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Abstract—Python is popular among scientific communities that value its sim-
plicity and power, especially as it comes along with numeric libraries such as
[NumPy], [SciPy], [Dask], and [Numba]. As CPU core counts keep increasing,
these modules can make use of many cores via multi-threading for efficient
multi-core parallelism. However, threads can interfere with each other leading
to overhead and inefficiency if used together in a single application on machines
with a large number of cores. This performance loss can be prevented if all
multi-threaded modules are coordinated. This paper continues the work started
in [AMala16] by introducing more approaches to coordination for both multi-
threading and multi-processing cases. In particular, we investigate the use of
static settings, limiting the number of simultaneously active [OpenMP] parallel
regions, and optional parallelism with Intel® Threading Building Blocks (Intel®
[TBB]). We will show how these approaches help to unlock additional perfor-
mance for numeric applications on multi-core systems.

Index Terms—Multi-threading, Multi-processing, Oversubscription, Parallel
Computations, Nested Parallelism, Multi-core, Python, GIL, Dask, Joblib,
NumPy, SciPy, TBB, OpenMP

1. Motivation

A fundamental shift toward parallelism was declared more than
11 years ago [HSutter], and today, multi-core processors have
become ubiquitous [WTichy]. However, the adoption of multi-
core parallelism in the software world has been slow and Python
along with its computing ecosystem is not an exception. Python
suffers from several issues which make it suboptimal for parallel
processing.

In particular, Python’s infamous global interpreter lock [GIL]
makes it challenging to scale an interpreter-dependent code using
multiple threads, effectively serializing them. Thus, the practice
of using multiple isolated processes is popular and widely utilized
in Python since it avoids the issues with the GIL, but it is prone
to inefficiency due to memory-related overhead. However, when it
comes to numeric computations with libraries like Numpy, most
of the time is spent in C extensions with no access to Python data
structures. The GIL can be released during such computations,
which enables better scaling of compute-intensive applications.
Thus, both multi-processing and multi-threading approaches are
valuable for Python users and have their own areas of applicability.
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Scaling parallel programs is challenging. There are two fun-
damental laws which mathematically describe and predict scala-
bility of a program: Amdahl’s Law and Gustafson-Barsis’ Law
[AGlaws]. According to Amdahl’s Law, speedup is limited by
the serial portion of the work, which effectively puts a limit on
scalability of parallel processing for a fixed-size job. Python is
especially vulnerable to this because it makes the serial part of
the same code much slower compared to implementations in other
languages due to its deeply dynamic and interpretative nature. In
addition, the GIL serializes operations that could be potentially
executed in parallel, further adding to the serial portion of a
program.

Gustafson-Barsis’ law states that if the problem size grows
along with the number of parallel processors, while the serial
portion grows slowly or remains fixed, speedup increases as
processors are added. This law eases the concerns regarding
Python as a language for parallel computing when the amount
of serial computation in a Python code is fixed, and all the data-
processing is hidden behind libraries like NumPy and SciPy. How-
ever, a larger problem size demands more operational memory
to compute, but memory is a limited resource. Even if problem
size is nearly unlimited, as it is for "Big Data", it still has to be
decomposed into chunks that fit into memory. This limited growth
of the problem size on a single node results in the scalability
limitations defined by Amdahl’s Law anyway. Thus, the best
strategy to efficiently load a multi-core system is still to avoid
serial regions and synchronization.

1.1. Nested Parallelism

To avoid serial regions, we expose parallelism at all possible levels
of an application. For example, we make outermost loops parallel,
and explore functional, flow graph, or pipeline types of parallelism
on the application level. Python libraries that help to achieve
this are Dask, Joblib, and the built-in multiprocessing and
concurrent . futures modules. On the innermost level, data-
parallelism can be delivered by Python modules like [NumPy] and
[SciPy]. These modules can be accelerated with optimized math
libraries like Intel® Math Kernel Library (Intel® [MKL]), which
is multi-threaded internally using OpenMP (with default settings).

