporation

Copyright © 2019 The Aerospace Corporation This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

published. Key early work is done by Azzouz & Nandi [Nandi1],
[Nandi2], [Azz1], [Azz2].

The fundamental approach taken by most authors has been
to find data reduction functions that accentuate the differences
between different waveforms. These functions are applied to input
samples and decision is made by comparing the values against
a set of multi-dimensional thresholds. Determining the threshold
values by hand becomes impractical as the number of clusters
and/or functions grows. The idea to apply neural networks to
help make these decisions has been around for decades [Azz2].
However, it is only recently that our understanding of machine
learning combined with enormous increase in computational re-
sources has enabled us to use ML techniques with many data
reduction functions against many simultaneous waveforms.

Challenge Description

The Army Rapid Capability Office is seeking innovative ap-
proaches to leverage artificial intelligence (AI) to conduct blind
radio frequency signal analysis. To this end, they published a
labeled modulation classification dataset and created a competition
[Army] to properly classify a pair of unlabeled test sets. This paper
details the efforts of The Aerospace Corporation’s Team Platypus
to build a modulation classification system via traditional expert
features and shallow machine learning classifiers. In this context,
shallow refers to the fact that the ML classifier will not build
features out of the raw data, instead the classifier will only use
the expert features provided. The winning submission from Team
Platypus utilized a combination of this expert feature engineering
with a deep neural network trained on raw IQ2 samples, which are
described in a simultaneous companion publication.

The training dataset [Mitre] consists of 4.32 million signals
each of which containing 1024 complex (IQ) points and a label
indicating the modulation type and SNR. Modulation type is
selected from one of 24 digital and analog modulations (including
a noise class), with AWGN at six different signal-to-noise ratios
(-10, -6, -2, +2, +6, or +10 dB). The complete dataset included
30,000 rows for each modulation and SNR configuration. Sample
rate is selected from a set (200, 500, 1000, or 2000 ksps), and
symbol rate is selected from a set (4, 8, 16, or 32 samples per
symbol). Neither of the rate parameters is included in the label.

1. Signals Intelligence
2. In-Phase & Quadrature

mailto:kyle.logue@aero.org

14 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

getFeatures_000

getFeatures_024

. . . .

300estimators

criterion=‘gini’

max_features=1

min_sample_leaf=1

min_sample_split=12

dense
2048

drop
0.4

dense
512

drop
0.2

dense 24

batch norm

n features

getFeatures_023

22GiB Army
Labeled Set

Engineering Features ML Classification

train

cv

test

cache cache

ExtraTrees

Keras NN

4.32 million rows
1024 complex samples

NN 1 hr in GPU
ET 36 hrs in CPU

up to 3241 features
up to 18 hrs to compute

65.281

Fig. 1: Data flow through engineering features evaluation to classification and scoring. Light-blue denote the many variable parameters
available. In the Army dataset, cv is short for cross validation.

The competition consisted of assigning a likelihood score to
each of the 24 possible modulation classes for each of the 100,000
rows in a pair of unlabeled test sets.

Classifier performance is evaluated via a pre-defined equation
based on the well-known log loss metric, sometimes referred to
as cross-entropy loss. The traditional cross validation log loss
equation is:

logloss =− 1
N

N

∑
i=1

M

∑
j=1

yi j log pi j (1)

Where N is the number of instances in the test set, M is the number
of modulation class labels (24), yi j is 1 if test instance i belongs
to class j and 0 otherwise, pi j is the predicted probability that
observation i belongs in class j. Per [Mitre] this is then scaled
between 0 and 100.

score =
100

1+ logloss
(2)

Note:

• A uniform probability estimate would yield a score of
23.935, not zero.

• To get a perfect 100 score participants would need to be
both 100% correct and 100% confident of every estima-
tion.

