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Abstract—A Bayesian approach to solving inverse problems provides insight
regarding model limitations as well as the underlying model and observation
uncertainty. In this paper we introduce pymcmcstat, which provides a wide
variety of tools for estimating unknown parameter distributions. For scientists
and engineers familiar with least-squares optimization, this package provides a
similar interface from which to expand their analysis to a Bayesian framework.
This package has been utilized in a wide array of scientific and engineering prob-
lems, including radiation source localization and constitutive model development
of smart material systems.

Index Terms—Markov Chain Monte Carlo (MCMC), Delayed Rejection Adaptive
Metropolis (DRAM), Parameter Estimation, Bayesian Inference

Introduction

Many scientific problems require calibration of model parameters.
This process typically involves comparing a model with a set of
data, where the data either comes from experimental observations
or high-fidelity simulations. The model parameters are calibrated
in a manner such that the model fits the data; i.e., observations are
used to inversely determine the model inputs that led to that output.
A common example of this procedure is least-squares optimiza-
tion, which is used in a wide variety of scientific disciplines. Least-
squares and many other methods exist for solving these inverse
problems, but an important question to ask is whether or not they
account for the underlying uncertainty.

Uncertainty exists in all areas of scientific research and it arises
for various reasons. A familiar source of uncertainty in data is
simply a certain amount of random noise. Alternatively, uncer-
tainty also occurs due to missing physics in the model or from
lack of knowledge. Modeling scientific and engineering problems
presents many challenges and often times requires compromise.
No model ever fully captures the physics; however, the model
may still be useful for different applications [Box76]. With that
in mind, we now highlight an approach to inverse problems that
helps address uncertainty in the development of scientific and
engineering models.

To quantify the uncertainty in our modeling problem, we uti-
lize Bayesian inference. The key point in this approach stems from
the interpretation of the parameters within the model. A Bayesian
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approach treats these unknown model parameters as random
variables; i.e., they have an underlying probability distribution that
can be used to describe them. This contrasts a frequentist approach
which assumes the parameters are unknown but have a fixed value.
The goal of Bayesian model calibration is to infer the parameter
distributions. This approach to inverse problems provides insight
into model limitations as well as an accurate estimation of the
underlying model and observation uncertainty. A brief summary
is provided in the next section, and more details regarding these
methods can be found elsewhere [Smi14].

The Python package pymcmcstat [Mil19b] provides a robust
platform for performing Bayesian model calibration. Procedurally,
the user provides data, defines model parameters and settings,
and sets up simulation options. As many intended users may
be unfamiliar with Bayesian methods, the default package be-
havior requires minimal knowledge of statistics. In fact, like
many optimization problems, the user’s main responsibility is to
provide a sum-of-squares error function, which will become clear
throughout the examples in this paper.

Within pymcmcstat, we use Markov Chain Monte Carlo
(MCMC) methods to solve the Bayesian inverse problem [Smi14].
As many Python packages currently exist for performing MCMC
simulations, we had several goals in developing this code. To
our knowledge, no current package contains the n-stage delayed
rejection algorithm, so pymcmcstat was intended to fill this gap.
Delayed rejection may be an unfamiliar concept, so more details
are provided in the discussion of Metropolis algorithms in a
later section. Furthermore, many researchers in our community
have extensive experience using the MATLAB toolbox mcmcstat1.
Our implementation provides a similar user environment, while
exploiting Python structures. We hope to decrease dependence on
MATLAB in academic communities by advertising comparable
tools in Python.

This package has been applied to a wide variety of engineering
problems, including constitutive model development of smart
material systems as well as radiation source localization. Several
example problems will be presented later on, but first we will
outline the package methodology.

Methodology

Knowledge of Bayesian statistics is important to understanding
the theory, but it is not necessarily required information for
using pymcmcstat. We provide a brief overview of the Bayesian

1. https://mjlaine.github.io/mcmcstat/
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approach and then explain the key terms that impact the user by
going through a basic example.