When everything is combined together, the situation arises
where code from one parallel region calls a function with another
parallel region inside. This is called nested parallelism.
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1.2. Issues of Oversubscription

The libraries named above do not coordinate the creation or
pooling of threads, which may lead to oversubscription, a sit-
uation in which there are many more active software threads
than available hardware resources. For sufficiently big machines
with roughly more than 16 cores, oversubscription can lead to
sub-optimal execution due to frequent context switches, excessive
thread migration, poor cache locality, and load imbalance.

For example, Intel OpenMP* runtime library (used by
NumPy/SciPy) may keep its threads active to facilitate the rapid
start of subsequent parallel regions. This is usually a useful
approach to reduce work distribution overhead, but when another
active thread pool exists in the application, it can impact per-
formance. This is because the waiting OpenMP worker threads
consume CPU time busy-waiting, while the other parallel work
cannot start until OpenMP threads stop spinning or are preempted
by the OS.

Because overhead from linear oversubscription (e.g. 2x) is
not always visible on the application level (especially for smaller
numbers of processor cores), it can be tolerated in many cases
when the work for parallel regions is big enough to hide the
overhead. However, in the worst case, a program starts multiple
parallel tasks and each of these tasks ends up executing an
OpenMP parallel region. This results in quadratic oversubscription
(with default settings) which ruins multi-threaded performance on
systems with a significant number of threads. For some larger
systems like Intel® Xeon Phi™, it may not even be possible to
create as many software threads as the number of hardware threads
squared due to insufficient resources.

1.3. Threading Composability

The co-existing issues of multi-threaded components together
define the threading composability of a program module or
component. A perfectly composable component should be able
to function efficiently among other such components without
affecting their efficiency. The first aspect of building a composable
threading system is to avoid creation of an excessive number of
software threads, preventing oversubscription. Ideally, a compo-
nent or a parallel region should not dictate how many threads it
needs for execution (mandatory parallelism). Instead, components
or parallel regions essentially expose available parallelism to
a runtime library, which in turn can provide control over the
number of threads or can automatically coordinate tasks between
components and parallel regions and map them onto available
software threads (optional parallelism).

1.4. Restricting Number of Threads used in Nested Levels

A common way to solve oversubscription issues involving the
OpenMP runtime library is to disable nested parallelism or
to carefully adjust it according to the number of application
threads. This is usually accomplished by setting environment
variables controlling the OpenMP runtime library. For example,
OMP_NUM_THREADS=1 restricts the number of threads used in
an OpenMP parallel region to 1. We do not discourage the use
of this approach as it might be sufficient to solve the problem
for many use cases. However, this approach can have potential
performance-reducing drawbacks:
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1)  There may not be enough parallelism at the outer applica-
tion level. Blindly disabling nested parallelism can result
in underutilization, and consequently, slower execution.

2) Globally setting the number of threads once does not
take into account different components or phases of the
application, which can have differing requirements for
optimal performance.

3) Setting the optimal value requires the user to have a
deep understanding of the issues, the architecture of the
application, and the system it uses.

4) There are additional settings to take into account like
KMP_BLOCKTIME (time a thread spins before going to
sleep) and thread affinity settings.

5) The issue is not limited to OpenMP. Many Python
packages like Numba, PyDAAL, OpenCV, and Intel’s
optimized SciKit-Learn are based on Intel® TBB or a
custom threading runtime.

2. New approaches

Our goal is to provide alternative solutions for composing multiple
levels of parallelism across multiple threading libraries with same
or better performance compared to the usual approaches. At the
same time, we wish to keep the interface for this simple, requiring
shallower knowledge and fewer decisions from end-users. We
evaluate several new approaches in this paper.

2.1. Static Settings

A common way to parallelize Python code is to employ process or
threads pools (or executors) provided through a standard library.
These pools are also used by other Python libraries implementing
parallel computations like Dask and Joblib. We modify these pools
so that each pool worker calling a nested parallel computation can
only use a particular number of processor cores.

For example, if we have an eight core CPU and want to
create a pool of two workers, we limit the number of threads
per pool worker to four. When using a process pool, we set the
thread affinity mask for each worker process so that any threads
created within a particular process operate only on a specific set of
processor cores. In our example, the first process will use cores 0
through 3 and the second process will use cores 4 through 7. Since
both OpenMP and Intel® TBB respect the incoming affinity mask
during initialization, they limit the number of threads per process
to four. As a result, we have a simple way of sharing threads
between pool workers without any oversubscription issues.