We will also use a more standard F1 metric for each mod-
ulation is used. This is an excellent measurement of classifier
performance since it uses both recall r and precision p, which
better account for true positives and false positives:

r =
∑ true positive

∑ f alse negative+∑ true positive
(3)

p =
∑ true positive

∑ f alse positive+∑ true positive
(4)

F1 =
2

1
r +

1
p

(5)

Approach

Team Platypus’ approach to solve this modulation classification
problem is to combine deep neural networks and a shallow
learning classifiers leveraging custom engineering features. Both
of these are supervised machine learning systems. The engineering
features that we applied to this data set are based on traditional
signal processing and digital communication techniques. Some
shallow learning classifiers, such as Extremely Randomized Trees
(ERT) [ModRec] and Random Forests [Nandi1], are decision-tree
ensemble methods designed to be robust to overfitting. Ensemble

methods train multiple classifiers that will ultimately decide the
class using a majority vote or similar metric. These constituent
classifiers learn to be different by using different training datasets
and/or random parameters independent of the output. The ma-
jority voting over this diverse set tends to mitigate the possible
overfitting of the constituent classifiers. This is a highly desirable
property that becomes even more useful in applications where the
test data may have some deviations compared to the labeled train
data. The other advantage of decision-tree ensemble methods is
that they provide an estimate on whether the features are useful
in the classification process. This is further described in Feature
Importance Evaluation.

Figure 1 shows the general flow of data through the engineer-
ing features evaluation system. The labeled training data is split
into training, cross-validation, and testing using a 70%-15%-15%
split. When using neural networks, the cross-validation set is the
only fair method to prevent network overfitting. When using ERT,
the 15% allocated to cross-validation is appended to the training
set. Using the Army RCO score metric, the final version of this
system scored 65.281. This equates to a cross-validation log loss
of 0.532. The output of each step is written to large cache files to
enable quick evaluation of new features and integration into the
next processing pipeline.

Not pictured are the later steps that merge these expert fea-
tures with the ResNeXt convolutional deep neural network and a
temperature calibration step; all of which yielded an internal final
score of 76.422, which equates to a final cross-validation log loss
of 0.308.

Measurement Vectors

Multiple transformations of the raw complex measurement vectors
were made as intermediate steps to feature extraction. Most of the
reduction functions (i.e. feature extraction) are applied to each
of the transformed vectors. The following sections describe these
methods.

I. Brute-Force PSK & QAM Symbol Estimation

Many common modulations can be expressed in the following
form:

z(t) =
∞

∑
n=0

x[n] ·h(t−T0−nTs) (6)

Where z(t) is the received baseband continuous-time signal, x[n] are
the complex-valued data symbols (each selected from some fixed
constellation, depending on modulation), T0 is the time offset of
the first symbol, TS is the symbol period, and h(t) is the pulse-
shaping impulse response. This broad description includes all

EXPERT RF FEATURE EXTRACTION TO WIN THE ARMY RCO AI SIGNAL CLASSIFICATION CHALLENGE 15

Fig. 2: Ranked importance of measurement vectors. Numbers in
the heat map indicate residual crossvalidation logloss. See Feature
Importance Evaluation for a description of the ranking statistics.

ordinary PSK3, APSK4, and QAM5 modulations, and it can be
extended to include variants such as OQPSK6, π

4 QPSK, etc.
Given z(t) (or its discrete-time approximation), the blind sym-

bol recovery operation determines T0, TS, and h(t) in order to esti-
mate x[n] without attempting to determine the precise modulation
type.

For the Army RCO Challenge, this process is greatly simpli-
fied because TS may only take one of four discrete values: 4, 8,
16, or 32 samples per symbol. Similarly, h(t) is always the simple
rectangular pulse or a root-raised-cosine (SRRC) filter with one
of a few rolloff parameters. We simply attempt recovery for all
possible combinations of these parameters, estimate SNR using
the M2M4 method [Pauluzzi], and keep the configuration with the
highest SNR. (Note the generic, constant-envelope M2M4 method
will return biased results for APSK and QAM modulations, but the
max-SNR point is still accurate enough for timing estimation.) The
pulse-shaping library can be simplified by pre-calculating discrete
filter responses for TS = 4, and decimating all other inputs to match
that effective sampling rate.

One notable special case is OQPSK. Since the dataset has
neither phase nor frequency offsets, this signal can be trivially
“converted” to QPSK by delaying the real-part of the input signal
by TS

2 . This method would not work for real-world signals, but is
adequate for the Challenge.

The only remaining parameter is T0, which we estimated using
one of two methods. The first is Seung Joon Lee’s “absolute
value nonlinearity” method [Lee]. The second is simple brute-
force search with a step size of 1/16th of the symbol period,
retaining the output with the highest SNR (as above). The former
method is selected because it ran considerably faster and returned
essentially identical results.

