
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 91

Real-Time Digital Signal Processing Using
pyaudio_helper and the ipywidgets

Mark Wickert‡∗

F

Abstract—The focus of this paper is on teaching real-time digital signal pro-
cessing to electrical and computer engineers using the Jupyter notebook and the
code module pyaudio_helper, which is a component of the package scikit-
dsp-comm. Specifically, we show how easy it is to design, prototype, and test us-
ing PC-based instrumentation, real-time DSP algorithms for processing analog
signal inputs and returning analog signal outputs, all within the Jupyter notebook.
A key feature is that real-time algorithm prototyping is simplified by configuring
a few attributes of a DSP_io_stream object from the pyaudio_helper
module, leaving the developer to focus on the real-time DSP code contained in
a callback function, using a template notebook cell. Real-time control of running
code is provided by ipywidgets. The PC-based instrumentation aspect allows
measurement of the analog input/output (I/O) to be captured, stored in text files,
and then read back into the notebook to compare with the original design expec-
tations via matplotlib plots. In a typical application slider widgets are used
to change variables in the callback. One and two channel audio applications as
well as algorithms for complex signal (in-phase/quadrature) waveforms, as found
in software-defined radio, can also be developed. The analog I/O devices that
can be interfaced are both internal and via USB external sound interfaces. The
sampling rate, and hence the bandwidth of the signal that can be processed, is
limited by the operating system audio subsystem capabilities, but is at least 48
KHz and often 96 kHz.

Index Terms—digital signal processing, pyaudio, real-time, scikit-dsp-comm

Introduction

As the power of personal computer has increased, the dream
of rapid prototyping of real-time signal processing, without the
need to use dedicated DSP-microprocessors or digital signal
processing (DSP) enhanced microcontrollers, such as the ARM
Cortex-M4 [cortexM4], can be set aside. Students can focus on
the powerful capability of numpy, scipy, and matplotlib,
along with packages such as scipy.signal [Scipysignal] and
scikit-dsp-comm [DSPComm], to explore real-time signals
and systems computing.

The focus of this paper is on teaching real-time DSP to elec-
trical and computer engineers using the Jupyter notebook and the
code module pyaudio_helper, which is a component of the
package scikit-dsp-comm. To be clear, pyaudio_helper
is built upon the well known package [pyaudio], which has its
roots in Port Audio [portaudio]. Specifically, we show how easy it
is to design, prototype, and test using PC-based instrumentation,

* Corresponding author: mwickert@uccs.edu
‡ University of Colorado Colorado Springs

Copyright © 2018 Mark Wickert. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

real-time DSP algorithms for processing analog signal inputs and
returning analog signal outputs, all within the Jupyter notebook.
Real-time algorithm prototyping is simplified by configuring a
DSP_io_stream object from the pyaudio_helper module,
allowing the developer to quickly focus on writing a DSP callback
function using a template notebook cell. The developer is free
to take advantage of scipy.signal filter functions, write
custom classes, and as needed utilize global variables to allow
the algorithm to maintain state between callbacks pushed by the
underlying PyAudio framework. The PC-based instrumentation
aspect allows measurement of the analog input/output (I/O) to
be captured, stored in text files, and then read back into the
notebook to compare with the original design expectations via
matplotlib plots. Real-time control of running code is pro-
vided by ipywidgets. In a typical application slider widgets are
used to change variables in the callback during I/O streaming. The
analog I/O devices that can be interfaced are both internal and via
USB external sound interfaces. The sampling rate, and hence the
bandwidth of the signal that can be processed, is limited by the
operating system audio subsystem capabilities, but is at least 48
KHz and often 96 kHz.

We will ultimately see that to set up an audio stream requires:
(1) create and instance of the DSP_io_stream class by assign-
ing valid input and output device ports to it, (2) define a callback
function to process the input signal sample frames into output
sample frames with a user defined algorithm, and (3) call the
method interactive_stream() to start streaming.

