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Abstract—Automatic modulation classification is a challenging problem with
multiple applications including cognitive radio and signals intelligence. Most of
the existing efforts to solve this problem are only applicable when the signal to
noise ratio (SNR) is high and/or long observations of the signal are available.
Recent work has focused on applying shallow and deep machine learning
(ML) to this problem. In this paper, we present an exploration of such deep
learning and ensemble learning techniques that was used to win the Army
Rapid Capability Office (RCO) 2018 Signal Classification Challenge. An expert
feature extraction and shallow learning approach is discussed in a simultane-
ous publication. We evaluated multiple state-of-the-art deep learning network
architectures and adapted them to work in the RF signal domain instead of the
image/computer-vision domain. The best deep learning methods were merged
with the best expert feature extraction and shallow learning methods using
ensemble learning. Finally, the ensemble classifier was calibrated to obtain
marginal gains. The methods discussed are capable of correctly classifying
waveforms at -10 dB SNR with over 63% accuracy and signals at +10 dB SNR
with over 95% accuracy from an Army RCO provided training set.

Index Terms—modulation classification, neural networks, deep learning, ma-
chine learning, ensemble learning, wireless communications, signals intelli-
gence, probability calibration

Introduction

All conventional communications systems are designed with the
assumption that the transmitter and receiver are cooperative and
have full knowledge of the waveform being exchanged. However,
there are scenarios where the receiver does not know what
waveform (i.e. modulation, coding, etc.) has been transmitted.
Classical examples include cognitive radio network (i.e. a new
terminal enters a network and needs to figure out what waveform is
being used), and signals intelligence (i.e. interception of an adver-
sary’s communications). The problem of waveform classifications,
or more narrowly, modulation recognition has been studied for
decades [Aisbett]. Given the implication of SIGINT1 applications
before cognitive radio, much of the work had not been published.
Key early work is done by Azzouz & Nandi [Nandi1], [Nandi2],
[Azz1], [Azz2].

The fundamental approach taken by most authors has been
to find data reduction functions that accentuate the differences
between different waveforms. These functions are applied to input
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samples and a decision is made by comparing the values against
a set of multi-dimensional thresholds. Determining the threshold
values by hand becomes impractical as the number of clusters
and/or functions grows. The idea to apply neural networks to help
make these decisions has been around for decades [Azz2]. How-
ever, it is only recently that our understanding of machine learning
combined with enormous increase in computational resources has
enabled us to use ML techniques to solve this problem.

Challenge Description

The Army Rapid Capability Office is seeking innovative ap-
proaches to leverage artificial intelligence (AI) to conduct blind
radio frequency signal analysis. To this end, they published a
labeled modulation classification dataset and created a compe-
tition [Army] to properly classify a pair of unlabeled test sets.
This paper details the efforts of The Aerospace Corporation’s
Team Platypus, the authors of this paper, to build a modulation
classification system via deep learning and ensemble learning. In
this context, deep refers to the fact that the ML classifier will
use the raw IQ2 data, instead of expertly engineered features. The
winning submission from Team Platypus utilized a combination
of these deep classifiers and shallow learning classifiers built on
expert features which are described in a simultaneous companion
publication.

The training dataset [Mitre] consists of 4.32 million signals
each of which contain 1024 complex (IQ) points and a label
indicating the modulation type and SNR. Modulation type is
selected from one of 24 digital and analog modulations (including
a noise class), with AWGN at six different signal-to-noise ratios
(-10, -6, -2, +2, +6, or +10 dB). The complete dataset included
30,000 rows for each modulation and SNR configuration. Sample
rate is selected from a set (200, 500, 1000, or 2000 ksps), and
symbol rate is selected from a set (4, 8, 16, or 32 samples per
symbol). Neither of the rate parameters is included in the label.

The competition consisted of assigning a likelihood score to
each of the 24 possible modulation classes for each of the 100,000
rows in a pair of unlabeled test sets.