Given all input parameters, we decimate z(t) to four samples
per symbol, optionally delay the in-phase part of the signal (see

3. Phase Shift Keying
4. Amplitude and Phase Shift Keying
5. Quadrature Amplitude Modulation
6. Offset Quadrature Phase Shift Keying

Fig. 3: Ranked importance of descriptive statistics. See Feature
Importance Evaluation for a description of the NNM statistic.

above), apply the selected matched filter, then finally estimate x[n]
by applying piecewise quadratic interpolation to the filtered signal.

The resulting symbol set is not used directly, but is used to
calculate various statistics (such as the decision-directed noise
power) that are used as machine-learning features.

II. Phase Histogram

The purpose of this metric is to estimate how many different
modulated phases were present in each waveform. The goal is
to provide a way to differentiate between different M-ary PSK
waveforms.

To this end, we first calculate the instantaneous phase of each
input signal ∠z(t). Then divide the interval from 0 to 2π into 32
equal-size bins and count the number of samples within each bin.
The resulting histogram is circular-shifted such that the largest
count is in first bin. The output feature set is simply the vector of
32 counts, one per bin. Since the input vector size is fixed at 1024
samples, no further normalization is required.

Descriptive Statistics

Descriptive statistics were applied to all vector measurands and ac-
counted for 37% of all engineering features in the most expansive
feature functions. Figure 3 details which were of most importance.
Note that some of these features are nonlinear combinations of
each other.

Custom Features

I. Decision-Directed Noise Estimation

Decision-directed noise estimation operates on recovered sym-
bols. Given a fixed constellation, the estimated noise for each
symbol x[n] is simply the difference vector to the nearest constel-
lation point. This nearest-neighbor calculation can be run quickly
using k-d trees. The estimated noise power for each constellation
is simply the mean-square power of these difference vectors.

Normally, this process would require gain and phase esti-
mation, to correctly align the received signal with the reference
constellation. For the Challenge, all input signals had a fixed gain
and no phase or frequency offset, so this step is not required.

The estimated noise is calculated separately for a constellation
from each of the following modulation types: BPSK7, QPSK8,
8PSK9, 16PSK, 16APSK, 32APSK, 16QAM10, 32QAM, and
64QAM. Each such estimate is then used as a machine-learning
feature.

7. Binary Phase Shift Keying, each symbol representing 1 bit
8. Quadrature Phase Shift Keying, each symbol representing 2 bits
9. 8, 16, and 32 value PSK represent 3, 4, and 5 bits per symbol
10. Similar to PSK Modulations, 16, 32, and 64 QAM represent 4, 5, and 6

bits per symbol

16 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 4: Ranked importance of individual features. NNP1 differs from
NNP2 in that these permutaiton importances were derived from two
separately trained neural networks. # f eat denotes total number of
features in each category noted left. Pxx denotes power spectral
density. Notice that the color map is normalized per column since
metrics are difficult to compare otherwise.

II. Hilbert Score

An analytic signal is a complex-valued function that has no
negative frequency components. The real and imaginary parts of
an analytic signal are real-valued functions related to each other by
the Hilbert transform. The negative frequency components of the
Fourier transform of a real-valued function are superfluous, due
to the Hermitian symmetry of such a spectrum. Many techniques
for modulating and demodulating single-sideband waveforms use
a Hilbert transformer as a core block.

One the most challenging waveforms we had to deal with
in this challenge is differentiating between the AM-SSB11 and
AM-DSB12 pair, especially given the modulation bandwith was
as little as 0.5% of the total bandwidth in some cases. The
initial intent of this method is to convert time domain data to

analytic domain. Another modulation pair that our classifiers had
issues with is differentiating QPSK and π

4 QPSK waveforms. The
“Hilbert score” feature is developed to help our classifier reduce
confusion among these similar modulations.

The metric is defined as follows:

HSM = |∑H (real (z[t] · z0))]+∑H (imag(z[t] · z0)) | (7)

Where HSM is the Hilbert score metric, H(z) is the Hilbert
transform, z is the vector of input samples, and z0 is a rotation
phasor at either 0 or 45°. This figure of merit proved to be useful
to our shallow classification algorithm.

III. DC Power

This metric is simply the 0th bin of the FFT of the complex
input vector. The feature consists of the real and imaginary part of
this value, considered separately.

IV. Simple SNR Estimation

In principle, given that at the time this metric is imple-
mented we were already using more precise SNR estimators, the
usefulness of this simpler and noisier estimator may not have
been justified. However, the extremely randomized tree classifier
reported this metric as initially useful and we will use it as a
baseline for other metrics.