When a multi-threading pool is used for application-level
parallelism, the idea is the similar. Instead of setting process
affinity masks, we limit the number of threads per pool worker
using the threading runtime API. For example, we can use
omp_set_num_threads () to limit the number of threads
for OpenMP parallel regions. This approach is similar to how
OMP_NUM_THREADS environment variable can be specified for
the entire application. The difference is that here, we can use
knowledge of how many outermost workers are requested by the
application and how much hardware parallelism is available on
the machine, and then calculate an appropriate number of threads
automatically and apply it for the specific pool instance. This is a
more flexible approach for applications which might use pools of
different sizes within the same run.

To implement this approach, we have created a Python module
called smp (static or symmetric multi-processing). It works with



20

both thread and process pools from multiprocessing and
concurrent.futures modules using the monkey patching
technique that enables us to use this solution without any code
modifications in user applications. To run it, we use one of the
following commands:

python -m smp app.py

python -m smp -f <oversubscription_factor> app.py
The optional argument -f <oversubscription_factor>
sets an oversubscription factor that will be used to compute the
number of threads per pool worker. By default it is 2, which
means that in our example, 8 threads will be used per process. By
allowing this limited degree of oversubscription by default, many
applications achieve better load balance and performance that will
outweigh the overhead incurred by the oversubscription, as dis-
cussed in section 3.5. For the particular examples we show in this
paper, the best performance is achieved with an oversubscription
factor of 1 specified on the command line as —f 1, indicating that
any amount of oversubscription leads to non-optimal performance
for those applications.

2.2. Limiting Simultaneous OpenMP Parallel Regions

The second approach relies on extensions implemeted in the Intel’s
OpenMP runtime. The basic idea is to prevent oversubscription
by not allowing multiple parallel regions (on different top-level
application threads) to run simultaneously. This resembles the
"Global OpenMP Lock" that was suggested in [AMalal6]. The
implementation provides two modes for scheduling parallel re-
gions: exclusive and counting. Exclusive mode implements an
exclusive lock that is acquired before running a parallel region
and released after the parallel region completes. Counting mode
implements a mechanism equivalent to a semaphore, which allows
multiple parallel regions with small number of threads to run
simultaneously, as long as the total number of threads does not
exceed a limit. When the limit is exceeded, the mechanism blocks
in a similar way to the exclusive lock until the requested resources
become available. This idea is easily extended to the multiple
process case using Inter-Process Coordination (IPC) mechanisms
such as a system-wide semaphore.

The exclusive mode approach is implemented in the In-
tel® OpenMP#* runtime library being released as part of In-
tel® Distribution for Python 2018 as an experimental preview
feature, later the counting mode was also added. Setting the
KMP_COMPOSABILITY environment variable as follows should
enable each OpenMP parallel region to run exclusively, eliminat-
ing the worst oversubscription effects:

env KMP_
env KMP_COMPC

=exclusive python app.py
le=counting python app.py
With composability mode in use, multi-processing coordination
is enabled automatically on the first usage. Each process has
its own pool of OpenMP worker threads. While these threads
are coordinated across the processes preventing oversubscription,
creating a large number of threads per process can still cause
resource exhaustion.

2.3. Coordinated Thread Pools with Intel® TBB
Our last approach was introduced in a previous paper [AMalal6].
It is based on using Intel® TBB as a single engine for coordinating

1. It was also introduced on Anaconda cloud starting with the version
2017.0.3 in limited, undocumented form.
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Fig. 1: Intel® TBB provides a common runtime for Python modules
and coordinates threads across processes.

parallelism across all Python pools and modules. TBB’s work
stealing task scheduler is used to map tasks onto a limited set
of TBB worker threads while the monkey-patching technique is
applied in a TBB module for Python that implements Python’s
ThreadPool on top of TBB tasks. This approach makes it
possible to dynamically balance the load across multiple tasks
from different modules but is limited to the multi-threading case.

In this paper, we extended this approach by introducing an
InterProcess Communication (IPC) layer for Intel® TBB. As
shown in figure 1, different modules that are combined into a
single application, work on top of the shared Intel® TBB pool,
which is coordinated across multiple processes.

