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Exploring the Extended Kalman Filter for GPS
Positioning Using Simulated User and Satellite Track
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Abstract—This paper describes a Python computational tool for exploring the
use of the extended Kalman filter (EKF) for position estimation using the Global
Positioning System (GPS) pseudorange measurements. The development was
motivated by the need for an example generator in a training class on Kalman
filtering, with emphasis on GPS. In operation of the simulation framework both
user and satellite trajectories are played through the simulation. The User
trajectory is input in local east-north-up (ENU) coordinates and satellites tracks,
specified by the C/A code PRN number, are propagated using the Python
package SGP4 using two-line element (TLE) data available from [Celestrak].

Index Terms—Global positioning system, Kalman filter, Extended Kalman filter,

Introduction

The Global Positioning System (GPS) allows user position estima-
tion using time difference of arrival (TDOA) measurements from
signals received from a constellation of 24 medium earth orbit
satellites of space vehicles (SVs). The Kalman filter is a popular
optimal state estimation algorithm [Simon2006] used by a variety
of engineering and science disciplines. In particular the extended
Kalman filter (EKF) is able to deal with nonlinearities related to
both the measurement equations and state vector process update
model. The EKF used in GPS has a linear process model, but a
nonlinear measurement model [Brown2012]. This paper describes
a Python computational tool for exploring the use of the EKF for
GPS position estimation using pseudorange measurements. The
development was motivated by the need for an example generator
in a training class on Kalman filtering, with emphasis on GPS.
What is special about the tool created here is that both User and
satellite trajectories are custom generated for input to a Kalman
filter implemented in a Jupyter notebook. The steps followed are
logical and clear. You first enter a desired User trajectory/route,
then choose appropriate in-view GPS satellites, and then using
actual GPS satellite orbital mechanics information, create a sim-
ulated receiver measurement stream. A 3D plot shows you the
satellite tracks in space and the User trajectory on the surface
of the earth, over time. The Kalman filter code, also defined in
the Jupyter notebook, uses the matrix math commonly found in
textbooks, but it is easy to follow as we make use of the PEP
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465 @ infix operator for matrix multiplication. As the final step,
the data set is played through the Kalman filter in earth-centered
earth-fixed (ECEF) coordinates. The User trajectory is input in
local east-north-up (ENU) coordinates, and the SVs in view by
the User to form the location estimate, are specified by the coarse
acquisition (C/A) code pseudo-random noise (PRN) number. The
ECEF coordinates of the SVs are then propagated using [SGP4]
using the two-line element (TLE) data available from [Celestrak],
in time step with the User trajectory. The relationship between
ECEF and ENU is explained in Figure 1. For convenience,
this computational tool, is housed in a Jupyter notebook. Data
set generation and 3D trajectory plotting is provided with the
assistance of a single module, [GPS_helper].
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Fig. 1: The earth centric earth fixed (ECEF) coordinate system
compared with the local east-north-up (ENU) coordinate system.

GPS Background

GPS was started in 1973 with the first block of satellites launched
over the 1978 to 1985 time interval [GPS]. The formal name
became NAVSTAR, which stands for NAVigation Satellite Timing
And Ranging system, in the early days. At the present time there
are 31 GPS satellites in orbit. The original design called for
24 satellites. The satellites orbit at an altitude of about 20,350
km (~12,600 mi). This altitude classifies the satellites as being
in a medium earth orbit (MEO), as opposed to low earth orbit
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(LEO), or geostationary above the equator (GEO), or high earth
orbit (HEO). The orbit period is 11 hours 58 minutes with six
SVs in view at any time from the surface of the earth. Clock
accuracy is key to the operation of GPS and the satellite clocks are
very accurate. Four satellites are needed for a complete position
determination since the user clock is an uncertainty that must be
resolved. The maximum SV velocity relative to an earth user is
800m/s (the satellite itself is traveling at ~7000 mph), thus the
induced Doppler is up to kHz on the L1 carrier frequency of
1.57542 GHz. This frequency uncertainty plus any motion of the
user itself, creates additional challenges in processing the received
GPS signals.