Bayesian Framework

The goal of Bayesian inference is to estimate the posterior den-
sities π(q|Fobs(i)), which quantify the probability of parameter
values given a set of observations. From Bayes’ relation

π(q|Fobs(i)) =
L (Fobs(i)|q)π0(q)∫

Rp L (Fobs(i)|q)π0(q)dq
, (1)

we observe that the posterior is proportional to the likelihood
and prior functions. The function L (Fobs(i)|q) describes the
likelihood of the observations given a parameter set, and any
information known a priori about the parameters is defined in
the prior distribution π0(q). The denominator ensures that the
posterior integrates to unity. Note, the integral in the denominator
involves integrating over Rp, where p is the number of model
parameters.

The pymcmcstat package is designed to work with statistical
models of the form

Fobs(i) = F(i;q)+ εi, where εi ∼ N(0,σ2).

We expect the observations Fobs(i) (experimental data or high-
fidelity simulations) to equal the model response F(i;q) plus
independent and identically distributed error εi with mean zero
and observation error variance σ2. A direct result of assuming
a statistical model of this nature is that the likelihood function
becomes

L (Fobs(i)|q) = exp
(
−

SSq

2σ2

)
, (2)

where SSq = ∑
Nobs
i=1 [F

obs(i)−F(i,q)]2 is the sum-of-squares error
(Nobs is the number of data points). This is consistent with the
observations being independent and identically distributed with
Fobs(i) ∼ N(F(i;q),σ2). As the observation error variance σ2 is
unknown in many cases, we will often include it as part of the
inference process.

Direct evaluation of (1) is often computationally untenable due
to the integral in the denominator. To avoid the issues that arise due
to quadrature, we alternatively employ Markov Chain Monte Carlo
(MCMC) methods. In MCMC, we use sampling based Metropolis
algorithms [MRR+53] whose stationary distribution is the pos-
terior density π(q|Fobs(i)). What this means is that we sample
parameter values, evaluate the numerator of Bayes’ equation (1),
and accept or reject parameter values using a Metropolis algo-
rithm. More details regarding Metropolis algorithms are provided
in a later section.

Basic Example

At the end of the day, many users do not need to know the
statistical background, but they can still appreciate the information
gained from using the Bayesian approach. Below we outline the
key components of pymcmcstat and explain their relationship to
the Bayesian approach described above. Procedurally, to calibrate
a model using pymcmcstat, the user will need to provide the
following pieces:

1) Import and initialize MCMC object.
2) Add data to the simulation - Fobs(i). These may be

either experimental measurements or high-fidelity model
results.

3) Define model function: The user needs to define a model
of the form F(i,q); i.e., a model that depends on a set of
parameters q. Strictly speaking the model can be created
in any language the user desires so long as it can be
called within your Python script. For example, if your
model code is written in C++ or Fortran, this is easily
done using ctypes2. Note, the model does not need to be
a separate def statement, but can be included directly in
the sum-of-squares function.

4) Define sum-of-squares function - SSq. The sum-of-
squares error between the model and data will be used
in evaluating the likelihood function L (Fobs(i)|q).

5) Define model settings and simulation options. More de-
tails regarding these features will be provided in subse-
quent sections.

6) Add model parameters - q. The user must specify the
parameters in the model that need to be calibrated as
well as define any limits regarding potential values those
parameters can have. By defining parameter minimum
and/or maximum limits, the user has specified the prior
function π0(q). By default, pymcmcstat assumes a uni-
form distribution for all parameters; i.e., there is equal
probability of the parameter being a particular value
between the minimum and maximum limit.

7) Execute simulation.
8) Analyze parameter chains. The chains reflect the sam-

pling history of the MCMC simulation.

Let’s walk through a basic example to see how all these pieces
work together. To start, we will generate some fictitious data,
import numpy as np
x = np.linspace(0, 1, num=100)
y = 2.0*x + 3.0 + 0.1*np.random.standard_normal(

x.shape)

Note, we assume data where observations y have been made at
independent points x, which are uniformly distributed between 0
and 1. The observations follow a linear trend with slope 2 and
offset 3. To make the data realistic we add random noise to the
observations of the form εi ∼ N(0,σ2). In this case we define the
observation error standard deviation to be σ = 0.1.