SNRsimple =
1

2N ∑ |z[t]|2

Var(|z|)
(8)

V. M2M4 SNR Estimation

Pauluzzi in [Pauluzzi] presents a comparison of different SNR
estimators for phase-shift keyed (PSK) channels with additive
white Gaussian noise (AWGN) noise. Though many of those
methods are of limited accuracy at very low SNR, the M2M4
method still performs well under such conditions.

M2M4 method uses the second and fourth moments of a wave-
form to estimate its SNR. Though it is only directly applicable to
constant-envelope signals, it is still useful for relative comparisons
under almost any conditions. For simplicity, we use the general-
ized complex form (m-ary PSK) regardless of modulation:

SNRM2M4 =

√
2M2

2 −My

M2−
√

2M2
2 −M4

(9)

VI. α SNR Estimation

Many digital communication algorithms require knowledge of
the operating signal-to-noise ratio (SNR). Different algorithms
exist that estimate signal and noise power or the actual ratio
between these two. However, most of the known techniques at low
SNR either fail or have very large variance. In order to estimate
SNR below 5 dB, we developed a technique that builds on the
work by Davenport [Davenport]. This approach to SNR estimation
introduces a non-linear technique that uses the inherent properties
of non-linear devices, such as a limiter or an automatic-gain-
control (AGC) device, to estimate negative SNRs. In our case, the
non-linear function used is a sign function. The properties of these
devices used for SNR estimation are well known and have been
carefully studied in the literature [Davenport]. Similarly to many
tracking loops operating at low SNRs, this method multiplies the

11. Single Sideband Amplitude Modulation
12. Dual Sideband Amplitude Modulation

EXPERT RF FEATURE EXTRACTION TO WIN THE ARMY RCO AI SIGNAL CLASSIFICATION CHALLENGE 17

Fig. 5: Top 30 individual engineering features sorted by neural network permutation importance.

current sample of a given waveform by the sign of the previous
sample (under an assumption of multiple samples per symbol).

Sre [k] = sign(zre[t] · zre[t−1]))

Sim [k] = sign(zim[t] · zim[t−1]))

α =
1
N ∑sign(Sre[t]+Sim[t])

If the signal is modulated, this process will introduce an error
every time the sign of a symbol changes. If the signal has no
modulation present, then this block is simply equivalent to a
magnitude block. This operation is performed independently on
the real and imaginary component of the signal. The metric can be
plugged into the result from [Davenport] where for a non-coherent
receiver, the SNR can be approximated by:

SNRα =
α2

1−α2 (10)

A comparison of the Simple, M2M4, and α SNR estimators are
shown in Figure 6 and Figure 7.

VII. N-M-D Power Estimation

In the SNRM2M4 method, we see that the differences of signal
moments can be part of the core of SNR estimation algorithms.
As we explored generating new features to aid our shallow
classifier, we introduced a new feature that would simply compute
the difference of two moments Mx −My. This proved to be of
extremely useful as a feature generating function. This function is
not meant to compute an approximation metric for estimating SNR
but as an intermediate feature in the signal classification process.

VIII. AM Hypothesis Testing

The sample AM signals all were baseband analytic signals
with a residual carrier close to zero frequency. The feature we

Fig. 6: Comparison of SNR estimation methods of a PSK modulated
signal including novel SNRα metric.

designed to distinguish double sideband (DSB) vs. single sideband
(SSB) depends on this assumption.

First, the carrier frequency and phase is estimated with the
three-sample discrete-Fourier-spectrum interpolator described in
section III.D. of Macleod [Macleod]. Multiplication by the inverse
of the estimated carrier signal (with unit amplitude) makes the
estimated carrier DC. Next, two transformations of the resulting
analytic signal are compared.

1. The mean is simply subtracted from the signal: if the signal
is DSB, this would result in its coherent demodulation.

2. Non-coherent demodulation is achieved by taking the mod-

18 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 7: Error of SNR estimation methods.

ulus of the analytic signal and subtracting off its mean over the
sample time.

The feature used is the energy of the difference between
these two transformations, divided by the energy of the first
transformation. When close to zero, the signal would likely be
DSB and, when close to one, SSB.