Waveform Design and Pseudorange Measurements

Time difference of arrival (TDOA) is the key to forming the User
position estimates. This starts by assigning a unique repeating
code of 1023 bits to each SV and corresponds to the L1 carrier
waveform it transmits. As the User receives the superposition of
all the in-view satellites, the code known by its PRN number
assigned to a particular satellite, is discernable by cross-correlating
the composite received L1 signal and a locally generated PRN
waveform. The correlation peak and its associated TDOA, become
the pseudorange or approximate radial distance between the User
and SV when multipled by c, the speed of light.

The pseudorange contains error due to the receiver clock offset
from the satellite time and other error components [Brown2012].
The noise-free pseudorange takes the form

ρi =
√

(xi− xu)2 +(yi− yu)2 +(zi− zu)2 + c∆t (1)

where (xi,yi,zi), i = 1, . . .4, is the satellite ECEF location and
(xu,yu,zu) is the user ECEF location, c is the speed of light, and
∆t is the receiver offset from satellite time. The product c∆t can
be thought of as the range equivalent timing error. There are three
geometry unknowns and time offset, thus at minimum there are
four non-linear equations of (1) are what must be solved to obtain
the User location.

Solving the Nonlinear Position Equations

Two techniques are widely discussed in the literature and applied
in practice [GPS] and [Kaplan]: (1) nonlinear least squares and
(2) the extended Kalman filter (EKF). In this paper we focus on
the use of the EKF. The EKF is an extension to the linear Kalman
filter, so we start by briefly describing the linear model case and
move quickly to the nonlinear case.

Kalman Filter and State Estimation

It was back in 1960 that R. E. Kalman introduced his filter
[Kalman]. It immediately became popular in guidance, navigation,
and control applications. The Kalman filter is an optimal, in the
minimum mean-squared error sense, as means to estimate the
state of a dynamical system [Simon2006]. By state we mean
a vector of variables that adequately describes the dynamical
behavior of a system over time. For the GPS problem a simplifying
assumption regarding the state model is to assume that the User
has approximately constant velocity, so a position-velocity (PV)
only state model is adequate. The Kalman filter is recursive,
meaning that the estimate of the state is refined with each new
input measurement and without the need to store all of the past
measurements.

Within the Kalman filter we have a process model and a mea-
surement model. The process equation associated with the process
model, describes how the state is updated through a state transition
matrix plus a process noise vector having covariance matrix Q.
The measurement model contains the measurement equation that
abstractly produces the measurement vector as a matrix times the
state vector plus a measurement noise vector having covariance
matrix R. The optimal recursive filter algorithm is formed using
the quantities that make up the process and measurement models.
For details the reader is referred to the references.

For readers wanting a hands-on beginners introduction to the
Kalman filter, a good starting point is the book by Kim [Kim2011].
In Kim’s book the Kalman filter is neatly represented input/output
block diagram form as shown in Figure 2, with the input being
the vector of measurements zk, at time k, and the output x̂k an
updated estimate of the state vector. The Kalman filter variables
are defined in Table 1. Note the dimensions seen in Table 1 are
n = number of state variables and m = number of measurements.

0. Set Initial values:
x̂0 , P0

1. Predict state & error covariance:
x̂ k
−= Ax̂ k−1

−

Pk
−= APk−1A

T +Q

2. Compute the Kalman gain:

K k = Pk
−HT HPk

−HT +R( )−1

4. Compute the error covariance :
Pk = Pk

−−K kHPk
−

3. Compute the state estimate:

x̂ k = x̂ k
−+K k zk −Hx̂ k

−( )zk x̂ k

Input
Meas.

Output
State
Estim.

Repeat 

Fig. 2: General Kalman filter block diagram.