In this case we know what the model should be because we
used it to generate the data. We want to fit a linear model (i.e.,
F(i,q = [m,b]) = mxi + b) to the observations. To calibrate this
model with pymcmcstat, the basic implementation is as follows:
# import and initialize
from pymcmcstat.MCMC import MCMC
mcstat = MCMC()
# Add data
mcstat.data.add_data_set(x, y)
# Define sum of squares function
def ssfun(q, data):

m, b = q # slope and offset
x = data.xdata[0]
y = data.ydata[0]
# Evaluate model
ymodel = m*x + b
res = ymodel - y
return (res ** 2).sum(axis=0)

# Define model settings
mcstat.model_settings.define_model_settings(

sos_function=ssfun)
# Define simulation options
mcstat.simulation_options.define_simulation_options(

nsimu=10.0e3) # No. of MCMC simulations

2. https://docs.python.org/3/library/ctypes
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Fig. 1: Parameter chains obtained with all 10,000 realizations of the
linear model.

# Add model parameters
mcstat.parameters.add_model_parameter(

name='m',
theta0=2.) # initial value

mcstat.parameters.add_model_parameter(
name='b',
theta0=2.75, # initial value
minimum=-5, # lower limit
maximum=5) # upper limit

# Run simulation
mcstat.run_simulation()

We can check the results of the MCMC simulation by displaying
the chain statistics. Note, we typically remove the first part of
the sampling chain as it may not have converged to the correct
posterior depending on the initial value.
# Extract results
results = mcstat.simulation_results.results
chain = results['chain']
burnin = int(chain.shape[0]/2)
# display chain statistics
mcstat.chainstats(chain[burnin:, :], results)

This will output to your display
name : mean std MC_err tau geweke
m : 2.0059 0.0348 0.0015 7.1351 0.9912
b : 2.9983 0.0206 0.0009 7.9169 0.9962

Recall that the data was generated with a slope of 2 and offset
of 3, so the algorithm appears to be converging to the correct
values. Additional items displayed include normalized batch mean
standard deviation (MC_err), autocorrelation time (tau), and
Geweke’s convergence diagnostic (geweke) [BR98].

A typical part of analyzing the results is to visualize the
sampling history of the MCMC process. This is accomplished by
using pymcmcstat’s plot_chain_panel method.
mcpl = mcstat.mcmcplot # initialize plotting methods
mcpl.plot_chain_panel(chain, names)

Figure 1 shows the full parameter chains for all 10,000 MCMC
simulations. The algorithm takes a few simulations to reach the
correct distribution, which is clearly seen by the jump at the
beginning. This is why we typically remove the first part of the
chain to allow for burn-in. We make another plot, except this time
we have removed the first part of the chain.
mcpl.plot_chain_panel(chain[burnin:,:], names)

Fig. 2: Parameter chains obtained with the final 5,000 realizations of
the linear model.

Figure 2 shows the burned-in parameter chains based on the final
5,000 MCMC simulations. We observe that the distribution of
parameter values appears to be consistent for the entire range of
sampling shown, which supports the conclusion that we have con-
verged to the posterior distribution. To visualize the distribution,
we use the plot_density_panel method.
mcpl.plot_density_panel(chain[burnin:,:], names)

Figure 3 shows the marginal posterior parameter densities. The
densities are generated using a Kernel Density Estimation (KDE)
algorithm based on the parameter chains shown in Figure 2.
The distributions appear to be nominally Gaussian in nature;
however, that is not a requirement when running MCMC. One
more chain diagnostic that we commonly consider is with regard
to parameter correlation. We visualize the parameter correlation
using the plot_pairwise_correlation_panel method.
mcpl.plot_pairwise_correlation_panel(

chain[burnin:, :], names)

Figure 4 shows the pairwise parameter correlation based on the
sample history of the MCMC simulation. Essentially, we take the
points from the chain seen in Figure 2 and plot the matching
points for m and b against one another. As seen in Figure 4, there
appears to be a negative correlation between the two parameters;
however, it is not particularly strong. The MCMC approach has no
issues with correlated parameters, so these results are fine. Where
you have to be careful is when the pairwise correlation shows a
nearly single-valued relationship of some kind. By single-valued,
we mean that the value of one parameter can be used to directly
determine the other, e.g., if the pairwise correlation revealed a
completely straight line.