Classifier performance is evaluated via a pre-defined equation
based on the well-known log loss metric. The traditional log loss
equations:

logloss =− 1
N

N

∑
i=1

M

∑
j=1

yi j log pi j (1)
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Fig. 1: Data flow through the classification pipeline. The many variable parameters available are denoted in light blue.

Where N is the number of instances in the test set, M is the number
of modulation class labels (24), yi j is 1 if test instance i belongs
to class j and 0 otherwise, pi j is the predicted probability that
observation i belongs in class j. The competition score, which we
will refer to as simply the score in the remainder of this paper,
was defined per [Mitre] as follows:

score =
100

1+ logloss
(2)

Notes:

• A uniform probability estimate would yield a score of
23.935, not zero.

• To get a perfect 100 score participants would need to be
both 100% correct and 100% confident of every estima-
tion.

We will also use a more standard F1 metric for each mod-
ulation is used. This is an excellent measurement of classifier
performance since it uses both recall r and precision p, which
better account for false negatives and false positives:

r =
∑ true positive

∑ f alse negative+∑ true positive
(3)

p =
∑ true positive

∑ f alse positive+∑ true positive
(4)

F1 =
2

1
r +

1
p

(5)

Approach

Team Platypus’ approach to solve this modulation classification
problem is to combine deep neural networks and shallow learning
classifiers leveraging custom engineering features. Both of these
are supervised machine learning systems.

Figure 1 shows the general flow of data through our winning
system. The labeled training data is split into training, cross-
validation, and testing using a 70%-15%-15% split. When using

Fig. 2: Final Army RCO AI Signal Classification leaderboard.

neural networks, the cross-validation set is used to prevent clas-
sifier overfitting. Using the Army RCO score metric, the final
version of this system scored 76.422. This equates to a cross-
validation log loss of 0.308. The output of each step is written
to large cache files to enable quick evaluation of new ideas and
integration into the next processing pipeline.

Classification Strategy & Scores

There were two unlabeled sets released to competitors. Estimates
generated for the first set using our deep neural network estimator
resulted in very low and inconsistent scores. It was apparent that
the data was very unlike the training data initially provided. Team
Platypus estimates that only half of the first unlabeled set was like
the training set. Our solutions for these datasets relied exclusively
on expert engineering feature extraction and shallow classification
techniques. Only one of the competitors achieved a higher score
(0.8 points) for this set.

The challenge administrators disclosed that the second set
contained data 95% like the training set. As such, a combination
of a deep learning and shallow learning techniques as described in
the rest of this paper was used to generate the submissions for this
dataset. Team Platypus held the highest submission score for the
duration of the challenge.
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Network Type Best Scores

Simple Convolutional 45.47
VGG 58.38
Modified ResNet 66.21
ResNet-34 72.39
ResNet-50 72.80
ResNeXt-50 74.69
Xception 70.74
DenseNet 65.98

TABLE 1: Deep Learning Results.

Deep Learning Modulation Classification

Architecture Search

We implemented multiple Neural Network architectures in Keras
using the TensorFlow backend. We begun by testing variations of
the networks proposed in [OShea1]. These networks consisted of
2 or 3 convolutional layers followed by 2 or 3 dense layers. We
will call these networks "Simple Convolutional". These networks
produced scores of around 45 points. We proceeded to test 2
networks proposed in [OShea2], a VGG network and a "Modified
ResNet" network. The VGG network produces results around 55
points and the "Modified ResNet" resulted in a score of 59 points.

Our search strategy changed at this point. We conjectured
that using the state-of-the-art methods currently applied to image
classification would yield good results. Hence, we implemented
multiple algorithms by reading their papers and adapting their
ideas from 2-dimensional (images) to single dimensional (complex
time-series signals). We could not rely on previously built Keras
application models since they were all built for the 2-dimensional
images classification problem.

We implemented multiple ResNets [ResNet1], [ResNet2],
ResNeXts [ResNeXt], DenseNets [DenseNet] and Xception net-
works [Xception]. Their respective papers provided the number of
layers, the number of channels per layer and multiple other details
that we never modified in order reduce the number of parameters
to tune.