State Vector for the GPS Problem

For a PV model the User state vector position and velocity in x,y,z
and clock equivalent range and range velocity error [Brown2012]:

x = [ x1 x2 x3 x4 x5 x6 x7 x8 ]

= [ x ẋ y ẏ z ż c∆t
.

c∆t ] (2)

where ECEF coordinates are assumed and the over dots denote the
time derivative, e.g., ẋ = dx/dt. We further assume that there is no
coupling between x,y,z,c∆t, thus the state transition matrix A is a
4×4 block diagonal matrix of the form

A =


Acv 0 0 0
0 Acv 0 0
0 0 Acv 0
0 0 0 Acv

 (3)
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State Estimate (output)
x̂k (n×1) State estimate at time k
Measurement (input)
zk (m×1) Measurement at time k
System Model
A (n×n) State transition matrix
H (m×n) Measurement matrix
Q (n×n) State error autocovariance matrix
R (m×m) Measurement error autocovariance

matrix
Internal Comp. Quant.
Kk (n×m) Kalman gain
Pk (n×n) Estimate of error covariance matrix
x̂−k (n×1) Prediction of the state estimate
P−k (n×n) Prediction of error covariance matrix

TABLE 1: The Kalman filter variables and a brief description.

where

Acv =

[
1 ∆t
0 1

]
(4)

Process Model Covariance Matrix

The process covariance matrix for the GPS problem is a block di-
agonal Matrix, with three identical blocks for the position-velocity
pairs and one matrix for the clock-clock drift pair. The block
diagonal form means that the states are assumed be statistically
coupled only in pairs and outside of the pairs uncorrelated. In
the model of [Brown2012] each position-velocity state-pair has
two variance terms and one covariance term describing an upper
triangle 2×2 submatrix

Qxyz = σ
2
xyz

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
(5)

where σ2
xyz is a white noise spectral density representing random

walk velocity error. The clock state variable pair has a 2× 2
covariance matrix governed by Sp, the white noise spectral density
leading to random walk velocity error. The clock and clock drift
has a more complex 2× 2 covariance submatrix, Qb, with Sg
the white noise spectral density leading to a random walk clock
frequency error plus white noise clock drift, thus two components
of clock phase error

Qb =

[
S f ∆t + Sg∆t3

3
Sg∆t2

2
Sg∆t2

2 Sg∆t

]
(6)

In final form Q is a 4×4 block covariance matrix

Q =


Qxyz 0 0 0

0 Qxyz 0 0
0 0 Qxyz 0
0 0 0 Qb

 (7)

Measurement Model Covariance Matrix

The covariance matrix of the pseudorange measurement error is
assumed to be diagonal with equal variance σ2

r , thus we have

R =


σ2

r 0 0 0
0 σ2

r 0 0
0 0 σ2

r 0
0 0 0 σ2

r

 (8)

for the case of m = 4 measurements. Being diagonal means that
all measurements are assumed statistically uncorrelated, which is
reasonable.

Extended Kalman Filter

The extended Kalman filter (EKF) allows both the state update
equation, Step 1 in Figure 2, to be a nonlinear function of the state,
and the measurement model, Step 3 in Figure 2, to be a nonlinear
function of the state. Thus the EKF block diagram replaces two
expressions in Figure 2 as follows:

Ax̂k−1 −→ f(x̂k−1) (9)

Hx̂−k−1 −→ h(x̂−k−1) (10)

For the case of the GPS problem we have already seen that the
state transition model is linear, thus the first calculation of Step
1, predicted state update expression, is the same as that found in
the standard linear Kalman filter. For Step 3, the state estimate,
we need to linearize the equations h(x̂−k ). This is done by forming
a matrix of partials or Jacobian matrix, which then generates an
equivalent H matrix as found in the linear Kalman filter, but in the
EKF is updated at each iteration of the algorithm.

H =
∂h
x

∣∣∣∣
x=x̂−k

(11)

=


∂ρ1
∂x 0 ∂ρ1

∂y 0 ∂ρ1
∂ z 0 1 0

∂ρ2
∂x 0 ∂ρ2

∂y 0 ∂ρ2
∂ z 0 1 0

∂ρ3
∂x 0 ∂ρ3

∂y 0 ∂ρ3
∂ z 0 1 0

∂ρ4
∂x 0 ∂ρ4

∂y 0 ∂ρ4
∂ z 0 1 0

 (12)

where

∂ρi

∂x
=

−(xi− x̂−1 )√
(xi− x̂−1 )

2 +(yi− x̂−3 )
2 +(zi− x̂−5 )

2
(13)

∂ρi

∂y
=

−(yi− x̂−3 )√
(xi− x̂−1 )

2 +(yi− x̂−3 )
2 +(zi− x̂−5 )

2
(14)

∂ρi

∂ z
=

−(zi− x̂−5 )√
(xi− x̂−1 )

2 +(yi− x̂−3 )
2 +(zi− x̂−5 )

2
(15)

for i = 1,2,3 and 4.