The TBB module for Python introduces a shared library,
libirml, which is recognized by Intel® TBB library as a thread
pool provider. Before creating any new worker thread, this library
acquires an IPC semaphore. The semaphore is initialized with
maximum value set to the number of CPU hardware threads. When
all the allowed threads are allocated, no additional threads can be
created.

Because of this greedy algorithm, some TBB processes can
be left without worker threads at all. This is a legitimate situation
within the optional parallelism paradigm implemented in Intel®
TBB, which does not prevent master threads from making progress
and completing computation even without worker threads joined.
Thus, even in the worst case, counting all the worker and master
threads, the total number of active threads for all the running
processes does not exceed twice the number of CPU hardware
threads.

When the first process finishes its computation, TBB puts
the worker threads back in the pool and releases resources for
the semaphore. A special monitor thread implemented in libirml
detects this situation and the rest of the processes are allowed to
acquire the relinquished resources and to add threads on the fly to
ongoing computations in order to improve CPU utilization.

However, if we don’t remove excess threads, this solution does
not prevent resource exhaustion. Since we cannot move threads
from one process to another, there can be too many threads
allocated at the same time. This prevents processes with fewer
threads from creating more threads to balance the load. To fix
this issue, we implemented an algorithm that disposes of unused
threads when a shortage of resources is detected.

This TBB-based approach to coordination is more dynamic
and flexible than one based on OpenMP because it allows to re-
purpose and rebalance threads more flexibly, achieving better load
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balancing overall. Even in counting composability mode, OpenMP
needs to wait for all the requested threads to become available,
while Intel® TBB allows threads to join parallel computations
already in progress.

The TBB IPC module should be enabled manually via explicit
command line key ——ipc, for example:

python -m tbb --ipc app.py

3. Evaluation

The results for this paper were acquired on a 2-socket system with
Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz (22 cores * 2 hyper-
threads) and 256GB DDR4 @ 2400 MHz. This system consists of
88 hardware threads in total.

For our experiments, we used [Miniconda] distribution along
with the packages of Intel® Distribution for Python [IntelPy]
installed from anaconda.org/intel
# activate miniconda
source <path to miniconda3>/bin/activate.sh
# create & activate environment the Intel
conda create -n intel3 -c intel numpy dask tbbdpy smp
source activate.sh intel3
# this setting is used for default runs
export KMP_BLOCKTIME=0

from

We installed the following versions and builds of the pack-
ages for our experiments: Python 3.6.3-intel_12, numpy 1.14.3-
py36_intel_0, dask 0.18.1-py36_0, mkl 2018.0.3-intel_1, openmp
2018.0.3-intel_0, tbb4py 2018.0.4-py36_0, smp 0.1.3-py_2.

Here is an example of how to run the benchmark programs in
different modes:

# Default mode (with KMP_BLOCKTIME=0

python bench.py

# SerLaLLZed OpenMP mode

=1 python bench.py
oversubscription factor = 1

in effect)

# SMP NOdJLe,

python -m smp -f 1 bench.py
# Composable OpenMP,

exclusive mode

e=exclusive python bench.py
COJH[LHQ mode

S e=counting python bench.py
# Composable TBB mode ("JLELthreadLng only)

python -m tbb bench.py

# Composable TBB mode with IPC on

python -m tbb --ipc bench.py

osable uDenMP,

For our examples, we will talk mostly about the multi-threading
case, but according to our investigations, all conclusions that will
be shown are applicable for the multi-processing case as well
unless additional memory copying happens between the processes,
which is out of scope for this paper.
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Fig. 2: Execution times for balanced QR decomposition workload.
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Please find these benchmarks along with install and run script
at [compbench]

3.1. Balanced QR Decomposition with Dask

The code below is a simple program using Dask that validates a
QR decomposition function by multiplying computed components
and comparing the result against the original input.

| import time, dask, dask.array as da

test.compute ()
print (time.time ()

2 x = da.random.random( (440000, 1000),

3 chunks= (10000, 1000))
4 for i in range(3):

5 t0 = time.time ()

6 q, r = da.linalg.qgr(x)

7 test = da.all(da.isclose(x, g.dot(r))
8

9

- t0)

Dask splits the array into 44 chunks and processes them in parallel
using multiple threads. However, each Dask task executes the
same NumPy matrix operations which are accelerated using Intel®
MKL under the hood and thus multi-threaded by default. This
combination results in nested parallelism, i.e. when one parallel
component calls another component, which is also threaded. The
execution is repeated numerous times, with results taken from later
iterations, in order to avoid the cache-warming effects present in
the first iterations.

