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Abstract—This paper describes the development of a 3D audio simula-
tor for use in cognitive hearing science studies and also for general 3D
audio experimentation. The framework that the simulator is built upon is
pyaudio_helper, which is a module of the package scikit-dsp-comm.
The simulator runs in a Jupyter notebook and makes use of Jupyter widgets
for interactive control of audio source positioning in 3D space. 3D audio has
application in virtual reality and in hearing assistive devices (HAD) research and
development. At its core the simulator uses digital filters to represent the sound
pressure wave propagation path from the sound source to each ear canal of a
human subject. Digital filters of 200 coefficients each for left and right ears are
stored in a look-up table as a function of azimuth and elevation angles of the
impinging sound’s source.

Index Terms—Head-related impulse response (HRIR), Head-related transfer
function (HRTF), binaural hearing, virtual reality, audiology, hearing assistive
devices (HAD),

Introduction

In cognitive hearing science binaural hearing models how sound
pressure waves arrive at either ear drum, at the end of the ear
canal, or in the case of typical measurements, at the entry to the
ear canal, both as a function of the arrival angle in 3D (azimuth
and elevation) and radial distance. A tutorial on 3-D audio can be
found at [HCI]. This leads to the need for the head related impulse
response (HRIR) (time-domain) or head-related transfer function
(HRTF) (frequency domain) for a particular human subject. Tra-
ditionally human subjects are placed in an anechoic chamber with
a sound source placed at e.g. one meter from the head and then
moved relative the subject’s head over a range of azimuth and
elevation angles, with the HRIR measured at each angle. The
3D simulator described here uses a database of HRIR’s from the
University of California, Davis, originally in the Center for Image
Processing and Integrated Computing (CIPIC), [CIPICHRTF], to
describe a given subject. In the pyaudio_helper application
the HRIR at a given angle is represented by two (left and right ear)
200 coefficient digital filters that the sound source audio is passed
through. Here the data base for each subject holds 25 azimuth and
50 elevation angles to approximate continuous sound source 3D
locations.
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Obtaining individual HRTFs is a challenge in itself and the
subject of much research.

In a related research project deep learning is being investigated
as a means to fit a human subject to the CIPIC HRTF database of
subjects, based on 27 upper torso anthropometrics (measurements)
of the subject. As a simple solution, we can also consider using a
simple spherical head model, and its corresponding HRTF, which
makes use of spherical harmonics to solve for the sound pressure
magnitude and phase at any location on the sphere surface. A
frequency sweep of magnitude and phase is then inverse Fourier
transformed to obtain the HRIR. The ultimate intent of the simula-
tor is to serve as a clinical tool for blind sound source localization
experiments. Human subjects will be exposed to several different
HRIR models, where at least one model is a personalized fit based
on deep learning using anthropometrics and/or a finite element
wave equation solution using a 3D rendering of the subject’s
shoulders and head. 3D rendering of a subject can be obtained
using photogrammetry, which estimates three-dimensional coor-
dinates of points on an object from a collection of photographic
images taken from different positions.

3D Geometry

To produce a synthesized 3D audio sound field, we start with
a geometry where the center of the coordinate frame is the
intersection between the subject’s mid-sagittal or vertical median
plane and the line connecting the left and right ear canals. This is
referred to as being head-centered. The coordinate systems used
in this paper are shown in Figure 1. The primary head-centered
system has cartesian coordinates labeled (x,y,z) and associated
cylindrical coordinates (rxy,φaz,hy) (black labels in Figure 1).
The cylindrical coordinates will be used in Jupyter notebook apps
presented later as the interface for GUI controls to conveniently
position the audio source about a subject’s head. A secondary
head-centered system, used by CIPIC, has cartesian coordinates
labeled (x1,x2,x3) and associated spherical coordinates (r,φ ,θ)
(purple labels in Figure 1). The first coordinate system is motivated
by [Fitzpatrick], and its usage is explained in detail in the section
FIR Filter Coefficient Set Selection. The second system is referred
to by CIPIC as the interaural-polar coordinate system (IPCS),
which is used to index into the HRIR filter pairs which produce
the right and left audio outputs.