Computational Tool

The Python computational tool is composed of a Jupyter notebook
and a helper module GPS_helper.py. The key elements of
the helper are described in Figure 3. Here we see that the class
GPS_data_source is responsible for propagating the SVs in
view by the User in time-step with a constant velocity line
segment User trajectory. The end result is a collection of matrices
(ndarrays) that contain the ECEF User coordinates as the triples
(xu,yu,zu) versus times (also the ENU version) and for each SV
indexed as i = 1,2,3,4, the ECEF triples (xi,yi,zi), also as a
function of time. The time step value is Tss.

It is important to note that in creating a data set the de-
veloper must choose satellite PRNs that place the SVs in view
of the user for the given start time and date. One approach is
by trial and error. Pick a particular time and date, choose four
PRNs, and produce the data set and create a 3D plot using
GPS_helper.SV_User_Traj_3D(). This is quite tedious!
A better approach is to use a GPS cell phone app, or better yet a
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none

Module: GPS_helper.py

Class: GPS_data_source Inputs/Outputs

Constructor( ): (0) GPS TLE text file from Celestrak as 
‘GPS_tle.txt’

(1) List of SVs in view by User as ‘PRN #’
(2) User Reference Location as LAT, LONG,

ALT
(3) Sampling Period (default = 1s)

user_traj_gen( ): 

 returns: (0) User position in ENU (ndarray) vs time
(1) User position in ECEF (ndarray) vs time
(2) SV position (ndarray) vs time
(3) SV velocity (ndarray) vs time

Functions: Inputs/Outputs

(0) GPS data source object
(1) SV position ndarray
(2) User position ndarray
(3) 3D plot ALT = 20
(4) 3D plot AZIM = 20

(0) Route (a list of 2D nodes in ENU mi)
(1) User velocity in mph
GMT trajectory start time (2-6):
(2) Year (2k year, i.e., 2018 -> 18)
(3) Month
(4) Day
(5) Hour
(6) Minute

SV_User_Traj_3D( ): 
(displays  3D plot)

 

 returns: 

Fig. 3: Of significance the helper module, GPS_helper.py, con-
tains a class and a 3D plotting function that supports time-varying
data set generation of satellite positions and the corresponding User
trajectory.

stand-alone GPS that displays a map with PRN numbers of what
SVs are in view and their signal strengths. An example from a
Garmin GPSmap 60CSx [Garmin] is shown in Figure 4 The time
and date used in the simulation then corresponds to the time and
date of the actual app measurements. A current TLE set should
also be obtained from Celestrak.

Horizon

45 deg 
above the
Horizon

SV using
PRN 14

Signal
strengths

Fig. 4: SV map of satellites in use on a commercial GPS receiver.

With a data set generated the next step is to generate pseudor-
ange measurements, as the real GPS receiver would obtain TDOAs
via waveform cross-correlation with a local version of the SVs
PRN sequence. Finally, we estimate the user position using the
EKF. Classes for both these calculations are contained the Jupyter
notebook Kalman_GPS_practice. A brief description of the
two classes in given in Figure 5.