Analog Input/Output Using DSP Algorithms

A classic text to learn the theory of digital signal processing
is [Opp2010]. This book is heavy on the underlying theoretical
concepts of DSP, including the mathematical modeling of analog
I/O systems as shown in Figure 1. This block diagram is a math-
ematical abstraction of what will be implemented using [pyaudio]
and a PC audio subsystem. An analog or continuous-time signal
x(t) enters the system on the left and is converted to the discrete-
time signal x[n] by the analog to digital block. In practice this
block is known as the analog-to-digital converter (ADC). The
sampling rate fs, which is the inverse of the sampling period,
T , leads to x[n] = x(nT). To be clear, x[n], denotes a sequence of
samples corresponding to the original analog input x(t). The use
of brackets versus parentheses differentiates the two signal types
as discrete-time and continuous-time respectively. The sampling
theorem [Opp2010] tells us that the sampling rate fs must be
greater than twice the highest frequency we wish to represent

https://github.com/mwickert/scikit-dsp-comm
https://github.com/mwickert/scikit-dsp-comm
mailto:mwickert@uccs.edu

92 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

in the discrete-time domain. Violating this condition results in
aliasing, which means a signal centered on frequency f0 > fs/2
will land inside the band of frequencies [0, fs/2]. Fortunately, most
audio ADCs limit the signal bandwidth of x(t) in such a way that
signals with frequency content greater than fs/2 are eliminated
from passing through the ADC. Also note in practice, x[n] is
a scaled and finite precision version of x(t). In real-time DSP
environments the ADC maps the analog signal samples to signed
integers, most likely int16. As we shall see in pyaudio, this is
indeed the case.

Analog
To

Digital

Digital
To

Analog

Digital Signal
Processing
Algorithms

x(t) y(t)
x[n] y[n]

fs fs
fs = sampling rate
T = sampling period

Fig. 1: Analog signal processing implemented using real-time DSP.

The DSP algorithms block can be any operation on samples
x[n] that makes sense. Ultimately, once we discuss frame-based
processing in the next section, we will see how Python code
fulfills this. At this beginning stage, the notion is that the samples
flow through the algorithm one at a time, that is one input results
in one output sample. The output samples are converted back to
analog signal y(t) by placing the samples into a digital-to-analog
converter (DAC). The DAC does not simply set y(nT) = y[n], as
a continuous function time t must be output. A reconstruction
operation takes place inside the DAC which interpolates the
y[n] signal samples over continuous time. In most DACs this is
accomplished with a combination of digital and analog filters, the
details of which is outside the scope of this paper. The use of

In a DSP theory class the algorithm for producing y[n] from
x[n] is typically a causal linear time-invariant (LTI) system/filter,
implemented via a difference equation, i.e.,

y[n] =−
N

∑
k=1

aky[n− k]+
M

∑
m=0

bmx[n−m] (1)

where ak,k = 1,2, . . . ,N and bm,m = 0,1, . . . ,M are the filter
coefficients. The filter coefficients that implement a particular filter
design can be obtained using design tools in [DSPComm].

Other algorithms of course are possible. We might have a
two channel system and perform operations on both signals, say
combining them, filtering, and locally generating time varying
periodic signals to create audio special effects. When first learning
about real-time DSP it is important to start with simple algorithm
configurations, so that external measurements can be used to
characterize the systems and verify that the intended results are
realized. Developing a real-time DSP project follows along the
lines of, design, implement, and test using external test equip-
ment. The Jupyter notebook allows all of this to happen in one
place, particularly if the test instrumentation is also PC-based,
since PC-based instrument results can be exported as csv and
then imported in Jupyter notebook using loadtxt. Here we
advocate the use of PC-based instruments, so that all parties,
student/instructor/tinkerer, can explore real-time DSP from most
anywhere at any time. In this paper we use the Analog Discovery
2 [AD2] for signal generation (two function generator channels),
signal measurement (two scope channels, with fast Fourier trans-
form (FFT) spectrum analysis included). It is also helpful to have
a signal generator cell phone app available, and of course music
from a cell phone or PC. All of the cabling is done using 3.5mm

stereo patch cables and small pin header adapters [3p5mm] to
interface to the AD2.

Frame-based Real-Time DSP Using the DSP_io_stream
class

The block diagram of Figure 2 illustrates the essence of
this paper. Implementing the structure of this figure re-
lies upon the class DSP_io_stream, which is housed in
sk_dsp_comm.pyaudio_helper.py. To make use of this
class requires the scipy stack (numpy, scipy, and matplotlib), as
well as [DSPComm] and [pyaudio]. PyAudio is multi-platform,
with the configuration platform dependent. The set-up is doc-
umented at [pyaudio] and SPCommTutorial. The classes and
functions of pyaudio_helper are detailed in Figure 3. We will
make reference to the classes, methods, and functions throughout
the remainder of this paper.

ADC

ADC DAC

DACFrame-Based
DSP

CallbackPa
ck

 in
to

Fr

am
es

U
np

ac
k

Fr
am

es

Globals for
Ctrl. & DSP

States

ipython Widgets
for Algorithm
Attribute Ctrl.

