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Parkinson’s Classification and Feature Extraction from
Diffusion Tensor Images

Rajeswari Sivakumar®*, Shannon Quinn*

Abstract—Parkinson’s disease (PD) affects over 6.2 million people around the
world. Despite its prevalence, there is still no cure, and diagnostic methods
are extremely subjective, relying on observation of physical motor symptoms
and response to treatment protocols. Other neurodegenerative diseases can
manifest similar motor symptoms and often too much neuronal damage has
occurred before motor symptoms can be observed. The goal of our study is
to examine diffusion tensor images (DTI) from Parkinson’s and control pa-
tients through linear dynamical systems and tensor decomposition methods
to generate features for training classification models. Diffusion tensor imaging
emphasizes the spread and density of white matter in the brain. We will reduce
the dimensionality of these images to allow us to focus on the key features that
differentiate PD and control patients. We show through our experiments that
these approaches can result in good classification accuracy (90%), and indicate
this avenue of research has a promising future.

Index Terms—tensor decomposition, brain imaging, diffusion tensor image,
Parkinsons disease

Introduction
Parkinson’s Disease

Parkinson’s disease (PD) is one of the most common neurodegen-
erative disorders. The disease mainly affects the motor systems
and its symptoms can include shaking, slowness of movement,
and reduced fine motor skills. As of 2015 an estimated 6.2 million
globally were afflicted with the disease [vos2016]. Its cause is
largely unknown and there are some treatments available, but no
cure has yet been found. Early diagnosis of PD is a topic of
keen interest to diagnosticians and researchers alike. Currently
Parkinson’s is diagnosed based on the presence of observable
motor symptoms and change in symptoms in response to medica-
tions that target dopaminergic receptors such as Levodopa [svein-
bjornsdottir2016]. The problem with this approach is that it relies
on treating symptoms instead of preventing them. Once motor
symptoms present, at least 60% of neurons have been affected and
there is little likelihood of healing them fully. Additionally early
diagnosis will help reduce likelihood of misdiagnosis with other
motor neuron diseases.

Parkinsons Progression Markers Initiative Datasets

The Parkinson’s Progression Markers Initiative (PPMI)
[marek2011] is a clinical study designed to identify PD
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biomarkers and contribute towards new and better treatments
for the disease. The cohort consists of approximately 400 de
novo, untreated PD subjects and 200 healthy subjects followed
longitudinally for clinical, imaging and biospecimen biomarker
assessment. The PPMI data set is a collection of biomarker
data collected from a longitudinal study of Parkinson’s and
control subjects. They have thus far collected DaT (dopamine
transporter) scan, MRI (magnetic resonance imaging), fMRI
(functional magnetic resonance imaging), and CT (computerized
tomography) scan data from several hundred subjects in 6 month
intervals. They first began collecting data in 2010, funded by
the Michael J.Fox Foundation. The dataset chosen for this paper
was PPMI’s Diffusion Tensor Imaging (DTI) records. DTI has
been shown to be a promising avenue to explore biomarkers in
Parkinsonian symptoms and can provide unique insights into
brain network connectivity. Moreover, the DTI data was one
of PPMI’s cleanest and largest datasets and thus expected to
be one of the most useful for further analysis. A DTI record
is a four-dimensional dataset comprised of a time-series of a
three-dimensional imaging sequence of the brain. PPMI’s DTIs
generally consisted of 65 time slices, each taken approximately
five seconds apart. This method tracks movement of water in
brain over the discrete time steps, creating a representation of the
brain that emphasizes the white matter structures [soares2013].

Existing Work
Parkinson’s Disease

A variety of tools currently exist for diagnosis of Parkinson’s
through pre-motor symptoms. For example Parkinson’s seems
to measurably affect olfactory sensitivity prior to presenting
motor symptoms more than other motor neuron diseases, as
illustrated by the University of Pennsylvania Smell Identification
Test (UPSIT) [chaudhuri2016]. While there is still more work
needed to refine tests like these, it is one example that proves
the feasibility of earlier diagnosis of Parkinson’s disease. The
PPMI holds that discovery of one or more biomarkers for PD
is a critical step for developing treatments for the disease. In
[chahine2016] a search was conducted of existing PD articles
relating to objective biomarkers for PD and found that there
are several potential candidates, including biofluids, peripheral
tissue, imaging, genetics, and technology based objective motor
testing. Dinov et al [dinov2016] explored both model-based and
model-free approaches for PD classification and prediction, jointly
processing imaging, genetic, clinical, and demographic data. They
were able to develop and full data-processing pipeline enabling
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modeling of all the data available from PPMI, and found that
model-free approaches such as support vector machines (SVM)
and K-nearest-neighbor (KNN) outperformed model-based tech-
niques like logistic regression in terms of predicted accuracy.
Several of these classifiers generated specificity exceeding 96%
when all data available from the dataset was aggregated and used.
One interesting finding was a notable increase in accuracy when
using group size rebalancing techniques to counteract the effect
of cohort sample-size disparities (there are many more patients
than control subjects), increasing accuracy in one SVM classifier
from 75.9% to 96.3%. Researchers in [baytas2017] recognized
the inherent difficulty of using time-series analysis techniques
on longitudinal data collected at irregularly-spaced intervals and
proposed a new Long-Short Term Memory (LSTM) technique:
Time-Aware LSTM (T-LSTM). In [simuni2016] it was found that
the subgroup PD classification of tremor dominant (TD) versus
postural instability gait disorder dominant (PIGD) has substantial
variability, especially in the early stages of diagnosis. For this
reason no attempt was made in this paper to include subtype
assignment, but only to learn a binary Yes/No PD classification
prediction. State-of-the art Parkinson’s classification results were
reported by [adeli2017] in early 2017 through use of a joint kernel-
based feature selection and classification framework. Unlike con-
ventional feature selection techniques, this allowed them to select
features that best benefit the classification scheme in the kernel
space as opposed to the original input feature space. They analyzed
MRI and SPECT data of 538 subjects from the PPMI database and
obtained a diagnosis accuracy of 70.5% in MRI generated features
and 95.6% in SPECT image generated features. The authors
speculated that their non-linear feature selection was the reason
for their outperformance of other methods on this non-linear
classification problem. Other researchers, [banerjee2016] were
able to achieve 98.53% using ensemble learning methods trained
on T1 weighted MRI data. However Banerjee used several domain
knowledge based feature extraction methods to preprocess their
data including image registration, segmentation, and volumetric
analysis.