The mathematical details of the EKF were discussed earlier,
the Python code implementation is found in the public and private
methods of the GPS_EKF class. The essence of Figure 2 is the
code in the update() method:
def next_sample(self, z, SV_Pos):

"""
Update the Kalman filter state by inputting a

Class: GPS_EKF Inputs/Outputs

none, none but all EKF attributes updated

Kalman GPS Jupyter Notebook Classes

Class: GetPseudoRange Inputs/Outputs

Constructor( ): (0) Pseudorange std. dev. (default 0) 
(1) Pseudo range bias CDt (default 0) 
(2) Number of satellites in view (default 4)

measurement( ): 

 returns: none, but USER_SR (ndarray) is filled

(0) User position ECEF at time step k
(1) Satellite (SV) positions ECEF at time 

step k

(0) User position in ECEF (ndarray) vs time
(1) Satellite (SV) position in ECEF (ndarray) 

vs time

next_sample( ) 

 returns: 

(0) User initial position in ECEF
(1) Time step (default 1s)
(2) Process model diagonal covariance 
(3) Clock drift random phase walk 

(default 36)
(4) Clock drift random frequency walk

(default 0.01)  
(5) Pseudorange measurement 

variance (default 36)
(6) Number of satellites in view (default 4)

Constructor( ): 

Fig. 5: Jupyter notebook classes that synthesize pseudorange test
vectors from the time-varying data set created by GPS_helper.py,
and implement the extended Kalman filter for estimating the time-
varying User position.

new set of pseudorange measurements.
Return the state array as a tuple.
Update all other Kalman filter quantities
Input SV ephemeris at one time step, e.g.,
SV_Pos[:,:,i]
"""
# H = Matrix of partials dh/dx
H = self.Hjacob(self.x, SV_Pos)

xp = self.A @ self.x
Pp = self.A @ self.P @ self.A.T + self.Q

self.K = Pp @ H.T @ inv(H @ Pp @ H.T + self.R)

# zp = h(xp), the predicted pseudorange
zp = self.hx(xp, SV_Pos)

self.x = xp + self.K @ (z - zp)
self.P = Pp - self.K @ H @ Pp
# Return the x,y,z position
return self.x[0,0], self.x[2,0], self.x[4,0]

Note the above code uses the Python 3.5+ matrix multiplication
operator, @, to make the code nearly match the matrix algebra
expressions of Figure 2.

Simulation Examples

In this section we consider two examples of using the Python
framework to estimate a time-varying User trajectory using a time-
varying set of GPS satellites. In the code snippets that follow
were extracted from a Jupyter notebook that begins with the magic
%pylab inline, hence the namespace is filled with numpy
and matplotlib.

We start by creating a line segment user trajectory with
ENU tagging, followed by a GPS data source using TLEs
date 1/10/2018, and finally, populate User and satellite (SV)
ndarrays using the user_traj_gen() method:
# Line segment User Trajectory
rl1 = [('e',.2),('n',.4),('e',-0.1),('n',-0.2),

('e',-0.1),('n',-0.1)]
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# Create a GPS data source
GPS_ds1 = GPS.GPS_data_source('GPS_tle_1_10_2018.txt',

Rx_sv_list = \
('PRN 32','PRN 21','PRN 10','PRN 18'),
ref_lla=(38.8454167, -104.7215556, 1903.0),
Ts = 1)

# Populate User and SV trajectory matrices
# Populate User and SV trajectory matrices
USER_vel = 5 # mph
USER_Pos_enu, USER_Pos_ecf, SV_Pos, SV_Vel = \

GPS_ds1.user_traj_gen(route_list=rl1,
Vmph=USER_vel,
yr2=18,
mon=1,
day=15,
hr=8+7, # 1/18/2018
minute=45) # 8:45 AM MDT

5/17/18, 10)32 PMKalman_GPS_practice

Page 6 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

Earth

Fig. 6: A 3D plot of the SV trajectories using PRN 32, PRN 21,
PRN 10, and PRN 18, and the User trajectory over 13.2 min in
ECEF, dated 8:45 AM MDT on 1/18/2018.

5/17/18, 10)32 PMKalman_GPS_practice

Page 7 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [8]: plot(USER_Pos_enu[:,0],USER_Pos_enu[:,1])
plot(USER_Pos_enu[0,0],USER_Pos_enu[0,1],'g.')
plot(USER_Pos_enu[-1,0],USER_Pos_enu[-1,1],'r.')
title(r'User Trajectory in ENU Coordinates')
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Develop a GPS EKF
The constant velocity process model of [2] is adopted for this project. The step is defining the eight element
state vector :x

Fig. 7: The ideal user trajectory as defined by rl1 in the above code
snippet.