PC Audio System (Win, macOS, Linux)

1
or

 2

1
or

 2

xr (t)

xl (t) yl (t)

yr (t)

Jupyter Notebook Code

Channels
1 or 2

Channels
1 or 2

Fig. 2: Two channel analog signal processing implemented using
frame-based real-time DSP.

With DSP_io_stream one or two channel streaming is
possible, as shown in Figure 2. The ADCs and DACs can be
internal to the PC or external, say using a USB interface. In a
modern PC the audio subsystem has a microphone hardwired to
the ADCs and the DACs are connected to the speakers and 3.5mm
headphone jack. To provide more flexibility in doing real-time
DSP, an external USB audio interface is essential. Two worthy
options are the Sabrent at less than $10 and the iMic at under
$40. You get what you pay for. The iMic is ideal for full two
channel audio I/O processing and also has a line-in/mic switch
setting, while the Sabrent offers a single channel input and two
channel output. Both are very capable for their intended purposes.
A photograph of the AD2 with the iMic interface, 3.5mm splitters
and the pin header interfaces mentioned earlier, is shown in Figure
4. The 3.5mm audio splitters are optional, but allow headphones to
be plugged into the output while leaving the AD2 scope connected,
and the ability to input music/function generator from a cellphone
while leaving the AD2 input cable connected (pins wires may
need to be pulled off the AD2 to avoid interaction between the
two devices in parallel).

When a DSP_io_stream is created (top of Figure 3) it
needs to know which input and output devices to connect to.
If you just want and input or just an out, you still need to
supply a valid output or input device, respectively. To list the
internal/external devices available on a given PC we use the
function available_devices() from Figure 3. If you add
or remove devices while the notebook kernel is running, you will
need to restart the kernel to get an accurate listing of devices. The
code block below was run with the iMic plugged into a USB hub:

https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki
https://www.sabrent.com/product/AU-MMSA/usb-external-stereo-3d-sound-adapter-black/
https://griffintechnology.com/us/imic

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 93

Class: loop_audio Inputs/Outputs

(0) Append a new frame of left float signal
samples to the attribute
data_capture_left

(1) Append a new frame of right float signal
samples to the attribute
data_capture_right

none

Module: sk_dsp_comm.pyaudio_helper.py

Class: DSP_io_stream Inputs/Outputs

Constructor(): (0) Stream callback function name
(1) Input device index (default 1)
(2) Output device index (default 4)
(3) Frame length (default 1024)
(4) Sampling rate in Hz (default 44100)
(5) Capture buffer length in s (default 0)
(6) Sleep time (default 0.1 s from PyAudio)

interactive_stream():
(threaded & buttons)

 returns:

(0) Append a new frame of float signal
samples to the attribute data_capture

Functions: Inputs/Outputs

(0) Stream time in s (default 2, 0 for infinite)
(1) Number of channels (default 1 or 2)

DSP_capture_add_
samples():

 returns:

DSP_callback_toc():

DSP_callback_tic():

 returns: none, but ipywidget start/stop buttons

None, but updates a time stamp attribute

 returns: none

None, but updates a time stamp attribute

none

 returns: none

available_devices():

Constructor(): (0) Audio sample array to be looped
(1) Offset into array (default 0)

get_samples(): (0) frame_length

None

Prints available input and output audio
devices along with their port indices

 returns:

stream_stats():

cb_active_plot():

None

Prints callback statistics

(0) Start time in ms
(1) Stop time in ms
(2) Line color (default ‘b’)

Timing plot showing time in callback returns:

DSP_capture_add_
samples_stereo():

get_LR(): (0) Packed float32 input frame

(0) Unpacked float32 left channel
(1) Unpacked float32 right channel

 returns:

 returns:

pack_LR(): (0) Left output float32 frame
(1) Right output float32 frame

(0) Packed float32 frame returns:

Fig. 3: The major classes and functions of the module
sk_dsp_comm.pyaudio_helper.py.

import sk_dsp_comm.pyaudio_helper as pah
In[3]: pah.available_devices()
Out[3]:
Index 0 device name = Built-in Microphone,

inputs = 2, outputs = 0
Index 1 device name = Built-in Output,

inputs = 0, outputs = 2
Index 2 device name = iMic USB audio system,

inputs = 2, outputs = 2

The output list can be viewed as a look-up table (LUT) for
how to patch physical devices into the block diagram of Figure 2.