The 3D audio rendering provided by the simulator developed
in this paper relies on the 1250 HRIR measurements taken using
the geometrical configuration shown in Figure 2. A total of 45
subjects are contained in the CIPIC HRIR database, both human
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Fig. 1: The primary head-centered coordinate system, (x,y,z), used in
the 3D audio simulator, along with the secondary system, (x1,x2,x3)
used by CIPIC via IPCS and spherical coordinates (r,φ ,θ).

and the mannequin KEMAR (Knowles Electronics Manikin for
Auditory Research) [CIPICHRTF]. For subject 165 in particular,
the left-right channel HRIR is shown in Figure 3, for a particu-
lar cylindrical coordinate system triple (rxz,hy,φaz). Figure 3 in
particular illustrates two binaural cues, interaural level difference
ILD and interaural time difference ITD, that are used for accu-
rate localization of a sound source. With φaz = 130◦ we see as
expected, the impulse response for the right ear arriving ahead of
the left ear response, and with greater amplitude.
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Fig. 2: The CIPIC audio source locations, effectively on a 1 m radius
sphere, used to obtain 1250 HRIR measurements for each of 45
subjects (only the right hemisphere locations shown).

Real-Time Signal Processing

In this section we briefly describe the role real-time digital signal
processing (DSP) plays in implementing the 3D audio simulator.
A top level block diagram of the 3D audio simulator is shown in
Figure 4. For an audio source positioned at (x,y,z) relative to the
head center, the appropriate HRIR right and left channel digital

Clear display of interaural time 
difference (ITD) and interaural 
level difference (ILD) with source 
at 130 deg azimuth, 0 deg elev.

ITD

ILD

Subject HRIR for Source φaz = 130°,hr = 0,rxz = 1m

CIPIC subject 165

Fig. 3: Example right/left HRIR plots for a particular arrival angle
pulled from CIPIC for subject 165.

filter coefficients are utilized along with gain scaling to account
for radial distance relative to 1 m and a parallax correction factor.
Gain scaling and parallax correction, are taken from [Fitzpatrick],
and are explained in more detail in the following section of this
paper.

To implement the filtering action we use the
pyaudio_helper framework [Wickert] of Figure 5, which
interfaces to the audio subsystem of a personal computer.
The framework supports real-time signal processing, in
particular filtering using core signal processing functions of
scipy.signal [ScipySignal]. The 200 coefficients of the right
and left HRIR are equivalent to the coefficients in a finite impulse
response (FIR) digital filter which produce a discrete-time output
signal or sequence yR[n]/yL[n] from a single audio source signal
x[n]. All of the signals are processed with at a sampling rate of
fs = 44.1 kHz, as this is rate used in forming the CIPIC database.
In mathematical terms we have the output signals that drive

yR[n] = GR

M

∑
m=0

bRx[n−m] (1)

yL[n] = GL

M

∑
m=0

bLx[n−m] (2)

where GR and GL are right/left gain scaling factors that take into
account the source distance relative to the 1 m distance used in the
CIPIC database and bR and bL are the right/left HRIR coefficient
sets appropriate for the source location.

Length 200
FIR - Right

Length 200
FIR - Left

Single Subject Head-
Related Impulse 

Response (HRIR) a
Function of Source 

Angle of Arrival & Range

Audio
Source at 
location 
(x,y,z)

Output to 
ear canal

LR

Output to 
ear canal

Human Subject
Cognitive Evaluation

Fig. 4: Real-time DSP filtering with coefficients determined by the
audio source (x,y,z) location.