The 3D plot 6 shows clearly the motion of the SVs, even though
the simulation run-time is only 13.2 min. The User trajectory on
the earth, in this case a location in Colorado Springs, CO appears
as a red blob, unless the plot is zoomed in. From the ENU User
trajectory we now have a clear view of the route taken by the user.
The velocity is only 5 mph in straight line segments.

Case #1

With the data set created we now construct an EKF simulation for
estimating the User trajectory from the measured pseudoranges for
four SVs. Specifically we consider high quality satellite signals,
with measurement update period Ts = 1s, and constant velocity
VUser = 5 mph. The simulation code, as taken from a Jupyter
notebook cell, is given below:
Nsamples = SV_Pos.shape[2]
print('Sim Seconds = %d' % Nsamples)
dt = 1
# Save user position history
Pos_KF = zeros((Nsamples,3))
# Save history of error covariance matrix diagonal
P_diag = zeros((Nsamples,8))

Pseudo_ranges1 = GetPseudoRange(PR_std=0.1,
CDt=0,
N_SV=4)

GPS_EKF1 = GPS_EKF(USER_xyz_init=USER_Pos_ecf[0,:]
+ 5*randn(3),
dt=1,
sigma_xyz=5,
Sf=36,
Sg=0.01,
Rhoerror=36,
N_SV=4)

for k in range(Nsamples):
Pseudo_ranges1.measurement(USER_Pos_ecf[k,:],

SV_Pos[:,:,k])
GPS_EKF1.next_sample(Pseudo_ranges1.USER_PR,

SV_Pos[:,:,k])
Pos_KF[k,:] = GPS_EKF1.x[0:6:2,0]
P_diag[k,:] = GPS_EKF1.P.diagonal()

With the simulation complete, we now consider the ECEF errors
in m in Figure 8 for m for (x,y,z) components. The initial
position guess in this example has a standard deviation of 5 m (or
variance of 25 meters-squared), so we see that from the start of
the tracking the errors are relatively rather small and then settle
down to peak errors of pm1 m, or so.

5/18/18, 6(27 AMKalman_GPS_practice

Page 18 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

Selected Error Covariance Results for the Simulation Run
The error covariance matrix, , is , with the diagonal entries beingthe variances of each of the states.

Convergence looks reasonable as we see an intial error transient and then a gradual reduction in the
covariance.

P 8 × 8

User Tracking Errors in ECEF

Fig. 8: ECEF errors in position estimation for Case #1.

Figure 9 shows selected error covariance matrix terms from Pk
throughout the simulation. The terms displayed are the position
diagonal terms, that is σ2

x ,σ
2
y , and σ2

z . The initial conditions of
the EKF make these variance terms initially large. Settling begins
about 50s into the simulation, and the decay continues as the 13.2
m simulation comes to an end. The EKF is behaving as expected.



EXPLORING THE EXTENDED KALMAN FILTER FOR GPS POSITIONING USING SIMULATED USER AND SATELLITE TRACK DATA 89

5/18/18, 6(27 AMKalman_GPS_practice

Page 19 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [14]: plot(P_diag[:,0])
plot(P_diag[:,2])
plot(P_diag[:,4])
title(r'Selected Covariance Matrix $\mathbf{P}$ Diagonal Entries')
ylabel(r'Variance (m$^2$)')
xlabel(r'Time (s) (given $T_s = 1$s)')
legend((r'$\sigma_x^2$',r'$\sigma_y^2$',r'$\sigma_z^2$'),loc='best')
grid();

Consider the  submatrix of  corresponding to the x, y, and z, position and velocity states, at
the final time sample of the simulation run.