Now that we have distributions for the parameters, we want to
know how that uncertainty propagates through the model. Within
pymcmcstat, the user has the ability to generate credible and
prediction intervals. Credible intervals represent the distribution
of the model output based simply on propagating the uncertainty
from the parameter distributions. In contrast, prediction intervals
also include uncertainty that arises due to observation errors εi.
The following example code can be used to generate and plot
credible and prediction intervals using pymcmcstat
def modelfun(pdata, theta):

m, b = theta
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Fig. 3: Marginal posterior parameter densities for linear model.

Fig. 4: Pairwise correlation between sampling points for linear model.

x = pdata.xdata[0]
y = m*x + b
return y

mcstat.PI.setup_prediction_interval_calculation(
results=results,
data=mcstat.data,
modelfunction=modelfun,
burnin=burnin)

mcstat.PI.generate_prediction_intervals(
calc_pred_int=True)

# plot prediction intervals
fg, ax = mcstat.PI.plot_prediction_intervals(

adddata=True,
plot_pred_int=True)

ax[0].set_ylabel('y')
ax[0].set_xlabel('x')

The procedure takes a subsample of the MCMC chain, evaluates
the model for each sampled parameter set, and sorts the output to
generate a distribution.

Figure 5 shows the 95% credible and prediction intervals.
We observe that the credible intervals are fairly narrow, which
is not surprising given the small amount of uncertainty in the
parameter values (standard deviations of 0.03 and 0.02 for m and
b, respectively). This is not always the case, especially in instances
where there is unknown or missing physics in the model. However,
we generated fictitious data using the model, so these results are

Fig. 5: 95% credible and prediction intervals for linear model.

reasonable. Prediction intervals quantify the probability of ob-
serving future numerical predictions or experimental observations
because they include both parameter and observation uncertainty.
For a 95% prediction interval, we expect a future observation to
fall within that region 95% of the time. As a general check, we
note that approximately 95% of the data appears to be inside the
prediction interval shown in Figure 5, which is consistent with
what we expect.

This concludes the basic example and highlights the workflow
of how pymcmcstat could be used for a scientific problem. Note,
this example highlighted a linear model; however, the algorithm
is also applicable to nonlinear models, examples of which are
discussed in subsequent sections.

Metropolis Algorithms

For those unfamiliar with Metropolis algorithms, we have pro-
vided a brief overview of the procedure. For each step of the
MCMC simulation, a new set of parameter values are proposed q∗.
We accept or reject q∗ based on comparison with results obtained
with the previous parameter set qk−1. To do this we calculate the
acceptance ratio

α =
L (Fobs(i)|q∗)π0(q∗)

L (Fobs(i)|qk−1)π0(qk−1)
. (3)

We observe that (3) compares the unscaled posterior probabilities.
Essentially, we are computing whether q∗ or qk−1 is more likely.
For uniform prior distributions, this simplifies to comparing the
likelihood function. For the Gaussian likelihood function (2), a
smaller sum-of-squares error implies a larger likelihood. So, if the
error is reduced by evaluating the model with q∗, the acceptance
ratio will have a value α > 1. In that case we accept the parameters
and set qk = q∗. In contrast, if the error increases (i.e., the likeli-
hood decreases), the acceptance ratio becomes α < 1. Rather than
outright reject parameter sets that increase error, we conditionally
accept q∗ if α >U(0,1) (random value from a uniform distribution
between 0 and 1). In this way we will often accept values that
yield similar errors because the acceptance ratio will be closer to
1. Otherwise, we define the next simulation parameter set to be
equal to the previous; i.e., qk = qk−1.

Candidates, q∗, are generated by sampling from a proposal
distribution, which accounts for parameter correlation. In an ideal
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TABLE 1: Metropolis algorithms available in pymcmcstat.

Algorithm
MH Metropolis-Hastings
AM Adaptive Metropolis
DR Delayed Rejection
DRAM DR + AM

case one can adapt the proposal distribution as information is
learned about the posterior distribution from accepted candi-
dates. This is referred to as adaptive Metropolis (AM) and it
is implemented in pymcmcstat using the algorithm presented in
[HST+01]. Another desirable feature in Metropolis algorithms
is to include delayed rejection (DR), which helps to stimulate
mixing within the sampling chain. Good mixing simply means
that the simulation is switching between points frequently and not
stagnating on a single value; i.e., qk = qk−1 for many simulations
in a row. This has been implemented using the algorithm presented
in [HLMS06]. A summary of the Metropolis algorithms available
inside pymcmcstat is presented in Table 1.