To produce real-time filtering with pyaudio_helper re-
quires [Wickert] (i) create an instance of the DSP_io_stream
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Fig. 5: The pyaudio_helper framework for real-time DSP in the
Jupyter notebook.

class by assigning valid PC audio input and output device ports
to it, (ii) define a callback function to process the input signal
sample frames into right/left output sample frames according to
(1), and (iii) call the method interactive_stream() to start
streaming. All of the code for the 3D simulator is developed in
a Jupyter notebook for prototyping ease. Since [Wickert] details
steps (i)-(iii), in the code snippet below we focus on the key
filtering expressions in the callback and describe the playback of
a geometrically positioned noise source via headphones:

def callback(in_data, frame_length, time_info,
status):

global ...
...
#***********************************************
# DSP operations here:
# Apply Kemar HRIR left and right channel
# filters at the sound source location in
# cylindrical coordinates mapped to cartesian
# coordinates from GUI sliders
# The input to both filters comes by first
# combining x_left & x_right channels or here
# input white noise
x_mono = Gain.value*5000*randn(frame_length)
subj.cart2ipcs(r_xz_plane.value*sin(pi/180* \

azimuth.value), #x
y_axis.value, #y
r_xz_plane.value* \
cos(pi/180* \
azimuth.value)) #z

# Filter a frame of samples and save initial
# conditions for the next frame
y_left, zi_left = signal.lfilter(subj.coeffL,

1,subj.tL*x_mono,
zi=zi_left)

y_right, zi_right = signal.lfilter(subj.coeffR,
1,subj.tR*x_mono,
zi=zi_right)

#***********************************************
...
# Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

# Create a ss_mapping2CIPIChrir object
# SUBJECT 20, 21 (KEMAR SM ears),
# & 165 (KEMAR LG ears)
# subject_200, 201 is 8.75 cm, 10 cm sphere
subj = ss_mapping2CIPIChrir('subject_165')
# Initialize L/R filter initial conditions
zi_left = signal.lfiltic(subj.coeffL,1,[0])
zi_right = signal.lfiltic(subj.coeffR,1,[0])
# Create a IO stream object and start streaming
DSP_IO = pah.DSP_io_stream(callback,0,1,

frame_length=1024,
fs=44100,Tcapture=0)

DSP_IO.interactive_stream(0,2)
# Show Jupyter widgets
widgets.HBox([Gain,r_xz_plane,azimuth,y_axis])

FIR Filter Coefficient Set Selection

To finally render 3D audio requires selection of the appropriate
right/left filter coefficient set, and if needed range correction. For
the special case of the source on the 1 m CIPIC reference sphere,
we simply pick the coefficient set that lies closest to the desired
IPCS angle pair (φ ,θ).

For the more typical case of the source range, r =√
x2 + y2 + z2 6= 1, more processing is required. The approach

taken here follows the methodology of [Fitzpatrick] by using the
primary cartesian coordinates of Figure 1 to additionally perform
parallax correction and source range amplitude correction. At
distance r from a point source the sound wave energy diverges by
1/r2, so in terms of wave amplitude we include a scale factor of
1/r. Here the inverse distance correction also takes into account
the fact that the entry to the ear canal is offset from the head
center by the mean head radius R. The second correction factor is
parallax, which is graphically depicted in Figure 6 for the special
case of a source in the horizontal plane and directly in front of
the head. Both corrections are addressed in detail in [Fitzpatrick].
For a source not on the unit sphere, sound parallax requires an
adjustment in the HRIR coefficients, unique to the right and left
ears. If we extend rays from the right and left ears that pass
through the sound source location and then touch the unit sphere,
the required azimuth values will be shifted to locations on either
side of the true source azimuth. The corresponding HRIR values
where these rays contact the unit sphere, respectively, perform the
needed parallax correction. The actual database entries utilized are
those that are closest to the intersection points.
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Fig. 6: Parallax correction geometry for three possible source loca-
tions in the horizontal plane: A < 1 m, B = 1 m, and C > 1 m, directly
in front of the head.

The class ss_mapping2CIPIChrif() takes the
source location, (x,y,z), and using the single method
cart2ipcs(self,x,y,z), produces the parallax corrected
right and left HRIR filter coefficients and range amplitude scaling
factors. The code is listed below:

class ss_mapping2CIPIChrir(object):
"""
A class for sound source mapping to the CIPIC
HRIR database

CIPIC uses the interaural polar coordinate
system (IPCS). The reference sphere for the
head-related transfer function (HRTF)
measurements/head-related impulse response
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(HRIR) measurements has a 1m radius.