In [15]: print(np.array_str(GPS_EKF1.P[:6,:6], precision=2))
#print np.array_str(x, precision=2, suppress_small=True)

6 × 6 P

[[ 5.55e+01  2.32e+01  1.43e+02  4.12e+00 -6.38e+01 -1.27e+00]
 [ 2.32e+01  3.46e+01  3.92e+00  6.13e-01 -1.24e+00  1.41e-01]
 [ 1.43e+02  3.92e+00  1.71e+03  6.97e+01 -7.57e+02 -2.11e+01]
 [ 4.12e+00  6.13e-01  6.97e+01  4.12e+01 -2.18e+01 -3.27e+00]
 [-6.38e+01 -1.24e+00 -7.57e+02 -2.18e+01  3.76e+02  2.80e+01]
 [-1.27e+00  1.41e-01 -2.11e+01 -3.27e+00  2.80e+01  3.26e+01]]

Fig. 9: Selected error covariance matrix terms, in particular the
diagonal elements σ2

x , σ2
y , σ2

z .

Finally, in Figure 10 we have a plot of the User trajectory
estimate in ENU, as a map-like 2D plot showing just the east-
west and north-south axes. The units are tenths of miles, so with
the User moving along linear line segments at just 5 mph, the
trajectory looks perfect.

5/18/18, 6(27 AMKalman_GPS_practice

Page 20 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [16]: GPS_EKF1.P.diagonal()

Convert the ECEF User Trajectory Back to ENU Local Coordinates

In [18]: Npts = Pos_KF.shape[0]
Pos_KF_enu = zeros((Npts,3))
for k in range(Npts):
    Pos_KF_enu[k,:] = GPS.ecef2enu(Pos_KF[k,:],
                                   GPS_ds1.ref_ecef,
                                   GPS_ds1.ref_lla[0],
                                   GPS_ds1.ref_lla[1])
plot(Pos_KF_enu[:,0]/1609.344,Pos_KF_enu[:,1]/1609.344,'b')
title(r'KF Estimated Trajectory in ENU \
Coordinates @ %2.0f mph' % (USER_vel,))
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Out[16]: array([5.54745383e+01, 3.46397865e+01, 1.70625839e+03, 4.11822186e+0
1,
       3.75796604e+02, 3.26168031e+01, 1.36063623e+03, 8.29052050e-0
1])

Fig. 10: The estimated user trajectory in ENU coordinates and the
same scale as Figure 7.

In the next example parameters will be varied to see the
impact.

Case #2

In this case we still consider high quality satellite signals and a 1s
update period, but now the user velocity is increased to 30 mph,
so the time to traverse the User trajectory is reduced from 13.2
min down to 2.2 min. The random initial (xyz) position is set to
a error standard deviation of 50 m compared with 5 m in the first
case. We expect to see some difference in performance.

In Figure 11 we again plot the ECEF errors in m. The large
initial position error variance forces the plot axes scale to change
from Case #1. The initial errors are now very large, but do
settle to small values with the exception of blips that occur every
time the user changes direction by making a 90◦ turn. The blips
are somewhat artificial, since making a perfect right-angle turn
without slowing or rounding the corner is more practical. Still it is
interesting to see this behavior and also see that the EKF recovers
from these errors.

Figure 12 again shows the error covariance terms for σ2
x ,σ

2
y ,

and σ2
z . The results here are very similar to Case #1. The variance

peaks at about 50 s into the simulation and then rapidly decays.
This is not too surprising as the EKF tuning has changed from
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Selected Error Covariance Results for the Simulation Run
The error covariance matrix, , is , with the diagonal entries beingthe variances of each of the states.

Convergence looks reasonable as we see an intial error transient and then a gradual reduction in the
covariance.

P 8 × 8

User Tracking Errors in ECEF

Fig. 11: ECEF errors in position estimation for Case #1.

Case #1, with the exception of the initial position error. Since
the simulation only runs for 2.2 min which is 132 s, we have to
compare the variances at this time to the Case #2 end results. They
appear to be about the same, once again the EKF appears to be
working correctly.
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In [85]: plot(P_diag[:,0])
plot(P_diag[:,2])
plot(P_diag[:,4])
title(r'Selected Covariance Matrix $\mathbf{P}$ Diagonal Entries')
ylabel(r'Variance (m$^2$)')
xlabel(r'Time (s) (given $T_s = 1$s)')
legend((r'$\sigma_x^2$',r'$\sigma_y^2$',r'$\sigma_z^2$'),loc='best')
grid();

Consider the  submatrix of  corresponding to the x, y, and z, position and velocity states, at
the final time sample of the simulation run.