We now shift the focus to the interior of Figure 2 to discuss
frame-based DSP and the Frame-Based DSP Callback. When a
DSP microcontroller is configured for real-time DSP, it can focus
on just this one task very well. Sample-by-sample processing is
possible with low I/O latency and overall reasonable audio sample

iMic USB stereo
audio I/O

Optional 3.5mm
audio splitters
to allow parallel
analog I/O

Stereo 3.5mm
to AD2 pin
header adaptors

Analog Discovery
2 (AD2)

Wiring harness to
give access to
signal generators,
scope channels
and other
capabilities

Fig. 4: The iMic stereo USB audio device and the Digilent Analog
Discovery 2 (AD2), including the wiring harness.

throughput. On a PC, with its multitasking OS, there is a lot
going on. To get reasonable audio sample throughput the PC audio
subsystem fills or packs an input buffer with frame_length
samples (or two times frame_length), sample for a two chan-
nel stream) originating as 16-bit signed integers (i.e., int16),
before calling the callback function. The details of the callback
function is the subject of the next section. As the callback prepares
to exit, an output buffer of 16-bit signed integers is formed,
again of length frame_length, and the buffer is absorbed by
the PC audio subsystem. In the context of embedded systems
programming, the callback can be thought of as an interrupt
service routine. To the PC audio community the frame or buffer
just described, is also known as a CHUNK. In a two-channel
stream the frame holds an interleaving of left and right channels,
...LRLRL... in the buffer formed/absorbed by the PC audio
system. Understand that the efficiency of frame-based processing
comes with a price. The buffering either side of the callback block
of Figure 2 introduces a latency or processing time delay of at
least two times the frame_length times the sampling period.

Moving along with this top level discussion, the central
block of Figure 2 is labeled Frame-Based DSP Callback, and
as we have alluded to already, is where the real-time DSP code
resides. Global variables are needed inside the callback, as the
input/output signature is fixed by [pyaudio]. The globals allow
algorithm parameters to be available inside the callback, e.g., filter
coefficients, and in the case of a digital filter, the filter state must
be maintained from frame-to-frame. We will see in the examples
section how scipy.signal.lfilter(), which implements
(1), conveniently supports frame-based digital filtering. To allow
interactive control of parameters of the DSP algorithm we can
use ipywidgets. We will also see later the sliders widgets are
particularly suited to this task.

Anatomy of a PyAudio Callback function

Before writing the callback we first need to instantiate a
DSP_io_stream object, as shown in the following code block:

DSP_IO = pah.DSP_io_stream(callback, #callback name
2,2, # set I/O device indices
fs=48000, # sampling rate
Tcapture=0) # capture buffer length

The constructor for DSP_io_stream of Figure 3 and the code
block above confirm that most importantly we need to supply
a function callback name, and most likely provide custom in-
put/output device numbers, choose a sampling rate, and optionally
choose the length of the capture buffer.

94 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

A basic single channel loop through callback function, where
the input samples are passed to the output, is shown in the code
block below:
define a pass through, y = x, callback
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, b, a, zi #no widgets yet
DSP_IO.DSP_callback_tic() #log entering time
convert audio byte data to an int16 ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
Begin DSP operations here
for this app cast int16 to float32
x = in_data_nda.astype(float32)
y = x # pass input to output
Typically more DSP code here
Optionally apply a linear filter to the input
#y, zi = signal.lfilter(b,a,x,zi=zi)
#***
Save data for later analysis
accumulate a new frame of samples if enabled
with Tcapture
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc() #log departure time
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

The frame_length has been set to 1024, and of the four
required inputs from [pyaudio], the first, in_data, is the in-
put buffer which we first convert to a int16 ndarray us-
ing np.frombuffer, and then as a working array convert
to float32. Note to fill the full dynamic range of the fixed-
point signal samples, means that the x[n] sample values can range
over [−215,215−1]. Passing over the comments we set y=x, and
finally convert the output array y back to int16 and then in the
return line back to a byte-string buffer using .tobytes().
In general when y is converted from float back to int16,
clipping/overflow will occur unless the dynamic range mentioned
above is observed. Along the way code instrumentation methods
from Figure 3 are included to record time spent in the call-
back (DSP_callback_tic() and DSP_callback_toc())
and store samples for later analysis in the attribute
capture_buffer (DSP_capture_add_samples). These
features will be examined in an upcoming example.

To start streaming we need to call the method
interactive_stream(), which runs the stream in a thread
and displays ipywidgets start/stop buttons below the code cell
as shown in Figure 5.

Fig. 5: Setting up an interactive stream for the simple y = x loop
through, using a run time of 0, which implies run forever.