IX. Modified Allan Deviation (Modσ2
y (τ))

Typically used as a tool to characterize the stability of time
& frequency sources, we applied the modified Allan deviation
[NIST] statistic to a number of angle measurements taken of
the raw signal and several low-pass transformations. These were
computed with a Butterworth 5th-order low pass with cutoff
frequencies at 2.5% and 37.5% of the max & min sample rates
in order to filter for narrowband modulations.

∠z(t) = arctan2(real(z(t)), imag(z(t))) (11)

This effectively captured the variability of phase over a number of
averaging taus including 1, 2, 4, 8, 16, and 32 complex samples.
A nice implementation can be found in the AllanTools13 python
module.

X. Zero Crossings

Some modulations such as π

4 QPSK are designed such that
transitions between symbols avoid passing through the origin. In
general, this is used to reduce peak-to-average signal power ratios,
which removes certain design constraints on signal amplifiers.

The zero-crossing metric is selected to detect these types of
modulations. Considering the real and imaginary parts separately,
the metric examines the sign of each sample and counts the total
number of transitions from positive to negative or vice versa.

The zero-crossing feature is calculated on the z(t) directly, but
is most valuable on the multiple lowpass transformations.

Feature Importance Evaluation

When single or multiple features were added to the feature
extraction engine they are computed over all signals in the training

13. https://pypi.org/project/AllanTools/

set. These features were then appended to the shared cache of
features from prior runs. This new larger feature set is then sent to
classification and a score is produced.

Initial feature importance is derived from the delta change in
score from run to run. This method requires close tracking of
every feature and is ambiguous when multiple features or vectors
of features are added simultaneously. To address this, several more
precise approaches are used to evaluate performance.

A comparison of the following feature importance statistics
can be found in Figures 2, 3, 4, and 5.

I. Gini Importance (ETG)

Gini importance or mean decrease in impurity, is imple-
mented in sklearn for Random Forest type classifiers as the
feature_importances_ attribute. After training this metric is avail-
able with no additional effort or computation, giving immediate
feedback. This metric is useful for the Extra Trees classifier
specifically, but is only available for ensemble-type classifiers.
While his metric is computationally free, there are several pitfalls
described by [Cutler] such as incorrect valuation of correlated or
random features that make Gini importance of limited use.

II. Permutation Importance (ETP & NNP)

Permutation importance [Parr] can be computed for any classi-
fier by creating a logloss benchmark score for a test set (Eq 1), then
randomly permuting 1 feature across all signals. This has the effect
of keeping the population statistics of that feature constant, but
removing it’s contribution to the overall logloss score. Permutation
importance is then calculated by subtracting the predicted logloss
score of the permuted set from the prior benchmark. Since the
shape of the input data is preserved, a trained classifier does
not need retraining and is therefor a fast metric. We denote
permutation importance for ExtraTress and our shallow neural
network as ETP & NNP respectively. Permutation importance
provides the fastest & most robust method for evaluating feature
importance for any classifier.

III. Drop-Column Importance (NNC)

Drop-column importance [Parr] provides perhaps the highest
quality estimate of individual feature importance, but is extremely
computationally expensive and may take weeks or months to
compute for even moderately sized neural networks. An initial
logloss benchmark is computed, then a feature is dropped across
the entire test population, requiring retraining of the classifier for
every feature. Resulting importance residuals are difficult to judge
since the scale is so small and correlated features often yield near
zero change when removed.

IV. Max-Column Importance (NNM)

Max-column importance is a metric used in Figure 2, 3, and
4, to denote the maximum NNP across many features grouped
into a set. This is computed since the quantiles of importances
are heavily skewed toward zero since there are so many (1269)
features being compared.

V. Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a technique originally
designed for gene selection [Guyon]. This method evaluates the a
feature importance estimate of choice after training, then prunes a
number of features each step attempting to build a sorted list. This
is implemented within sklearn.feature_selection as RFE. This is

https://pypi.org/project/AllanTools/

EXPERT RF FEATURE EXTRACTION TO WIN THE ARMY RCO AI SIGNAL CLASSIFICATION CHALLENGE 19

Fig. 8: Final Army RCO AI Signal Classification leaderboard.

also highly computationally intensive since it requires retraining
the classifier every step. There is value in RFE for comparing total
number of features to logloss score, especially when building a
classifier for low SWAP14 implementations where computation is
limited.

Classification Strategy & Scores

From the beginning of the challenge it was clear that in scenarios
where cross validation labeled sets were used to evaluate the
performance of classifiers, that ERT have worse overall perfor-
mance than neural networks. However, given that the nature of the
unlabeled sets was unknown, both techniques were pursued.