Options and Settings

Below we provide a brief summary of common features and
explanations of how a user might implement them for a particular
problem. As shown in the basic example, the user must define
the options before running the simulation. The following code
segment shows several additional simulation features that a user
might find useful.
mcstat.simulation_options.define_simulation_options(

nsimu=10.0e3, # No. of MCMC simulations
method='dram', # Metropolis algorithm
updatesigma=True, # Update obs. error var.
savedir='mcmc_chains', # Output dir.
save_to_bin=True, # Save chains to binary
save_to_txt=True, # Save chains to text
savesize=int(1.0e3), # Saving intervals
waitbar=False, # Display progress bar
verbosity=0, # Level of display while running
)

The list of available Metropolis algorithms is found in Table
1, and the user can change it via the method keyword argu-
ment. To update the observation error variance, σ2, one sets
updatesigma=True. The ability to update σ2 is a direct result
of the form of the likelihood function, and the reader is referred to
[Smi14] for more details.

Several arguments relate to the ability to save results into a
running log file. As the simulation runs, it periodically appends
the sampling chain to a file. In this case, it will create bi-
nary (save_to_bin=True) and text (save_to_txt=True)
files in a directory (savedir='mcmc_results') and ap-
pend the latest set of chain values every 1,000 simulations
(savesize=int(1.0e3)). This can be extremely useful when
running simulations over a long period of time. The user can run
diagnostics on the latest set of chain results while the simulation
is still running. For more details regarding this feature please see
the tutorial on using Chain Log Files3.

A progress bar will be displayed while the simulation runs;
however, it is easily turned off by setting waitbar=False. Sim-
ilarly, the program displays certain features depending on the level
of verbosity specified. Setting verbosity=0 suppresses all

3. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/saving_to_log_files/Chain_Log_Files.ipynb

text output display. More information will be presented as you
increase the value of verbosity.

Additional options are available for specifying the initial
parameter covariance matrix (proposal distribution), adaptation
interval, stages of delayed rejection, as well as outputting results
to a JSON file. For more details regarding the options available in
pymcmcstat, the reader is referred to the pymcmcstat documenta-
tion4 and tutorials5. Next, we will outline some specific scientific
problems in which pymcmcstat has been utilized to gain insight
regarding model limitations in light of uncertainty.

Case Studies

Viscoelastic Modeling of Dielectric Elastomers

Dielectric elastomers are a type of smart material commonly
implemented within an adaptive structure, which provide unique
capabilities for control of a structure’s shape, stiffness, and
damping [Smi05]. These capabilities make them suitable for a
wide variety of applications, including robotics, flow control,
and energy harvesting [LG01], [CIS11]. Accurately modeling
this material presents many challenges in light of its viscoelastic
behavior. Viscoelastic materials exhibit a time-dependent strain
response, which can vary significantly with the rate at which
the material is being deformed [RC+03]. To help visualize this
behavior, Figure 6 shows uni-axial experimental data for the
elastomer Very High Bond (VHB) 4910. This highlights how as
the material is deformed (i.e., stretch) you see a different stress
response depending on the rate of deformation (i.e., stretch rate).
Furthermore, at each rate you see two lines. The upper line reflects
the material stress response as it is being loaded and the lower line
is the stress as it is being relaxed. The gap between loading and
relaxing is called hysteresis and is commonly seen in viscoelastic
materials like this. For more details regarding the experimental
procedure used to generate this data, the reader is referred to
[MHSO15].

A variety of models can be used when modeling the behavior
of these materials, but the details are beyond the scope of this
paper. We implement a model of the form F(i;q) to predict the
nominal stress response during the loading and unloading of the
material. The model depends on the parameter set

q = [Gc,Ge,λmax,η ,γ], (4)

where each parameter helps describe a certain aspect of the
physics that we are interested in modeling. Details regarding these
models can be found in [DG13] and [MHSO15]. We calibrate the
model with respect to the experimental data collected at λ̇ = 0.67
Hz as shown in Figure 6.

We can perform the MCMC simulation using the basic proce-
dure previously outlined. For this particular case study, we wish
to point out several specific devices that were used, and a full
implementation of the code for this problem can be found in
the Viscoelasticity Tutorial6. To begin, we point out the potential
advantages of using pymcmcstat in conjunction with models
written in faster computing languages.