Performance Measurements

The loop through example is good place to explore some perfor-
mance metrics of 2, and take a look at some of the instrumen-
tation that is part of the DSP_io_stream class. The methods
DSP_callback_tic() and DSP_callback_toc() store
time stamps in attributes of the class. Another attribute stores

samples in the attribute data_capture. For the instrumentation
to collect operating data we need to set Tcapture greater than
zero. We will also set the total run time to 2s:

DSP_IO = pah.DSP_io_stream(callback,2,2,fs=48000,
Tcapture=2)

DSP_IO.interactive_stream(2,1)

Running the above in Jupyter notebook cell will capture 2s of data.
The method stream_stats() displays the following:

Ideal Callback period = 21.33 (ms)
Average Callback Period = 21.33 (ms)
Average Callback process time = 0.40 (ms)

which tells us that as expected for a sampling rate of 48 kHz, and
a frame length of 1024 is simply

Tcallback period = 1024× 1
48000

= 21.33 ms (2)

The time spent in the callback should be very small, as very
little processing is being done. We can also examine the callback
latency by first having the AD2 input a low duty cycle pulse
train at a 2 Hz rate, thus having 500 ms between pules. We then
use the scope to measure the time difference between the input
(scope channel C2) and output (scope channel C1) waveforms.
The resulting plot is shown in Figure 6. We see that PyAudio and
and the PC audio subsystem introduces about 70.7ms of latency.
A hybrid iMic ADC and builtin DAC results in 138 ms on macOS.
Moving to Win 10 latency increases to 142 ms, using default USB
drivers.

Latency ~ 70.7ms

Fig. 6: Callback latency measurement using the AD2 where C2 is the
input and C1 is the output, of a 2 Hz pulse train in the loop through
app.

The frequency response magnitude of an LTI system can be
measured using the fact that [Opp2010] at the output of a system
driven by white noise, the measured power output spectrum is
a scaled version of the underlying system frequency response
magnitude squared, i.e.,

Sy,measured(f) = σ
2
x |HLTI system(f)|2 (3)

where σ2
x is the variance of the input white noise signal. Here

we use this technique to first estimate the frequency response
magnitude of the input path (ADC only) using the attribute
DSP_IO.capture_buffer, and secondly take end-to-end
(ADC-DAC) measurements using the AD2 spectrum analyzer in
dB average mode (500 records). In both cases the white noise
input is provided by the AD2 function generator. Finally, the
AD2 measurement is saved to a CSV file and imported into the
Jupyter notebook, as shown in the code block below. This allows

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 95

an overlay of the ADC and ADC-DAC measurements, entirely in
the Jupyter notebook.
import sk_dsp_comm.sigsys as ss
f_AD,Mag_AD = loadtxt('Loop_through_noise_SA.csv',

delimiter=',',skiprows=6,
unpack=True)

Pxx, F = ss.my_psd(DSP_IO.data_capture,2**11,48000);
plot(F,10*log10(Pxx/Pxx[20]))
plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC only from DSP_IO.capture_buffer',r

'ADC-DAC from AD2 SA dB Avg'))
title(r'Loop Through Gain Flatness using iMic at

$f_s = 48$ kHz')
grid();
savefig('Loop_through_iMic_gain_flatness.pdf')

The results are compared in Figure 7, where we see a roll-off
of about 3 dB at about 14 kHz in both the ADC path and the
composite ADC-DAC path. The composite ADC-DAC begins to
rise above 17 kHz and flattens to 2 dB down from 18-20 kHz. As
a practical matter, humans do not hear sound much above 16 kHz,
so the peaking is not much of an issue. Testing of the Sabrent
device the composite ADC-DAC 3 dB roll-off occurs at about 17
kHz. The native PC audio output can for example be tested in
combination with the iMic or Sabrent ADCs.

Fig. 7: Gain flatness of the loop through app of just the ADC path
via the DSP_IO.capture_buffer and then the ADC-DAC path
using the AD2 spectrum analyzer to average the noise spectrum.

Examples

In this section we consider a collection of applications examples.
This first is a simple two channel loop-through with addition of
left and right gain sliders. The second is again two channel, but
now cross left-right panning is developed. In of these examples
the DSP is memoryless, so there is no need to maintain state using
Python globals. The third example is an equal-ripple bandpass
filter, which utilizes sk_dsp_comm.fir_design_helper to
design the filter. The final example develops a three-band audio
equalizer using peaking filters to raise and lower the gain over a
narrow band of frequencies.