Figure 2 shows the performance for the code above. By
default, Dask processes a chunk in a separate thread, so there
are 44 threads at the top level. By default, Dask creates a thread
pool with 88 workers, but only half of them are used since there are
only 44 chunks. Chunks are computed in parallel with 44 OpenMP
workers each. Thus, there can be 1936 threads competing for 44
cores, which results in oversubscription and poor performance.

A simple way to improve performance is to tune the OpenMP
runtime using the environment variables. First, we limit the total
number of threads. Since we have an 88-thread machine, we
limit OpenMP to a single thread per parallel region ( (88 CPU
threads / 88 workers in thread pool) * 1x over-subscription).
We also noticed that reducing the period of time after which
an Intel OpenMP worker thread goes to sleep helps to improve
performance in workloads with oversubscription (this works best
for the multi-processing case but helps for multi-threading as
well). We achieve this by setting KMP_BLOCKTIME to zero by
default. These simple optimizations reduce the computational time
by 2.5x.

The third approach using smp module and specifying an
oversubscription factor of 1 (-f 1) does similar optimizations
automatically, and shows the same level of performance as for
OMP_NUM_THREADS=1. The approach is more flexible and
works with several thread/process pools in the application scope,
even if they have different sizes. Thus, it is a better alternative to
manual OpenMP tuning.

The remaining approaches are our dynamic OpenMP- and
Intel® TBB-based approaches. Both approaches improve the de-
fault result, but OpenMP gives us the fastest time. As described
above, the OpenMP-based solution allows processing of chunks
one by one without any oversubscription, since each separate
chunk can utilize the whole CPU. In contrast, the work stealing
task scheduler of Intel® TBB is truly dynamic and uses a single
thread pool to process all the given tasks simultaneously. As a
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Fig. 3: Execution time for balanced eigenvalues search workload.
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result, besides higher overhead for work distribution, it has worse
cache utilization.

3.2. Balanced Eigenvalues Search with NumPy

The code below processes eigenvalues and right eigenvectors
search in a square matrix using Numpy:

1 import time, numpy as np
2 from multiprocessing.pool import ThreadPool

3 x = np.random.random( (256, 256))

4p = ThreadPool (88)

5 for j in range(3):

6 t0 = time.time ()

7 p.map(np.linalg.eig, [x for i in range(1024)1])
8 print (time.time () - tO0)

In this example we process several matrices from an array in
parallel using Python’s ThreadPool while each separate matrix
is computed in parallel by Intel® MKL. Similar to the QR decom-
position benchmark above, we used quadratic oversubscription
here. This code has the distinctive feature that, in spite of parallel
execution of eigenvalues search algorithm, it cannot fully utilize
all available CPU cores. The additional level of parallelism we use
here significantly improves the overall benchmark performance.

Figure 3 shows benchmark execution time using the same
modes as in the QR decomposition example. The best choice for
this benchmark was to limit number of threads statically either
using manual settings or the smp module, and obtained about
10x speed-up. Also, Intel® TBB based approach performed much
better than composable OpenMP. The reason for this was that there
was insufficient parallelism present in each separate chunk. In fact,
exclusive composability mode in OpenMP leads to serial matrix
processing, so a significant part of the CPU stays unused. As a
result, the execution time in this case becomes even larger than
by default. The result of counting mode can be further improved
on Intel® MKL side if parallel regions can be adjusted to request
fewer threads.

3.3. Unbalanced QR Decomposition with Dask

In previous sections, we discussed balanced workloads where the
amount of work per thread at the top level is mostly the same.
As we expected, the best strategy for such cases is based on
static approaches. However, what if we need to deal with dynamic
workloads where the amount of work per thread or process varies?
To investigate such cases we have prepared unbalanced versions
of our static benchmarks. Each benchmark creates an outermost

2. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]
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Fig. 4: Execution times for unbalanced QR decomposition workload.

thread pool for 44 workers. We will perform computations in three
stages. The first stage uses only one thread from the pool, which
is able to fully utilize the whole CPU. During the second stage,
half of the top level threads are used (22 in our example). In the
third stage, the whole pool is employed (44 threads).