Mark Wickert June 2018

def __init__(self,sub_foldername,
head_radius_cm = 8.75):

"""
Object instantiation

The default head radius is 8.75 cm
"""
# Store the head radius in meters
self.head_radius = head_radius_cm/100

# Store the HRIR 200 tap FIR filter coef sets
self.subject = sub_foldername
hrir_LR = io.loadmat( self.subject + \

'/hrir_final.mat')
self.hrirL = hrir_LR['hrir_l']
self.hrirR = hrir_LR['hrir_r']

# Create LUTs for the azimuth and elevation
# values. This will make it easy to quantize
# a given source location to one of the
# available HRIRs in the database.
self.Az_LUT = np.hstack(([-80,-65,-55],

np.arange(-45,45+5,5.0),
[55,65,80]))

self.El_LUT = -45 + 5.625*np.arange(0,50)

# Initialize parameters
self.tR = 1 # place source on unit sphere
self.tL = 1 # directly in front of listener
self.elRL = 0
self.azR = 0
self.azL = 0
self.AzR_idx = 0
self.AzL_idx = 0
self.ElRL_idx = 0

# Store corresponding right and left ear FIR
# filter coefficients
self.coeffR = self.hrirR[0,0,:]
self.coeffL = self.hrirL[0,0,:]

def cart2ipcs(self,x,y,z):
"""
Map cartesian source coordinates (x,y,z) to
the CIPIC interaural polar coordinate system
(IPCS) for easy access to CIPIC HRIR. Parallax
error is also dealt with so two azimuth values
are found. To fit IPCS the cartesian
coordinates are defined as follows:

(0,0,0) <--> center of head.
(1,0,0) <--> unit vector pointing outward from

the right on a line passing from
left to right through the left
and right ear (pinna) ear canals

(0,1,0) <--> unit vector pointing out through
the top of the head.

(0,0,1) <--> unit vector straight out through
the back of the head, such that
a right-handed coordinate system is
formed.

Mark Wickert June 2018, updated June 2019
"""
# First solve for the parameter t, which is used
# to describe parametrically the location of the
# source at (x,y,z) on a line connecting the
# right or left ear canal entry point to the
# unit sphere.

# The right ear (pinna) solution
aR = (x-self.head_radius)** + y**2 + z**2
bR = 2*self.head_radius*(x-self.head_radius)

cRL = self.head_radius**2 - 1
# The left ear (pinna) solution
aL = (x+self.head_radius)**2 + y**2 + z**2
bL = -2*self.head_radius*(x+self.head_radius)

# Find the t values which are also the gain
# values to be applied to the filter.
self.tR = max((-bR+np.sqrt(bR**2-4*aR*cRL)) \

/(2*aR),
(-bR-np.sqrt(bR**2-4*aR*cRL))/(2*aR))

self.tL = max((-bL+np.sqrt(bL**2-4*aL*cRL)) \
/(2*aL),

(-bL-np.sqrt(bL**2-4*aL*cRL))/(2*aL))
# Find the IPCS elevation angle and mod it
elRL = 180/np.pi*np.arctan2(y1,-z1)
if elRL < -90:

elRL += 360
self.elRL = elRL
self.azR = 180/np.pi* \

np.arcsin(np.clip(self.head_radius\
+ self.tR*(x1-self.head_radius),
-1,1))

self.azL = 180/np.pi* \
np.arcsin(clip(-self.head_radius\
+ self.tL*(x1+self.head_radius),
-1,1))

# Find closest database entry in Az & El
self.AzR_idx = np.argmin((self.Az_LUT \

- self.azR)**2)
self.AzL_idx = np.argmin((self.Az_LUT \

- self.azL)**2)
self.ElRL_idx = np.argmin((self.El_LUT \

- self.elRL)**2)
self.coeffR = self.hrirR[self.AzR_idx,

self.ElRL_idx,:]
self.coeffL = self.hrirL[self.AzL_idx,

self.ElRL_idx,:]

In the __init__ method all the right left filter coefficients for
the chosen subject database entry are copied into class attributes
and look-up tables (LUTs) are populated in terms of IPCS angles
to ease selecting the needed right/left filters. Note in particular the
scale factors self.tR and self.tL are the inverse distance
wave amplitude correction factors representing GR and GL in (1)
and (2), respectively.