Tuning, Testing and Results

We tested these architectures with different regularization parame-
ters, location of pooling layers and convolution window sizes. The
best performance for the different architectures can be found in
Table 1. The best performance we obtained during the competition
was from a ResNeXt-50 network with a log loss of 0.339. Due
to the constraints of the competition, the sub-optimal results of
Xception and DenseNet networks may be due to lack of expert
tuning time and not an inherent deficiency of these architectures
for this problem.

The convolution window size turned out to influence perfor-
mance dramatically. We found early on that increasing the window
size would increase the complexity of the models as well as the
score. Our winning ResNeXt-50 network uses window size 64 to
obtain its 74.69 score. After the competition we trained the same
network with a convolutional window size of 3 and obtained a
score of 64.2 which would not have won the challenge.

Merging and Probability Calibration

Merging

As shown in Figure 1, we merged the best Engineering Features
(EF) network with the best Deep Learning (DL) network. We
merged by taking metrics from both the EF and DL networks
as features to go into a new dense neural network. The metrics
that worked best were the logit outputs of the last layer of both EF
and DL networks as well as the outputs of the penultimate layer
of both networks. We believe this to be a novel idea for merging
diverse neural networks. We tested using outputs of earlier layers
on both networks and didn’t obtain a better performance.

The classifier that produced the best results for these new
features was a dense neural network. At the input of the merging
neural network we use a batch normalization layer [Ioffe] for the
features that come from the EF network only. We then concatenate
both sets of features and connect them to a dense network that has
2 hidden layers of size 1024 and 512 respectively. The output
layer has size 24 which corresponds to the original number of
modulations in the challenge.

For reference the code to instantiate the best neural net
merging classifier is:

from keras.layers import Input,
BatchNormalization,
Concatenate,
Dense,
Activation

from keras.models import Model

#Deep Neural Net inputs
main_input1 = Input(shape=(2048,))
main_input2 = Input(shape=(24,))
#Engineering Features Neural Net inputs
auxiliary_input1 = Input(shape=(512,))
auxiliary_input2 = Input(shape=(24,))
#Batch normalizing Engineering Feature layers
x1 = BatchNormalization()(auxiliary_input1)
x2 = BatchNormalization()(auxiliary_input2)
#Concatenate Layers
x = Concatenate([main_input1,main_input2,x1, x2])
#Put through Dense Network
x=Dense(1024, activation='relu', init='he_normal')(x)
x=Dense(512, activation='relu', init='he_normal')(x)
x=Dense(24, init='he_normal')(x)
output=Activation('softmax')(x)
model = Model(inputs=[main_input1,

main_input2,
auxiliary_input1,
auxiliary_input2],

outputs=output)

We tested other types of classifiers that we obtained by using
AutoML. The AutoML package we used is TPOT [TPOT1],
[TPOT2] which is built on top of scikit-learn. TPOT proposed
to use a combination of Linear Support Vector Classification
(sklearn.svm.LinearSVC), Naive Bayes for multivariate Bernoulli
models (sklearn.naive_bayes.BernoulliNB) and Logistic Regres-
sion (sklearn.linear_model.LogisticRegression).

The code to instantiate the best AutoML generated merging
classifier is:

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from tpot.builtins import StackingEstimator
import sklearn.feature_selection as sklfs

model = make_pipeline(
sklfs.VarianceThreshold(threshold=0.1),
StackingEstimator(
estimator=BernoulliNB(alpha=100.0)),
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Classifier(s) Calibration Pre-cal
score

Post-cal
score

Accuracy

Neural Network Temperature 75.55 75.68 86.94
BernoulliNB and
LogisticRegression

isotonic 74.75 74.8 87.2

BernoulliNB and
LinearSVC

isotonic 73.9 74.74 87.2

LogisticRegression isotonic 73.49 74.33 86.93
LinearSVC isotonic 74.23 74.99 87.22

TABLE 2: Sub-sampled merging and calibration results.