The present research strikes a balance between feature selec-
tion and domain knowledge. While our autoregressive model does
utilize a basic understanding of relevance of time in diffusion
tensor imaging, we do not utilize any other domain specific
knowledge to inform our feature extraction. Our hope is to build a
generalizable approach that can be applied to other data structured
similarly both within and outside the domain of biomedical image
analysis. Additionally we want to improve the models being
trained without domain specific knowledge on MRI data. This is
because MRI is a far less invasive brain imaging method than
SPECT imaging which is an X-ray based technique and must
be used at a limited frequency. Additionally the multiple MRI
modalities offer versatility in examining biological structures.

Tensor and Matrix Decomposition

Matrix decomposition has been used in a variety of computer
vision applications in recent years including analysis of facial
features. It offers another means of quantifying the features that
describe the relationships between values in a 2D space and
can be generalized to a variety of applications. The key being
that decomposition offers a powerful means of simultaneously
evaluating the relationships of values in a 2 or higher dimensional
space. In higher dimensional spaces, tensor decomposition is used,
where tensors are a generalization of matrices [rabanser2017].
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Fig. 1: Tucker decomposition, visualized.

Matrix decomposition can be described as a means of separating
a matrix into several component matrices whose product would
result in the original matrix. For example when solving a system
of equations you might approach formulate the problem as:

Ax=0b

where A is a matrix and x and b are vectors. When trying to
solve this system of linear equation, we could apply a matrix
decompositions operations to the matrix A, to more efficiently
solve the system. By finding the products of the of x and b with
the one matrix resulting from the decomposition and the inverse of
the other, we can solve the system of equations with significantly
fewer operations [rabanser2017]. This can be generalized to ma-
chine learning applications where increased complexity of models,
often result in exponential increases in number of computations.
This also affects the applications of new algorithms and pipelines,
Those that are too complex and consequently have too many
operations become too computationally intensive to be practical to
use in some cases. We can choose specific types of decompositions
that also allow us to preserve unique information about original
matrix while also reducing the size of the matrix. In the case of
singular value decomposition we are trying to solve:

A=USVT

Where A is the original matrix, of size m*n, U is an orthogonal
matrix of size m+*n, S is a diagonal matrix of size n*n, and
VT is an orthogonal matrix of size n *n. This generalization of
the eigendecomposition is useful in compressing matrices without
losing information. It will come into play with our final experiment
using linear dynamical systems to extract features from the DTIs.
Extending the premise of singular value decomposition (SVD) to
higher order matrices, or tensors, we come to Tucker decomposi-
tion.

Similarly to SVD, Tucker decomposition is used to compress
tensors, and can be applied to any tensor of 3 or more dimensions.
This is illustrated using a tensor of three dimensions in Figure 1.
The resulting core tensor from the decomposition still maintains
the same shape and number of dimensions, but each are scaled
down to the size specified. We are thus able to use it as means
to scale brain images to a set of representative features without
breaking down specific regions of interest.

Methods

There are two main experiments conducted. We examine both
Tucker tensor decomposition and a linear dynamical systems ap-
proach to reduce number of dimensions and scale down diffusion
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tensor images. The goal is to evaluate the two approaches for
the quality of features extracted. To this end, the final feature
vectors produced by each method is then passed on to a random
forest classifier, where the accuracy of the final trained model is
measured on a classification task to predict control or Parkinson’s
(PD) group.

The objective is to represent the original DTI as an abstracted
tensor that is the product of one of the dimensionality reduction
techniques used in each experiment.