Left and Right Gain Sliders

In this first example the signal processing is again minimal, but
now two-channel (stereo) processing is utilized, and left and right
channel gain slider using ipywidgets are introduced. Since

the audio stream is running in a thread, the ipywidgets can
freely run and interactively control parameters inside the callback
function. The two slider widgets are created below, followed by
the callback, and finally calling the interactive_stream
method to run without limit in two channel mode. A 1 kHz
sinusoid test signal is input to the left channel and a 5 kHz sinusoid
is input to the right channel. While viewing the AD2 scope output
in real-time, the gain sliders are adjusted and the signal levels
move up and down. A screenshot taken from the Jupyter notebook
is combined with a screenshot of the scope output to verify the
correlation between the observed signal amplitudes and the slider
positions is given in Figure 8. The callback listing, including the
set-up of the ipywidgets gain sliders, is given below:

Set up two sliders
L_gain = widgets.FloatSlider(description = 'L Gain',

continuous_update = True,
value = 1.0, min = 0.0,
max = 2.0, step = 0.01,
orientation = 'vertical')

R_gain = widgets.FloatSlider(description = 'R Gain',
continuous_update = True,
value = 1.0, min = 0.0,
max = 2.0, step = 0.01,
orientation = 'vertical')

L and Right Gain Sliders callback
def callback(in_data, frame_count, time_info,

status):
global DSP_IO, L_gain, R_gain
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.\

astype(float32))
#***
DSP operations here
y_left = x_left*L_gain.value
y_right = x_right*R_gain.value

#***
Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)
Typically more DSP code here
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,

y_right)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

Note for this two channel stream, the audio subsystem interleaves
left and right samples, so now the class methods get_LR and
pack_LR of Figure 3 are utilized to unpack the left and right
samples and then repack them, respectively. A screenshot of the
gain sliders app, including an AD2 scope capture, with C1 on the
left channel and C2 on the right channel, is given in Figure 8.

The ability to control the left and right audio level are as
expected, especially when listening.

Cross Left-Right Channel Panning

This example again works with a two channel signal flow. The
application is to implement a cross channel panning system.
Ordinarily panning moves a single channel of audio from 100%

96 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

(a) Jupyter notebook start/stop stream controls and left/right gain sliders

(b) Audio outputs for a 1 kHz left input and 5 kHz right input

Fig. 8: A simple stereo gain slider app: (a) Jupyter notebook interface
and (b) testing using the AD2 with generators and scope channel C1
(orange) on left and C2 (blue) on right.

left to 100% right as a slider moves from 0% to 100% of its range.
At 50% the single channel should have equal amplitude in both
channels. In cross channel panning two input channels are super
imposed, but such that at 0% the left and right channels are fully
in their own channel. At 50% the left and right outputs are equally
mixed. At 100% the input channels are now swapped. Assuming
that a represents the panning values on the interval [0,100], a
mathematical model of the cross panning app is

Lout = (100−a)/100×Lin +a/100×Rin (4)

Rout = a/100×Lin +(100−a)/100×Rin (5)

where Lin and Lout are the left channel inputs and outputs respec-
tively, and similarly Rin and Rout for the right channel. In code we
have:
Cross Panning
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, panning
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.\

astype(float32))
#***
DSP operations here
y_left = (100-panning.value)/100*x_left \

+ panning.value/100*x_right
y_right = panning.value/100*x_left \

+ (100-panning.value)/100*x_right

#***
Pack left and right data together

y = DSP_IO.pack_LR(y_left,y_right)
Typically more DSP code here
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,

y_right)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

This app is best experienced by listening, but visually Figure 9
shows a series of scope captures, parts (b)-(d), to explain how
the sounds sources swap from side-to-side as the panning value
changes.

0%

50%

100%

(a) Jupyter notebook start/stop stream controls and the panning slider

(b) Audio outputs with panning control at 0%

(c) Audio outputs with panning control at 50%

(d) Audio outputs with panning control at 100%

Fig. 9: Cross left/right panning control: (a) launching the app in the
Jupyter notebook and (b)-(d) a sequence of scope screenshots as the
panning slider is moved from 0% to 50%, and then to 100%.

For dissimilar left and right audio channels, the action of the
slider creates a spinning effect when listening. It is possible to
extend this app with an automation, so that a low frequency
sinusoid or other waveform changes the panning value at a rate
controlled by a slider.