The code below shows this unbalanced version of QR decom-
position workload:

1 import time, dask, dask.array as da

2def gr(x):

3 t0 = time.time ()

4 g, r = da.linalg.qr(x)

5 test = da.all(da.isclose(x, g.dot(r)))

6 test.compute (num_workers=44)

7 print (time.time () - tO)

8 sz = (440000, 1000)

9 x01 = da.random.random(sz, chunks=(440000, 1000))
10 x22 = da.random.random(sz, chunks=(20000, 1000))
11 x44 = da.random.random(sz, chunks=(10000, 1000))
12 gr (x01); qgr(x22); qr(x44)

Figure 4 demonstrates execution time for all the approaches.
The first observation here is that the static SMP approach does
not achieve good performance with imbalanced workloads. Since
we have a single thread pool with a fixed number of workers,
it is unknown which of workers are used and how intensively.
Accordingly, it is difficult to set an appropriate number of threads
statically. Thus, we limit the number of threads per parallel region
based on the size of the pool only. As a result, just a few threads
are used in the first stage, which leads to underutilization and slow
performance. The second and third stages work well, but overall
we have a mediocre result.

The work stealing scheduler of Intel® TBB works slightly bet-
ter than the default version, but due to redundant work balancing
in this particular case it has significant overhead.

The best execution time comes from using composable
OpenMP. Since there is sufficient work to do in each parallel
region, allowing each chunk to be calculated one after the other
avoids oversubscription and results in the best performance.

3.4. Unbalanced Eigenvalues Search with NumPy

The second dynamic example present here is based on eigenvalues
search algorithm from NumPy:

1 import time, numpy as np

2 from multiprocessing.pool import ThreadPool

3 from functools import partial
4

5 x = np.random.random( (256, 256))
6y = np.random.random( (8192, 8192))
7p = ThreadPool (44)

8
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Fig. 5: Execution time for unbalanced eigenvalues search workload.

9t0 = time.time ()

1o mmul = partial (np.matmul, y)

np.map (mmul, [y for i in range(6)], 6)

12 print (time.time () - tO0)

13

4t0 = time.time ()

15p.map(np.linalg.eig, [x for i in range(1408)]1, 64)
16 print (time.time () - tO)

17

18t0 = time.time ()

9 p.map(np.linalg.eig, [x for i in range(1408)]1, 32)
20 print (time.time () - tO0)

In this workload, we have the same three stages. The second and
the third stage computes eigenvalues and the first one performs
matrix multiplication. The reason we do not use eigenvalues search
for the first stage as well is that it cannot fully load the CPU as we
intended.

From figure 5 we can see that the best solution for this
workload is Intel® TBB mode, which reduces execution time to
85% of the default mode. SMP module works even slower than
the default version due to the same issues as described for the
unbalanced QR decomposition example. Composable OpenMP
works slower as well since there is not enough work for each
parallel region, which leads to CPU underutilization.

3.5. Impact of nested parallelism and oversubscription

The experiments in this section demonstrate the benefits of using
nested parallelism and determine what degree of oversubscription
impacts performance. We took our balanced eigenvalues search
workload (section 3.2) and ran it in default and the best performing
SMP modes. Then we ran it with various sizes for the top level
thread and process pool, from 1 to 88 workers.

3. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]
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Fig. 7: Multi-processing scalability of eigenvalues search workload.

Figure 6 shows the scalability results for the multi-threading
case. The difference in execution time between these two methods
starts from 8 threads in top level pool and becomes larger as the
pool size increases.

The multi-processing scalability results are shown in figure
7. Multi-processing version differs from multi-threading one by
using multiprocessing.Pool and returning no result out
of the mapped function in order to exclude copying from the
measurements. The results are very similar to the multi-threading
case: oversubscription effects become visible starting from 8
processes at the top level of parallelization.