Classifier(s) Calibration Pre-cal
score

Post-cal
score

Accuracy

Neural Network Temperature 75.87 76.42 87.47
BernoulliNB and
LogisticRegression

isotonic 74.97 75.14 87.2

TABLE 3: Complete dataset merging and calibration results.

LogisticRegression(C=0.01, dual=False, penalty="l1",
tol=0.001)

)

Probability Calibration

The final step in the pipeline presented in Figure 1 is calibration.
Probability calibration consists on modifying the final probabilities
without changing the class that corresponds to the highest prob-
ability. It uses the 15% cross-validation data to shape the output
probabilities to increase the score.

In order to calibrate our merging neural network we used
a modification of the temperature scaling approach proposed
in [Guo]. The temperature scaling approach finds the optimal
temperature scalar to divide the output logits by, that minimizes
the log loss on the cross-validation dataset. We extended this
method by finding the separate optimal temperature scalars for
each predicted modulation type using the cross-validation data.
Temperature scaling consistently increased the score of neural nets
from 0.3 to 0.6 points.

Calibration of the scikit-learn merging classifiers consisted
on using the CalibrateClassifierCV class in scikit-learn [SKCal].
This class implements two different approaches for performing
calibration: a parametric approach based on Platt’s sigmoid model
and a non-parametric approach based on isotonic regression. Our
best results were achieved with the isotonic approach which were
always between 0.1 to 0.9 points better than the uncalibrated score.

Merging and Calibration Results

The best merging and calibration results are presented in Table 2.
These results were obtained by training on the same random sub-
sample of the training dataset of size 144000. Table 3 shows the
best merging and calibration results for both neural nets classifiers
and scikit-learn classifiers when trained on the full training dataset.

Overall Performance

The accuracy of estimation can be visualized as a confusion
matrix, shown in Figures 7 and 8 for the deep learning classi-
fier and the final calibrated and merged classifier respectively.

Fig. 3: Classifier Accuracy vs SNR for deep learning network.

Each row represents the true waveform, while each column is
the estimated probability. The diagonal values correspond to the
‘correct’ estimate. Brighter colors indicate higher confidence (e.g.
the top left square indicates almost 100% correct identification of
the BPSK modulation). This view allows us to quickly identify
waveforms that are challenging and to see where merging the
deep learning classifier with the engineering features classifier
helps. Calibration does not improve the confusion matrix since
the winning class per sample doesn’t change.

The F1 score (see Challenge Description) provides another
view of the same data. Figures 5 and 6 show the performances
for the deep learning classifier and the final calibrated and merged
classifier respectively. The overall classifier accuracy versus SNR
is shown in Figures 3 and 4. Note that we achieve about 63%
accuracy even at -10 dB SNR, which is significantly better than
previously published results.

Conclusion

This paper showed the variety of ways machine learning tech-
niques in python can be used to dramatically increase the per-
formance of modulation classification algorithms. We presented
a performance overview of different deep learning architectures
when applied to the one-dimensional RF modulation-classification
problem as presented in [Army] and [Mitre]. While the best
performing architectures were ResNet and ResNeXt, we would
caution against deducing that there is something inherent in those
architectures that makes them more suited to the modulation-
classification problem. Those algorithms produced the most
promising results earlier on and thus, more time was spent running
variations of them instead of trying to improve the performance of
Xception or DenseNet networks.

This paper also presented a new merging method to fuse
different neural networks. The novelty resides in what is being
used as the input features of the merging classifiers. We used
as inputs not only the results of the final layers of the original
networks but the outputs of the last few layers of each of the
initial neural networks.
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Fig. 4: Classifier Accuracy vs SNR for final merging network.

Fig. 5: F1 scores for all test data for deep learning network.

Finally, we showed that calibration techniques can improve
the log loss of diverse classifiers. However, it is important to
note that the test cases offered by the Challenge are somewhat
unrealistic. Real-world scenarios would include non-idealities like
those described in [OShea2].
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