3D Audio Simulator Notebook Apps

For human subject testing and general audio virtual reality experi-
ments, two applications (apps) that run in the Jupyter notebook
were created. The first allows the user to statically locate an
audio source in space, while the second creates a time-varying
motion audio source. For human subject tests the static source is
of primary interest. Both apps have a GUI slider interface that
use the cylindrical coordinates described in Figure 1 to control the
position the source.

Static Sound Source

The first and foremost purpose of the 3D audio simulator is to
be able to statically position an audio source and then ask a
human subject where the source is located (localization). This is a
cognitive experiment, and can serve many purposes. One purpose
in the present research is to to see how well the HRIR utilized in
the simulator matches the subject’s true HRIR. As mentioned in
the introduction, an ongoing study is to estimate an individualized
HRIR using deep machine learning/deep learning. The Jupyter
Widgets slider interface for this app is shown in Figure 7

Dynamic Sound Source Along a Trajectory

From a virtual reality perspective, we were also interested in giv-
ing a subject a moving sound source experience via headphones.
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Fig. 7: Jupyter notebook for static positioning of the audio test source.

In this case we consider an orbit like sound source trajectory. The
trajectory as shown in Figure 8, is a circular orbit with parameters
of roll, pitch, and hight, relative to the ear canal centerline. The
Jupyter Widgets slider interface for this app is shown in Figure 9.
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Fig. 8: The sound source trajectory utilized in the dynamic sound
source app.

Spherical Head Model as a Simple Reference HRIR

In blind testing of human subjects it is also of interest to offer
other HRIR solutions, e.g., the [KEMAR] mannequin head or a
simple spherical head [Duda] and [Bogelein]. In this section we
consider a spherical head model with the intent of using the results
of [Duda] to allow the construction of a CIPIC-like database entry,
that can be used in the 3D audio simulator described earlier in this
paper.

General Pressure Wave Solution

As a starting point, the acoustics text [Beranek], provides a
solution for the resultant sound pressure at any point in space
when a sinusoidal plane wave sound pressure source impinges

Fig. 9: Jupyter notebook for setting the parameters of a sound source
moving along a trajectory with prescribed motion characteristics.

upon a rigid sphere of radius R, centered at the coordinate system
origin. Rotationally symmetric spherical coordinates, r and θ are
appropriate here. First consider the incident plane wave p̃I(r,θ),
in the expansion

p̃I(r,θi) = p̃0

∞

∑
n=0

(− j)n(2n+1) jn(kr)Pn(cosθi), (3)

where θi is the incidence angle between the plane wave and
measurement point, Pm(x) is the nth-order Legendre polynomial,
jn(x) is the nth-order spherical Bessel function of the first kind,
k = 2π f/c is the wavenumber, with f frequency in Hz and
c = 344.4 m/s the propagation velocity in air. We set the incident
wave complex pressure p̃0 = 1∠0◦ for convenience.

Finally, solve for the scattered wave, p̃s(r,θi), by applying
boundary conditions, see [Beranek] for details. The resultant wave
is the sum of the incident and scattered waves as given below:

p̃(r,θi) = p̃I(r,θi)+ p̃s(r,θi)

=
∞

∑
n=0

(− j)n(2n+1)Pn(cosθi)

·

[
jn(kr)− j′n(kR)

h′(2)n (kR)
h(2)n (kr)

]
(4)

where j′n(x) is the spherical Bessel function of the first kind
derivative, h(2)n (kr) is the nth-order spherical Hankel function
of the second kind, and h′(2)n (kr) is the corresponding deriva-
tive. Figure 10 shows the pressure magnitude at 2000 Hz for
R = 8.75 cm, for the plane wave traveling along the +z−axis. For
plotting convenience, the axes z and w =

√
x2 + y2 are cylindrical

coordinates, as the sphere has axial symmetry. To be clear z and w
are related to the original spherical coordinates of the math model
by r =

√
w2 + z2 and cosθi = z/

√
w2 + z2.