In any sampling based method, computational efficiency is
extremely important, and most of your computational time will

4. https://pymcmcstat.readthedocs.io/
5. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/

tutorials/index.ipynb
6. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/

tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
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https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/saving_to_log_files/Chain_Log_Files.ipynb
https://pymcmcstat.readthedocs.io/en/latest/
https://pymcmcstat.readthedocs.io/en/latest/
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/index.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
https://pymcmcstat.readthedocs.io/
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/index.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/index.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
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Fig. 6: Experimental data for VHB 4910. The frequencies refer to
different rates of deformation, or in this case different stretch rates,
λ̇ .

be spent in evaluating the model. We note that computational
performance can be significantly improved by writing the model
functions in C++ or Fortran. You can easily call these functions
by utilizing the ctypes package, and an example of how to do this
with pymcmcstat can be found in the Viscoelasticity Tutorial. For
example, the elastomer model implemented here was written in
both Python and C++. The average run time for a single model
evaluation using C++ was approximately 0.09 ms whereas the
Python implementation took over 8 ms. This particular model is
reasonably fast in both languages, but we wished to point out the
advantage of using more efficient code for the model evaluation.

Another item that commonly arises in model calibration is
that not all your parameters are identifiable. Determination of
identifiable parameters is typically done using some type of
sensitivity analysis, which is beyond the scope of this paper. For
this example, let us suppose that the first three parameters in q
have known, fixed values and therefore should not be included in
the sampling chain of the MCMC simulation. As they are fixed
values, one could simply hard code the parameters into the sum-
of-squares function like this

def ssfun(q, data):
# Assign model parameters
Gc, Ge, lam_max = 7.55, 17.7, 4.83
eta, gamma = q
# evaluate elastomer model
...

This solution is not ideal as you may later decide to include those
parameters as part of the calibration. To accommodate models with
fixed parameters, pymcmcstat allows the user to specify whether
or not to include parameters in the sampling process. This is
accomplished by specifying sample=False as follows

# define model parameters
mcstat.parameters.add_model_parameter(

name='$G_c$',
theta0=7.55,
sample=False)

mcstat.parameters.add_model_parameter(
name='$G_e$',
theta0=17.7,

Fig. 7: Parameter chains obtained with 2.5× 103 realizations of the
elastomer model.

sample=False)
mcstat.parameters.add_model_parameter(

name='$\\lambda_{max}$',
theta0=4.83,
sample=False)

mcstat.parameters.add_model_parameter(
name='$\\eta$',
theta0=708)

mcstat.parameters.add_model_parameter(
name='$\\gamma$',
theta0=31)

This now allows the user to define their sum-of-squares function
without hard coded values for the first three parameters.

def ssfun(q, data):
# Assign model parameters
Gc, Ge, lam_max, eta, gamma = q
# evaluate elastomer model
...

The final item for this case study relates to assessing chain
convergence. Previously, we outlined a variety of plotting meth-
ods available for looking at the sampling history and parameter
correlation. We also mentioned various statistical measures, such
Geweke’s convergence diagnostic and autocorrelation time. The
chain panel shown in Figure 7 appears to be converged, but there
is a possibility that the algorithm is stuck in a local minimum.
If you run the simulation longer, then you may see a jump in
the chain as it finds another local minimum. For a more rigorous
assessment of chain convergence, the user can generate multiple
sets of chains and use Gelman-Rubin diagnostics [GR+92]. An
example of how to generate multiple chains with pymcmcstat
can be found in the Running Parallel Chains Tutorial7, which
also includes information on how to calculate Gelman-Rubin
diagnostics.

7. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/
tutorials/running_parallel_chains/running_parallel_chains.ipynb

https://docs.python.org/3/library/ctypes
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/viscoelasticity/viscoelastic_analysis_using_ctypes.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/running_parallel_chains/running_parallel_chains.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/running_parallel_chains/running_parallel_chains.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/running_parallel_chains/running_parallel_chains.ipynb
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Fig. 8: Simulated 250m × 178m block of downtown Washington D.C.