FIR Bandpass Filter

In this example we design a high-order FIR bandpass filter using
sk_dsp_comm.fir_design_helper and then implement
the design to operate at fs = 48 kHz. Here we choose the bandpass
critical frequencies to be 2700, 3200, 4800, and 5300 Hz, with
a passband ripple of 0.5 dB and stopband attenuation of 50
dB (see fir_d). Theory is compared with AD2 measurements

https://mwickert.github.io/scikit-dsp-comm/example_notebooks/FIR_IIR_design_helper/FIR_and_IIR_Filter_Design.html

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 97

using, again using noise excitation. When implementing a digital
filter using frame-based processing, scipy.signal.lfilter
works nicely. The key is to first create a zero initial condition array
zi and hold this in a global variable. Each time lfilter is used
in the callback the old initial condition zi is passed in, then the
returned zi is held until the next time through the callback.

import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
b = fir_d.fir_remez_bpf(2700,3200,4800,5300,

.5,50,48000,18)
a = [1]
Set up a zero initial condition to start
zi = signal.lfiltic(b,a,[0])

define callback (#2)
def callback2(in_data, frame_length, time_info,

status):
global DSP_IO, b, a, zi
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
DSP operations here
Here we apply a linear filter to the input
x = 5*in_data_nda.astype(float32)
#y = x
The filter state/(memory), zi,
must be maintained from frame-to-frame,
so hold it in a global
for FIR or simple IIR use:
y, zi = signal.lfilter(b, a, x, zi=zi)
for IIR use second-order sections:
#y, zi = signal.sosfilt(sos, x, zi=zi)
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback2,2,2,
fs=48000,Tcapture=0)

DSP_IO.interactive_stream(Tsec=0,numChan=1)

Following the call to DSP_io.interactive_stream() the
start button is clicked and the AD2 spectrum analyzer estimates
the power spectrum. The estimate is saved as a CSV file and
brought into the Jupyter notebook to overlay the theoretical design.
The comparison results are given in Figure 10.

The theory and measured magnitude response plots are in very
close agreement, making the end-to-end design, implement, test
very satisfying.

Three Band Equalizer

Here we consider the second-order peaking filter, which has
infinite impulse response, and place three of them in cascade
with a ipywidgets slider used to control the gain of each
filter. The peaking filter is used in the design of audio equalizer,
where perhaps each filter is centered on octave frequency spacings
running from from 10 Hz up to 16 kHz, or so. Each peaking filter
can be implemented as a 2nd-order difference equation, i.e., N = 2
in equation (1). The design equations for a single peaking filter are
given below using z-transform [Opp2010] notation:

Hpk(z) =Cpk
1+b1z−1 +b2z−2

1+a1z−1 +a2z−2 (6)

Fig. 10: An overlay plot of the theoretical frequency response with the
measured using an AD2 noise spectrum capture import to the Jupyter
notebook.

which has coefficients

Cpk =
1+ kqµ

1+ kq
(7)

kq =
4

1+µ
tan

(
2π fc/ fs

2Q

)
(8)

b1 =
−2cos(2π fc/ fs)

1+ kqµ
(9)

b2 =
1− kqµ

1+ kqµ
(10)

a1 =
−2cos(2π fc/ fs)

1+ kq
(11)

a2 =
1− kq

1+ kq
(12)

where
µ = 10GdB/20, Q ∈ [2,10] (13)

and fc is the center frequency in Hz relative to sampling rate
fs in Hz, and GdB is the peaking filter gain in dB. Con-
veniently, the function peaking is available in the module
sk_dsp_comm.sigsys. The app code is given below starting
with the slider creation:
band1 = widgets.FloatSlider(description \

= '100 Hz',
continuous_update = True,
value = 2.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

band2 = widgets.FloatSlider(description \
= '1000 Hz',
continuous_update = True,
value = 10.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

band3 = widgets.FloatSlider(description \
= '8000 Hz',
continuous_update = True,
value = -1.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,

fs=48000)
zi_b1 = signal.lfiltic(b_b1,a_b1,[0])
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,

fs=48000)

98 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

zi_b2 = signal.lfiltic(b_b2,a_b2,[0])
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,

fs=48000)
zi_b3 = signal.lfiltic(b_b3,a_b3,[0])
b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2)
b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3)
f = logspace(log10(50),log10(10000),100)
w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000)
semilogx(f,20*log10(abs(H_123)))
grid();

define a pass through, y = x, callback
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, zi_b1, zi_b2, zi_b3
global band1, band2, band3
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
DSP operations here
Here we apply a linear filter to the input
x = in_data_nda.astype(float32)
#y = x
Design the peaking filters on-the-fly
and then cascade them
b_b1,a_b1 = ss.peaking(band1.value,100,

Q=3.5,fs=48000)
z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,

zi=zi_b1)
b_b2,a_b2 = ss.peaking(band2.value,1000,

Q=3.5,fs=48000)
z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,

zi=zi_b2)
b_b3,a_b3 = ss.peaking(band3.value,8000,

Q=3.5,fs=48000)
y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,

zi=zi_b3)
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

Following the call to DSP_io.interactive_stream() the
start button is clicked and the FFT spectrum analyzer estimates the
power spectrum. The estimate is saved as a CSV file and brought
into the Jupyter notebook to overlay the theoretical design. The
comparison results are given in Figure 11.