The calculations required to evaluate (4), and thus create
the plot of Figure 10, conveniently make use of functions in
scipy.special. This is shown in the code listing below:
def pS(w, z, f, R = 0.0875, N = 50):

"""
Scattered field from a rigid sphere

w = radial comp in cylind coord
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Wave direction

Fig. 10: The resultant sound pressure wave magnitude in cylindrical
coordinates z and w, due to scattering of a plane wave from a rigid
sphere.

z = axial comp in cylind coord
f = frequency in Hz
R = sphere radius in m
N = summation upper boundary

p_polar = pressure in Pa for p0 = 1 Pa

Mark Wickert November 2018
"""
p_0 = 1
k = 2*pi/(344.4/f)
p_polar = zeros((len(z),len(w)),

dtype=complex128)
for n,wn in enumerate(w):

for m,zm in enumerate(z):
r = sqrt(zm**2 + wn**2)
cos_theta = zm/sqrt(zm**2 + wn**2)
for kk in range(N+1):

if r <= R:
p_polar[m,n] = 0.0

else:
p_polar[m,n] += p_0*(-1j)**kk *\
(2*kk+1) * \
special.spherical_jn(kk,
k*R,True)/spherical_hn2(kk,
k*R,True) * spherical_hn2(kk,
k*r) * \
special.lpmv(0,kk,cos_theta)

return -p_polar

def spherical_hn2(n,z,derivative=False):
""" Spherical Hankel Function 2nd Kind """
return special.spherical_jn(n,z,deriv=False) \

-1j * special.spherical_yn(n,z,
derivative=False)

The use of R = 8.75 cm is motivated by the standard head radius
discussed in [Duda]. It is interesting to note that there is a bright
spot on the back side (θi = 180◦) due to constructive interference
between the waves traveling around either side of the sphere.

HRTF on the Sphere Surface

In signal processing, the transfer function, H( f ) = |H( f )|e j∠H( f ),
is a ratio of two complex numbers as a function frequency in Hz.
In the denominator we have the magnitude and phase (angle) of
the sinusoidal signal input to a system and in the numerator we
have the magnitude and phase of the corresponding output signal
(measurement point on the sphere or ultimately the ear canal). For
the case of the HRTF the output is the sound pressure magnitude
and phase at the entrance to the right and left ear canals. In the case
of the CIPIC database the location of the source is at a particular

azimuth and elevation on a 1 m sphere centered over the head.
The HRTF of a sphere is defined more generally as the output can
be any point on the surface of the sphere. The input location is
generally at some distance r from the center of the sphere.

In [Duda] the HRTF is defined as the ratio of the sound
pressure on the surface of the sphere divided by the pressure at
the sphere center, given that the sphere is not present:

H(θi, f ,r,R) =
r

kR2 e jkr
∞

∑
n=0

(2n+1)Pn(cosθi)
h(2)n (kr)

h′(2)n (kR)
, r > R

(5)
where θi is the angle of incidence between the source and
measurement point, f is the operating frequency in Hz, r is the
distance from the source to the center of the sphere, and once
again R is the sphere radius. Recall also that the wave number k
contains f .

Formally this transfer function definition should include the
propagation delay time from the source location r to the sphere
center, but this is a linear phase of the form exp(− j2π f r/c) that
can be dealt with as a time shift once the inverse Fourier transform
is used to obtain the HRIR. Later we set r = 1 m to match the
CIPIC source location relative to the head center.

An efficient algorithm for the calculation of (5) is presented in
[Duda], requiring no special functions as a result of using special
function recurrence relationships. The Python implementation,
shown below, also incorporates an error threshold for terminating
the series approximation:

def HRTF_sph(theta, f, r = 1.0, R = 0.01, c = 344.4,
threshold = 1e-6):

"""
HRTF calculation for a rigid sphere with source
r meters from the sphere center

Coded from pseudo-code to Python by Mark Wickert

Reference: Appendix A of J. Acoust. Soc. Am.,
Vol. 104, No. 5, November 1998 R. O. Duda and
W. L. Martens: Range dependence of the response
of a spherical head model.
"""
x = np.cos(theta*np.pi/180)
mu = (2 * np.pi * f * R)/c
rho = r/R
zr = 1/(1j * mu * rho)
zR = 1/(1j * mu)
Qr2 = zr
Qr1 = zr * (1 - zr)
QR2 = zR
QR1 = zR * (1 - zR)
P2 = 1
P1 = x
summ = 0
term = zr/(zR * (zR - 1))
summ += term
term = (3 * x * zr * (zr - 1) )/ \