Radiation Source Localization

Efficient and accurate localization of special nuclear material
(SNM) in urban environments is a vitally important task to
national security and presents many unique computational chal-
lenges. A realistic problem requires accounting for radiation
transport in 3D, using representative nuclear cross-sections for
solid materials, and simulating the expected interaction with a
network of detectors. This is a non-trivial task that highlights
the importance of surrogate modeling when high-fidelity models
become computationally intractable for sampling based methods.
For the purpose of this example, we will highlight some previous
research that utilizes a ray-tracing approach in 2D. We simulate a
250m × 178m block of downtown Washington D. C. as shown in
Figure 8.

We implement a highly simplified radiation transport model
which ignores scattering. The model accounts for signal atten-
uation that is caused by distance as well as interference from
buildings that are in the path between the source and detector
location. This ray tracing model is implemented in the Python
package gefry38. Additional details regarding this research can be
found in [HM19].

As with the viscoelasticity case study, we only highlight
several key features for solving this problem with pymcmcstat.
The complete code can be found in the Radiation Source Local-
ization Tutorial9. The first item we wish to highlight is the ability
to pass additional information into the sum-of-squares function
by utilizing the user_defined_object feature of the data
structure.
# setup data structure for dram
mcstat.data.add_data_set(

x=np.zeros(observations.shape),
y=observations,
user_defined_object=[

model,
background,

],
)

In this case, we have created an object which is a list with two
elements: 1) the radiation transport model and 2) the background

8. https://github.com/jasonmhite/gefry3
9. https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/

tutorials/radiation_source_localization/radiation_source_localization.ipynb

Fig. 9: Marginal posteriors from MCMC simulation presented in
urban environment. Actual source location is denoted by the red circle.

radiation. These items are easily accessed within the sum-of-
squares function.
# Radiation Sum of Squares Function
def radiation_ssfun(theta, data):

x, y, I = theta
model, background = data.user_defined_object[0]
output = model((x, y), I) + background
res = data.ydata[0] - output
ss = (res ** 2).sum(axis = 0)
return ss

A Bayesian approach to source localization provides us with
several very practical results. Firstly, there are multiple regions of
the domain that will yield comparable detector measurements, so
assigning probabilities to various locations is more realistic than a
single point estimate. If one can infer regions of higher probability,
it can then motivate the placement of new detectors in the domain
or possibly allow for a team with handheld detectors to complete
the localization process. Given the challenges of modeling the
radiation transport physics, it is extremely useful to visualize the
potential source locations in light of the underlying uncertainty.
Figure 9 shows the marginal posterior densities, where it is clearly
seen that the posteriors are very close to the true source location.
We note that this plot was generated using the mcmcplot package
[Mil19a], and the required code can be found in the previously
referenced Radiation Source Localization Tutorial.

This is a very simplified case, but it highlights another unique
problem in which pymcmcstat can be used to gain insight regard-
ing uncertainty.

Concluding Remarks

The pymcmcstat package presents a robust platform from which
to perform a wide array of Bayesian inverse problems using the
Delayed Rejection Adaptive Metropolis (DRAM) algorithm. In
this paper we have provided a basic description of Markov Chain
Monte Carlo (MCMC) methods and outlined a general example

https://github.com/jasonmhite/gefry3
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/radiation_source_localization/radiation_source_localization.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/radiation_source_localization/radiation_source_localization.ipynb
https://github.com/jasonmhite/gefry3
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/radiation_source_localization/radiation_source_localization.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/radiation_source_localization/radiation_source_localization.ipynb
https://nbviewer.jupyter.org/github/prmiles/pymcmcstat/blob/master/tutorials/radiation_source_localization/radiation_source_localization.ipynb
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of how to implement pymcmcstat. Furthermore, we highlighted
aspects of two distinct areas of scientific study where MCMC
methods provided enhanced understanding of the underlying
physics.

To improve the overall usefulness of the pymcmcstat package,
we will expand its functionality to allow for user-defined like-
lihood and prior functions (currently limited to Gaussian). We
designed the package to serve as a Python alternative for the
MATLAB toolbox mcmcstat, so it is important to maintain the
features of the original user interface for ease of transition from
one platform to another. Overall, the package is applicable to a
wide variety of scientific problems, and provides a nice interface
for users who are potentially new to Bayesian methods.
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