There were two unlabeled sets released to competitors. Esti-
mates generated for the first set using our deep neural network
estimator resulted in very low and inconsistent scores. It was
apparent that the data was very unlike the training data initially
provided. Team Platypus estimates that only half of the first
unlabeled set was like the training set. Only the ERT classifier
was applied to that set due to its resiliency to overfitting. Only one
of the competitors achieved a higher score (0.8 points) for this set.

The challenge administrators disclosed that the second set
contained data 95% like the training set. As such, a combination of
a ResNeXt deep convolutional network combined with a shallow
two-layer neural network comprised of engineering features was
used to submit the winning prediction. Team Platypus held the
highest submission score for the duration of the challenge.

Performance

The accuracy of estimation can be visualized as a confusion ma-
trix, shown in Figure 12. Each row represents the true waveform,
while each column is the estimated probability. The diagonal val-
ues correspond to the ‘correct’ estimate. Brighter colors indicate
higher confidence (e.g. the top left square indicates almost 100%
correct identification of the BPSK modulation). This view allows
us to quickly identify waveforms that are challenging for our
classifier such as the narrowband CPFSK/FSK/FM.

The F1 score (see Challenge Description) provides another
view of the same data. Note that while BPSK is correctly identified
100% of the time, it is not always identified with 100% precision,
making the F1 score less than 1.0. The performance of the classifier
decreases at lower SNR. For example, at 10 dB the F1 score
is perfect for most of the waveforms (Figure 10). The overall
classifier accuracy versus SNR is shown in Figure 9. Note that
we achieve about 50% accuracy even at -10 dB SNR, which is
significantly better than previously published results.

14. Size Weight And Power

Fig. 9: Classifier Accuracy vs SNR.

Fig. 10: F1 scores at 10 dB SNR signals only.

Conclusion

The robust results presented in this paper show the significant
progress that has been made in application of machine learning
over the past decade. However, it is important to note that the test
cases offered by the Challenge are somewhat unrealistic. Real-
world scenarios would include non-idealities like those found in
[OShea].

In regard to feature importance there were a number of
interesting results. We emphasize that while Gini importance
(ETG) can approximate neural network permutation importance
(NNP), it can be very misleading when given duplicate or random
features. Drop-column importance provides a metric that gives an
absolute value of the individual contribution of a feature, but is

20 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 11: F1 scores for all test data.

Fig. 12: Confusion matrix for all test data.

prohibitively computationally expensive and with correlated fea-
tures provides almost no value. We generally found permutation
importance from our neural networks to be the best measure of
feature value in our classifiers, though all methods still generally
suffer when features correlate with other features.

We suggest that further research utilize the best statistics
and features described herein to achieve modulation classification
estimates robust to the traditional pitfalls of deep neural networks,
which include generated adversarial networks like those found in
[Dong] and [Moosavi] as well as overfitting due to lack of truth
data.

Acknowledgements

The authors would like to thank the Army RCO for creating this
interesting challenge as well as our competitors who motivated us
to stay up late and reconsider our assumptions.

REFERENCES

[Army] ARMY RCO AI Signal Classification Challenge. (2018). Re-
trieved from https://www.challenge.gov/challenge/army-signal-
classification-challenge/

[Mitre] MITRE Challenge. (2018). Retrieved from https://sites.mitre.org/
armychallenge/

[Guyon] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., “Gene selection
for cancer classification using support vector machines”, Mach.
Learn., 46(1-3), 389-422, 2002. doi:10.1023/A:1012487302797.

[Pauluzzi] Pauluzzi, D. & Beaulieu, N., “A comparison of SNR estimation
techniques for the AWGN channel,” IEEE Trans. on Comm., vol.
48, no. 10, pp. 1681–1691, Oct. 2000. doi:10.1109/26.871393.

[Davenport] Davenport, W., “Signal-to-noise ratios in band-pass limiters,”
J. Appl. Phys., vol. 24, no. 6, pp. 720–727, June 1953.
doi:10.1063/1.1721365.

[Springett] Springett, J., & Simon, M., “An analysis of the phase coherent-
incoherent output of the bandpass limiter,” IEEE Trans. on
Comm. Technology, vol. 19, no. 1, pp. 42–49, Feb. 1971.
doi:10.1109/tcom.1971.1090611.