4. Solutions Applicability and Future Work

In summary, all three evaluated approaches to compose parallelism
are valuable and can provide significant performance increases
for both multi-threading and multi-processing cases. Ideally, we
would like to find a single solution, which works well in all cases.
Instead, the presented approaches complement each other and have
their own fields of applicability.

The SMP approach works perfectly for balanced workloads
where all the outermost workers have same amount of work.
Compared with manual tuning of OpenMP settings, this approach
is more stable, since it can work with pools of different sizes
within the scope of a single application without performance
degradation. Thanks to configuring process affinity mask, it also
covers other threading libraries such as Intel® TBB.

The composable OpenMP mode works best with unbalanced
benchmarks for cases where there is enough work to load each
innermost parallel region.

The dynamic task scheduler from Intel® TBB provides the
best performance when innermost parallel regions cannot fully
utilize the whole CPU and/or have varying amounts of work to
process.

The evidence presented in this paper does not explore the full
problem parameter space, however it does provide practical guid-
ance that can be used as a starting point to tune the performance
of applications with nested parallelism.

Innermost Outermost Parallelism Level
Paralleli: Bal d work Unbal
Low subscription High subscription

d work

Level
Low subscription
High subscription

$ python -m tbb
KMP_COMPOSABILITY

$ python $ python -m smp

Threads created for blocking I/O operations are not subject
to performance degradation caused by oversubscription. In fact, it
is recommended to maintain a higher number of threads because
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they are mostly blocked in the operating system. If your program
uses blocking I/O, please consider using asynchronous I/O instead
that blocks only one thread for the event loop and so prevents
other threads from being blocked.

We encourage readers to try suggested composability modes
and use them in production environments, if this provides better
results. However, there are potential enhancements that can be
implemented and we need feedback and real-life use cases in order
prioritize the improvements.

Both thb and smp modules are implemented and tested with
both major Python versions, 2 (starting with 2.7+) and 3 (3.5 and
newer). The smp module works only on Linux currently, but can be
extended to other platforms as well. The smp bases calculations
only on the size of the pool and does not take into account its
real usage. We think it can be improved in future to trace task
scheduling pool events and become more flexible.

The composability mode of Intel OpenMP* runtime library
is currently limited to Linux platform as well. It works well
with parallel regions with high CPU utilization, but it has a
significant performance gap in other cases, which we believe can
be improved.

The IPC mode of the TBB module for Python is also limitted
to Linux and classified a preview feature, which might be insuffi-
ciently optimized and verified with different use cases. However,
the default mode of the TBB module for Python works as well
on Windows and Mac OS for multi-threading coordination in
single process. Also, the TBB-based threading layer of Intel®
MKL might be suboptimal compared to the default OpenMP-
based threading layer.

All these problems can be eliminated as more users become
interested in using nested parallelism in a prodution environment
and as all software mentioned here is further developed.

5. Conclusion

This paper provides a working definition for threading compos-
ability, specifically discussing the necessity for broader usage of
nested parallelism on multi-core systems. We also addressed per-
formance issues related to the GIL and oversubscription of threads,
for python libraries using parallelism with multi-core processors,
such as NumPy, SciPy, SciKit-learn, Dask, and Numba.

Three approaches are suggested as potential solutions. The first
approach is to statically limit the number of threads created on the
nested parallel level. The second one is to coordinate execution
of OpenMP parallel regions. The third one is to use a common
threading runtime using Inte]l® TBB extended to multi-processing
parallelism. All these approaches limit the number of active
threads in order to prevent penalties of oversubscription. They
coordinate parallel execution of independent program modules to
improve overall performance.

The examples presented in the paper show promising results
while achieving the best performance using nested parallelism
in threading composability modes. In particular, balanced QR
decomposition and eigenvalues search examples are 2.5x and
7.5x faster compared to the baseline implementations. Imbalanced
versions of these benchmarks are 34-35% faster than the baseline.

These improvements are all achieved with different ap-
proaches, demonstrating that the three solutions are valuable
and complement each other. Our comparison of the suggested
approaches provides recommendations for when it makes sense
to employ each of them.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

All the described modules and libraries are available as open
source software and included as part of the free Intel® Distribution
for Python product. The Distribution is available as a stand-alone
installer [IntelPy] and as a set of packages on anaconda.org/intel
channel.
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