(zR * (2 * zR * (zR - 1) + 1))
summ += term;
oldratio = 1
newratio = np.abs(term)/np.abs(summ)
m = 2
while (oldratio > threshold) or \

(newratio > threshold):
Qr = -(2 * m - 1) * zr * Qr1 + Qr2
QR = -(2 * m - 1) * zR * QR1 + QR2
P = ((2 * m - 1) * x * \

P1 - (m - 1) * P2)/m
term = ((2 * m + 1) * P * Qr)/((m + 1) \

* zR * QR - QR1)
summ += term
m += 1
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Qr2 = Qr1
Qr1 = Qr
QR2 = QR1
QR1 = QR
P2 = P1
P1 = P
oldratio = newratio
newratio = np.abs(term)/np.abs(summ)

# conjugate to match traveling wave convention
H = np.conj((rho * np.exp(-1j * mu) * summ)/\

(1j * mu))
return H

HRIR on the Sphere Surface

The next step is to calculate the impulse response h(t) correspond-
ing to H( f ) via the inverse Fourier transform of the HRTF. Since
we are working with digital (discrete-time) signal processing,
the inverse discrete Fourier transform (IDFT) is used here, as
opposed to the Fourier integral. We take samples of the HRTF
at uniformly spaced frequency samples, ∆ f , running from 0 to
one half the CIPIC sampling rate, fs = 44.1kHz. This makes
h(t)→ h(n/ fs) = h[n] in the Python implementation shown below:
def freqr2imp(H,win_att = 100):

"""
Transform the frequency response of a real
impulse response system back to the impulse
response, with smoothing using a window
function.

Mark Wickert, May 2019
"""
Nmax = len(H)
if win_att == 0:

h = np.fft.irfft(H)
else:

W = signal.windows.chebwin(2*Nmax,
win_att,sym=True)[Nmax:]

h = np.fft.irfft(H*W)
return h

def compute_HRIR(theta_deg, r = 1.0, R = 0.0875,
fs = 44100, roll_factor = 20):

"""
HRIR for rigid sphere at incidence angle
theta_deg, distance r and radius R using
sampingrate fs Hz

Mark Wickert, June 2019
"""
fs = 44100
Nfft = 2**10
df = fs/Nfft
f = np.arange(df,fs/2,df)
df = fs/Nfft
f = np.arange(df,fs/2,df)
HRTF = np.zeros(len(f),dtype=np.complex128)
for k, fk in enumerate(f):

HRTF[k] = HRTF_sph(theta_deg,fk,r=r,R = R)
# Set DC value to 1
HRTF = np.hstack(([1],HRTF))
f = np.hstack(([0],f))

HRIR = freqr2imp(HRTF,win_att=100)
# Scale HRIR so the area is unity
G0 = 1/(np.sum(HRIR)*1/fs)
t = np.arange(len(HRIR))/fs*1000
return t, np.roll(G0*HRIR,roll_factor)

We choose ∆ f to obtain at least 100 samples on [0, fs/2],
so that when np.fft.irfft() is employed, the full
real impulse response length will be 200. The function
f req2imp() also includes frequency domain windowing, via

signal.windows.chebwin() to provide some smoothing to
the discrete-time approximation. In Figure 11 we show a collection
of HRIR plots, created using HRTF_sph(), for the source 1 m
away from the center of a 8.75 cm radius sphere.
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Fig. 11: Using the spherical harmonics formulation of [Duda] to
obtain the HRTF and then the HRIR as a function of sound source
incidence angle from 0◦ to 180◦.