Algorithm Selection

To guide our selection of a classifier, we used the python package
TPOT [olson2016]. TPOT uses genetic algorithms to iteratively
generate, select and evaluate classification pipelines. We evaluated
10 generations of pipelines with population size 100 in each and
found that Random Forest classification was most successful as
predicting Parkinson’s from the generated features. Given the
success of random forest classifier, we considered that we might
further improve our accuracy by reducing the number of features
we used from the generated set. We considered that because
we are focused on the differences in a relatively small specific
brain regions, only a small number of features would be relevant.
To test this theory, we used three different methods to reduce
the dimensionality of our feature set to 20 components: linear
principle component analysis (PCA), linear discriminant analysis
(LDA) and kernel PCA using a radial basis function (RBF).

Experiment |

Using the tensorly package [kossaifi2019], a Tucker decompo-
sition is applied to each brain image. This approach to tensor
decomposition was selected because it will produce one core
tensor that is representative but scaled down from the original
diffusion tensor image. Additionally Tucker decomposition, unlike
other forms of tensor decomposition is significantly better at pre-
serving features specific to the tensor being decomposed. Because
of this it has applications in compression algorithms. The Tucker
decomposition method is chosen in the present study over other
tensor decomposition methods to preserve features unique to each
brain image it is applied to. This will allow us to scale down each
image and focus features and regions of interest in each that are
specific to that image. In this experiment we decompose each brain
image from a dimension of (65,100,116,116) to (10,10, 10,10)
to have a continuity in number of features produced.

Experiment Il

This experiment focused on breaking down the feature extraction
further and evaluate another approach: linear dynamical systems.
We scale down each coronal slice in the images and then evaluate
the change over time. The reason for scaling down the coronal
slices is to allow us to more efficiently build a transition model
to represent the flow of water over the time steps of the image.
This will allow us to build a three-dimensional representation of
the brain from the images that will show the flow of water and the
distribution of white matter in the brain. We evaluate the produced
transition matrix as features to be applied to the classification
pipeline. The nature of the linear dynamical systems allow us to
directly model the flow of water via the net change over time in
the DTI.

L

Fig. 2: (left): Slice from original brain image at a specific time point;
(right): Corresponding slice from tensor decomposition output

Dimensionality Reduction ~ F-measure Accuracy
0.94 0.94
PCA 0.94 0.94
LDA 0.82 0.81
Kernel PCA 0.94 0.94

TABLE 1: Classification accuracy of features generated from Tucker
decomposition after various additional dimensionality reduction tech-
niques are applied

Results
Experiment |

While we were able to achieve an accuracy of 94% immediately,
we were not able to improve on this by further reducing the
produced features with various dimensionality reduction methods.
In fact it appears that in some cases, such as linear discriminant
analysis (LDA), additional dimensionality reduction adversely
affects classifier performance. In exploring a slice of the output
core tensor at one ‘time’ point, what we see suggests that the
output of the tensor decomposition might be likened to a stack of
sliced that focus on the regions of interest in the original image.
This is validated by examining several corresponding decomposed
core and original slices.

Experiment Il

We were able to achieve accuracy of 82% with random forest
classifier alone. This outperforms previous benchmarks in training
classifiers on synthetic features derived from MR images. Com-
pared to present results, [cole2016] achieved only 70% accuracy at
best on synthetic features generated from T1 weighted MRI scans.
Furthermore, based on the F-measure scores across the experiment
conditions, we can reasonably say that our model is not skewed as
a consequence of the uneven distribution of the data. The PPMI

Dimensionality Reduction ~ F-measure Accuracy
0.90 0.82

PCA 0.89 0.81

LDA 0.84 0.74

Kernel PCA 0.93 0.89

TABLE 2: Classification accuracy of features generated from linear
dynamical systems after various additional dimensionality reduction
techniques are applied
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data is heavily skewed toward Parkinson’s individuals, with a
majority of our data set coming from Parkinson’s patients (421
subjects) versus controls (213 subjects), which was also addressed
by rebalancing the classes by oversampling the control. We intu-
ited that we could speed up model training and improve accuracy
by reducing the number of synthetic features we retained. We
initially tried linear PCA and LDA to perform the dimensionality
reduction. However, these actually hurt performance, resulting in
test accuracy of 81% and 74% respectively. Based on this, we
considered non-linear dimensionality reduction would be more
effective. To this end we used Kernel PCA with RBF kernel, which
effectively improved accuracy to 89%.

Discussion

In summary we can conclude that dimensionality reduction is a
useful method for extracting meaningful features from brain imag-
ing. Furthermore the impressive performance of these features in
machine learning applications indicates that at least some subset
of these features strongly correlates with the patient group.

While not explored in this paper, it would be interesting to
explore why LDA seemed cause a drop in classifier performance
while traditional PCA did not in the tensor decomposition. Fur-
thermore it would be interesting to explore why PCA and LDA
both have caused classifier performance decreases with features
produced from linear dynamical systems. Specifically it would be
interesting to explore the co linearity between the class and fea-
tures that affect the output features following the LDA treatment.
Specifically LDA seems to be stuck producing one strong feature
and ignoring the rest.

Additionally it would be interesting to explore the effect
of various preprocessing methods to improve out comes and to
systematically obscure the data to evaluate which features of the
raw pixel data are being hi-lighted by the tensor decomposition
and linear dynamical systems steps.
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