In [90]: print(np.array_str(GPS_EKF1.P[:6,:6], precision=2))
#print np.array_str(x, precision=2, suppress_small=True)

6 × 6 P

[[ 1.29e+02  2.45e+01  5.32e+02  9.55e+00 -2.75e+02 -5.06e+00]
 [ 2.45e+01  3.48e+01  9.11e+00  8.51e-01 -4.93e+00 -6.00e-01]
 [ 5.32e+02  9.11e+00  3.35e+03  8.30e+01 -1.71e+03 -3.12e+01]
 [ 9.55e+00  8.51e-01  8.30e+01  4.06e+01 -3.18e+01 -3.63e+00]
 [-2.75e+02 -4.93e+00 -1.71e+03 -3.18e+01  9.14e+02  3.50e+01]
 [-5.06e+00 -6.00e-01 -3.12e+01 -3.63e+00  3.50e+01  3.34e+01]]

Fig. 12: Selected error covariance matrix terms, in particular the
diagonal elements σ2

x , σ2
y , σ2

z .

Finally, Figure 13 plots the ENU trajectory estimate in the
plane EN (ignoring the UP coordinate as before). The speed is
upped by a factor six compared to case #1. The most notable
change is trajectory overshoot at each of the right-angle turns.
No surprise here as the EKF is asked to handle very abrupt (and
impractical) position changes. The EKF recovers quickly.

Overall the results for both cases are very good. There a lot of
knobs to turn in this framework, so many options to explore.

It is worthy of note at this point that the Unscented Kalman
Filter (UKF) [Wan2006], and the more general class of algorithms
known as Sigma-Point Kalman Filters (SPKF), are today much
preferred to the EKF of the past. The EKF is sub-optimal, and the
linearization approach makes it sensitive to initial conditions. The
EKF requires the Jacobian matrix, which may be hard to obtain,
and may not converge without carefully chosen initial conditions.
In this paper the EKF was chosen for use in a training scenario
because it is the next logical step from the linear Kalman filter,
and its development is simple to follow. The UKF is harder to get
explain. In the end, the UKF is of similar complexity to the EKF,
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In [91]: GPS_EKF1.P.diagonal()

Convert the ECEF User Trajectory Back to ENU Local Coordinates

In [88]: Npts = Pos_KF.shape[0]
Pos_KF_enu = zeros((Npts,3))
for k in range(Npts):
    Pos_KF_enu[k,:] = GPS.ecef2enu(Pos_KF[k,:],
                                   GPS_ds1.ref_ecef,
                                   GPS_ds1.ref_lla[0],
                                   GPS_ds1.ref_lla[1])
plot(Pos_KF_enu[:,0]/1609.344,Pos_KF_enu[:,1]/1609.344,'b')
title(r'KF Estimated Trajectory in ENU \
Coordinates @ %2.0f mph' % (USER_vel,))
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Out[91]: array([1.29140202e+02, 3.47975843e+01, 3.34560907e+03, 4.06004720e+0
1,
       9.13835319e+02, 3.34143369e+01, 2.90153558e+03, 9.84575907e-0
1])

Fig. 13: The estimated user trajectory in ENU coordinates and the
same scale as Figure 7.

can offer large performance benefits, and does not require the use
of a Jacobian.

Conclusions and Future Work

The objective of creating a Jupyter notebook-based simulation
tool for studying the use of the EKF in GPS position estimation
has been met. There are many tuning options to explore, which
provides a very nice environment for studying a large variety sce-
narios. The performance results are consistent with expectations.

There are several improvements under consideration. The first
is to develop a more realistic user trajectory generator. The second
is to make measurement quality a function of the SV range, which
would also make the measurement quality SV specific, rather than
identical as it is now. A third desire is to move to the UKF to avoid
the use of the Jacobian, reduce the sensitivity to initial conditions,
and improve performance.
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