[Lee] Lee, Seung Joon. "A new non-data-aided feedforward
symbol timing estimator using two samples per sym-
bol." IEEE Communications Letters 6.5 (2002): 205-207.
doi:10.1109/4234.1001665.

[Geurts] Geurts, P., Ernst, D. & Wehenkel, L. Mach Learn (2006) 63: 3.
doi:10.1007/s10994-006-6226-1.

[NIST] NIST SP 1065: Handbook of Frequency Stability Analysis. 2008.
doi:10.6028/nist.sp.1065.

[ModRec] Aisbett, Janet. "Automatic modulation recognition using time
domain parameters." Signal Processing 13.3 (1987): 323-328.
doi:10.1016/0165-1684(87)90130-7.

[Nandi1] Nandi, Asoke K., and Elsayed Elsayed Azzouz. "Algorithms for
automatic modulation recognition of communication signals."
IEEE Transactions on communications 46.4 (1998): 431-436.
doi:10.1109/26.664294.

[Nandi2] Nandi, A. K., and Elsayed Elsayed Azzouz. "Automatic analogue
modulation recognition." Signal processing 46.2 (1995): 211-
222. doi:10.1016/0165-1684(95)00083-p.

[Azz1] Azzouz, Elsayed, and Asoke Kumar Nandi. Automatic modula-
tion recognition of communication signals. Springer Science &
Business Media, 2013. doi:10.1007/978-1-4757-2469-1.

[Azz2] Azzouz, Elsayed Elsayed, and Asoke Kumar Nandi. "Modulation
recognition using artificial neural networks." Automatic Modu-
lation Recognition of Communication Signals. Springer, Boston,
MA, 1996. 132-176. doi:10.1007/978-1-4757-2469-1_5.

[Macleod] Macleod, M.D. “Fast Nearly ML Estimation of the Parame-
ters of Real or Complex Single Tones or Resolved Multiple
Tones.” IEEE Transactions on Signal Processing 46, no. 1 (1998):
141–148. doi:10.1109/78.651200.

[Cutler] Cutler, A., & Breiman, L. (2018). Random Forests. Retrieved
from https://www.stat.berkeley.edu/~breiman/RandomForests/
cc_home.htm#varimp

[Parr] Parr, T., Turgutlu, K., Csiszar, C., & Howard, J. (2018, March
26). Beware Default Random Forest Importances. Retrieved from
https://explained.ai/rf-importance/

[OShea] T. J. O’Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep
Learning Based Radio Signal Classification," in IEEE Journal of
Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179,
Feb. 2018. doi:10.1109/JSTSP.2018.2797022.

[Dong] Dong, Yinpeng, Fangzhou Liao, Tianyu Pang, Hang Su,
Jun Zhu, Xiaolin Hu, and Jianguo Li. “Boosting Adversar-
ial Attacks with Momentum.” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (June 2018).
doi:10.1109/cvpr.2018.00957.

[Moosavi] Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pas-
cal Frossard. “DeepFool: A Simple and Accurate Method to
Fool Deep Neural Networks.” 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (June 2016).
doi:10.1109/cvpr.2016.282.

https://www.challenge.gov/challenge/army-signal-classification-challenge/
https://www.challenge.gov/challenge/army-signal-classification-challenge/
https://sites.mitre.org/armychallenge/
https://sites.mitre.org/armychallenge/
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1109/26.871393
https://doi.org/10.1063/1.1721365
https://doi.org/10.1109%2Ftcom.1971.1090611
https://doi.org/10.1109%2F4234.1001665
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.6028%2Fnist.sp.1065
https://doi.org/10.1016%2F0165-1684%2887%2990130-7
https://doi.org/10.1109/26.664294
https://doi.org/10.1016%2F0165-1684%2895%2900083-p
https://doi.org/10.1007%2F978-1-4757-2469-1
https://doi.org/10.1007%2F978-1-4757-2469-1_5
https://doi.org/10.1109%2F78.651200
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#varimp
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#varimp
https://explained.ai/rf-importance/
https://doi.org/10.1109/JSTSP.2018.2797022
https://doi.org/10.1109%2Fcvpr.2018.00957
https://doi.org/10.1109%2Fcvpr.2016.282

	Introduction
	Challenge Description
	Approach
	Measurement Vectors
	Descriptive Statistics
	Custom Features
	Feature Importance Evaluation
	Classification Strategy & Scores
	Performance
	Conclusion
	Acknowledgements
	References