Reasonable agreement is achieved, but listening to music is a
more effective way of evaluating the end result. To complete the
design more peaking filters should be added.

Conclusions and Future Work

In this paper we have described an approach to implement
real-time DSP in the Jupyter notebook. This real-time capability
rests on top of PyAudio and the wrapper class DSP_io_stream
contained in sk_dsp_comm.pyaudio_helper. The
ipywidgets allow for interactivity while real-time DSP
code is running. The callback function does the work using
frame-based algorithms, which takes some getting used to. By
working through examples we have shown that much can be
accomplished with little coding.

A limitation of using PyAudio is the input-to-output latency.
At a 48 kHz sampling rate a simple loop though app has around

(a) Jupyter notebook start/stop stream controls and peaking gain sliders

(b) Composite three band frequency response; theory and noise spectrum

Fig. 11: Three band equalizer: (a) launching the app in the Jupyter
notebook and (b) an overlay plot of the theoretical log-frequency
response with the measured using an AD2 noise spectrum capture
import to the Jupyter notebook.

70 ms of delay. For the application discussed in the paper latency
is not a show stopper.

In the future we hope to easily develop algorithms that can
demodulate software-defined radio (SDR) streams and send the
recovered modulation signal out the computer’s audio interface via
PyAudio. Environments such as GNURadio companion already
support this, but being able to do this right in the Jupyter notebook
is our desire.

REFERENCES

[cortexM4] The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7
Processors. (2016, November). Retrieved June 25, 2018, from
https://community.arm.com/processors/b/blog/posts/white-
paper-dsp-capabilities-of-cortex-m4-and-cortex-m7.

[Scipysignal] Signal Processing. (2018, May 5). Retrieved June 25, 2018 from
https://docs.scipy.org/doc/scipy/reference/signal.html.

[DSPComm] scikit-dsp-comm. (2018, June 22). Retrieved June 25, 2018 from
https://github.com/mwickert/scikit-dsp-comm.

[pyaudio] PyAudio, (2017, March). Retrieved June 25, 2018, from
https://people.csail.mit.edu/hubert/pyaudio/.

[portaudio] Port Audio. (2012, January 25). Retrieved June 25, 2018 from
http://www.portaudio.com/.

[ipywidgets] ipywidgets. (2018, June 11). Retrieved June 25, 2018, from
https://github.com/jupyter-widgets/ipywidgets.

[Opp2010] Oppenheim, A and Schafer, R (2010). Discrete-Time Signal
Processing (3rd ed.), New Jersey: Prentice Hall.

[AD2] Analog Discovery 2. (2018, June). Retrieved June 25, 2918
from https://store.digilentinc.com/analog-discovery-2-100msps-
usb-oscilloscope-logic-analyzer-and-variable-power-supply/.

[3p5mm] 3.5mm Analog Discovery Adaptor Design. (2018,
January 30). Retrieved June 25, 2018 from
http://www.eas.uccs.edu/~mwickert/ece5655/.

https://community.arm.com/processors/b/blog/posts/white-paper-dsp-capabilities-of-cortex-m4-and-cortex-m7
https://community.arm.com/processors/b/blog/posts/white-paper-dsp-capabilities-of-cortex-m4-and-cortex-m7
https://docs.scipy.org/doc/scipy/reference/signal.html
https://github.com/mwickert/scikit-dsp-comm
https://people.csail.mit.edu/hubert/pyaudio/
http://www.portaudio.com/
https://github.com/jupyter-widgets/ipywidgets
https://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
https://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
http://www.eas.uccs.edu/~mwickert/ece5655/

	Introduction
	Analog Input/Output Using DSP Algorithms
	Frame-based Real-Time DSP Using the DSP_io_stream class
	Anatomy of a PyAudio Callback function
	Performance Measurements

	Examples
	Left and Right Gain Sliders
	Cross Left-Right Channel Panning
	FIR Bandpass Filter
	Three Band Equalizer

	Conclusions and Future Work
	References