Building a CIPIC Database Entry

To finally create a CIPIC-like database entry for a spherical head,
we have to relate the angle of incidence in the HRTF expression
(5) to the angle of arrival of an audio source on the CIPIC 1 m
sphere of Figure 2, relative to right and left ear canal entries at
φaz = ±80◦ (a set back of ±100◦ from the front). The problem
is depicted in Figure 12. This problem turns out to be a familiar
analytic geometry problem, that of finding the angle between two
3D vectors passing through the origin, e.g.

θ~S~R = cos−1

(
~S ·~R
|~S| |~R|

)
= xS sinφR + zS cosφR (6)

where ~R is the vector to the right ear canal with angle φR, assumed
to lie in the horizontal plane, and ~S is the vector to the source of
length 1 m with primary coordinate system components (xS,yS,zS)
as defined in Figure 1. A similar relation holds for the left ear canal
entry.

We need to fill the database using the CIPIC angle of ar-
rival source grid using the secondary (ICPS) coordinate system.
The coordinate conversion between xS and zs and the IPCS is
xs = r sinθCIPIC and zs =−r cosφCIPIC cosθCIPIC, so with r = 1 the
angle of incidence formula (6) in final form is

θ~S~R = sinθCIPIC sinφR− cosφCIPIC cosθCIPIC cosφR (7)

and similarly for the left ear canal.
The steps for producing the HRIR filter pair over 1250 IPCS

angle pairs is summarized in Figure 13.
Finally putting this all together, code was written in a

Jupyter notebook to generate a CIPIC-like database entry, using
scipy.io to write a MATLAB mat file, e.g., subject_200
is a spherical head, with no ears (pinna), containing two HRIR
arrays:
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Fig. 12: Solving for the angle between the source and a ray extending
from the right and left ears, also showing a set back of the ear canal
by ±100◦ from the from the font of the head.
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Fig. 13: A block diagram depicting the steps involved in calculating
the HRIR right and left channel impulse responses, hR[n] and hL[n],
starting from CIPIC source angles, (θCIPIC,φCIPIC), ear canal set-
back angles, (φR,φL), and the sphere radius R.

io.whosmat('subject_200/hrir_final.mat')

[('hrir_l', (25, 50, 200), 'double'),
('hrir_r', (25, 50, 200), 'double')]

An example HRIR plot, similar to Figure 3, is shown in Figure 14.

Subject HRIR for Source φaz = 130°,hr = 0,rxz = 1m

Fig. 14: Example right/left HRIR plots for a particular arrival angle
pulled from the CIPIC-like database entry created for a radius 8.75
cm sphere.

Casual listening tests with a coarse fit human subject from
CIPIC and the simple spherical model, indicate both similarities
and differences. Coarse localization is similar between the two,
but the spherical model seems sterile, that is the sound seems un-
natural. The fact that coarse localization is present is an indication
that the database is correct. Additional testing is planned.

Conclusions and Future Work

Development of the real-time signal processing aspect of the
3D audio simulator was a relatively simple task. This is a
perfect application for the pyaudio_helper code module of
scikit-dsp-comm. Working through the details of the co-
ordinate transformations, and gain and parallax corrections on
the geometry side, was a more complex undertaking. Likewise,
working with the spherical head model calculations, first in the
frequency domain (HRIR), and then the time domain (HRIR), was
the most complex. The fact that recursions can be used to evaluate
the needed special functions for sound pressure on the surface of a
sphere, makes the generation of a CIPIC-like database entry take
only a few minutes of compute time.

Informal testing of human subjects has gone well. Precise
localization experiments using the static app have not been at-
tempted just yet, as a formal pool human subjects has yet to
be gathered. The virtual reality aspects of the dynamic app have
received many positive comments from informal testing with those
interested in 3D audio.

For future research, this simulator will be used to evaluate
personalized HRIR fitting to human subjects, based on their upper
torso anthropometrics. For the case of the spherical head, it is of
interest to consider alternative HRIR grids. The 1 m radius 1250
point grid of angle pairs is no longer a limitation. For close range
sound localization a different grid of angle pairs and with r < 1 m,
can be used. This would make filter switching on the real-time
DSP side of things finer grained, and hence more natural.

The Jupyter notebooks used in the analysis and development
of this paper can be found on GitHub [3D_Audio]. This will give
open access to anyone interested in trying out the simulator.
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