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Abstract—Deep learning techniques have greatly advanced the performance of
the already rapidly developing field of computer vision, which powers a variety
of emerging technologies—from facial recognition to augmented reality to self-
driving cars. The remote sensing and mapping communities are particularly
interested in extracting, understanding and mapping physical elements in the
landscape. These mappable physical elements are called features, and can
include both natural and synthetic objects of any scale, complexity and char-
acter. Points or polygons representing sidewalks, glaciers, playgrounds, entire
cities, and bicycles are all examples of features. In this paper we present a
method to develop deep learning tools and pipelines that generate features from
aerial and satellite imagery at large scale. Practical applications include object
detection, semantic segmentation and automatic mapping of general-interest
features such as turn lane markings on roads, parking lots, roads, water, building
footprints.

We give an overview of our data preparation process, in which data from
the Mapbox Satellite layer, a global imagery collection, is annotated with la-
bels created from OpenStreetMap data using minimal manual effort. We then
discuss the implementation of various state-of-the-art detection and semantic
segmentation systems such as the improved version of You Only Look Once
(YOLOv2), modified U-Net, Pyramid Scene Parsing Network (PSPNet), as well
as specific adaptations for the aerial and satellite imagery domain. We conclude
by discussing our ongoing efforts in improving our models and expanding their
applicability across classes of features, geographical regions, and relatively
novel data sources such as street-level and drone imagery.

Index Terms—computer vision, deep learning, neural networks, satellite im-
agery, aerial imagery

I. Introduction

Location data is built into the fabric of our daily experiences, and
is more important than ever with the introduction of new location-
based technologies such as self-driving cars. Mapping communi-
ties, open source or proprietary, work to find, understand and map
elements of the physical landscape. However, mappable physical
elements are continually appearing, changing, and disappearing.
For example, more than 1.2 million residential units were built in
the United States alone in 2017 [buildings]. Therefore, a major
challenge faced by mapping communities is maintaining recency
while expanding worldwide coverage. To increase the speed and
accuracy of mapping, allowing better pace-keeping with change
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Fig. 1: Computer Vision Pipeline.

in the mappable landscape, we propose integrating deep neural
network models into the mapping workflow. In particular, we have
developed tools and pipelines to detect various geospatial features
from satellite and aerial imagery at scale. We collaborate with
the OpenStreetMap [osm] (OSM) community to create reliable
geospatial datasets, validated by trained and local mappers.

Here we present two use cases to demonstrate our workflow
for extracting street navigation indicators such as turn restrictions
signs, turn lane markings, and parking lots, in order to improve
our routing engines. Our processing pipelines and tools are de-
signed with open source libraries including Scipy, Rasterio, Fiona,
Osium, JOSM, Keras, PyTorch, and OpenCV, while our training
data is compiled from OpenStreetMap and the Mapbox Maps API
[mapbox_api]. Our tools are designed to be generalizable across
geospatial feature classes and across data sources.

II. Scalable Computer Vision Pipelines

The general design for our deep learning based computer vision
pipelines can be found in Figure 1, and is applicable to both
object detection and semantic segmantation tasks. We design
such pipelines with two things in mind: they must scale to
process petabytes worth of data; and they must be agile enough
to be repurposed for computer vision tasks on other geospatial
features. This requires tools and libraries that make up these
pipelines to be developed in modularized fashion. We present
turn lane markings as an example of an object detection pipeline,
and parking lots as an example of a semantic segmentation
pipeline. Code for Robosat [robosat], our end-to-end semantic
segmantion pipeline, along with all its tools, is made available
at: https://github.com/mapbox/robosat.

https://youtu.be/3AuRW9kq89g
mailto:virginia@mapbox.com
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Fig. 2: Left: Original satellite image. Right: Turn lane markings
detection.

1. Data

The data needed to create training sets depends on the type of
task: object detection or semantic segmentation. We first present
our data preparation process for object detection and then discuss
the data preperation process for semantic segmentation.

Data Preparation For Object Detection. Object detection is
the computer vision task that deals with locating and classifying a
variable number of objects in an image. Figure 2 demonstrates how
object detection models are used to classify and locate turn lane
markings from satellite imagery. There are many other practical
applications of object detection such as face detection, counting,
and visual search engines. In our case, detected turn lane markings
become valuable navigation assets to our routing engines when
determining the most optimal routes.

The turn lane marking training set is created by collecting im-
agery of various types of turn lane markings and manually drawing
a bounding box around each marking. We use Overpass Turbo1 to
query the OpenStreetMap database for streets containing turn lane
markings, i.e., those tagged with one of the following attributes:
“turn:lane=*”, “turn:lane:forward=*”, “turn:lane:backward=*” in
OpenStreetMap. The marked street segments, as shown in Figure
3, are stored as GeoJSON features clipped into the tiling scheme
[tile] of the Mapbox Satellite basemap [mapbox]. Figure 4 shows
how skilled mappers use this map layer as a cue to manually draw
bounding boxes around each turn lane marking using JOSM2, a
process called annotation. These bounding boxes are stored in
GeoJSON polygon format on Amazon S3 [s3] and used as labels
during training.

Mappers annotate over 54,000 turn lane markings, span-
ning six classes - “Left”, “Right”, “Through”, “ThroughLeft”,
“ThroughRight”, and “Other” in five cities. Turn lane markings
of all shapes and sizes, as well as ones that are partially covered
by cars and/or shadows are included in this training set. To ensure
a high-quality training set, we had a separate group of mappers
verify each of the bounding boxes drawn. We exclude turn lane
markings that are not visible, as seen in Figure 5.

Data Engineering Pipeline for Object Detection. Within the
larger object detection pipeline, sits a data engineering pipeline

1. JOSM [josm] is an extensible OpenStreetMap editor for Java 8+. At its
core, it is an interface for editing OSM, i.e., manipulating the nodes, ways,
relations, and tags that compose the OSM database. Compared to other OSM
editors, JOSM is notable for its range of features, such as allowing the user
to load arbitrary GPX tracks, background imagery, and OpenStreetMap data
from local and online sources. It is open source and licensed under GPL.

2. Overpass Turbo [overpass] is a web based data mining tool for Open-
StreetMap. It runs any kind of Overpass API query and shows the results on
an interactive map.

Fig. 3: A custom layer created by clipping the locations of roads
with turn lane markings to Mapbox Satellite. Streets with turn lane
markings are rendered in red.

Fig. 4: Annotating turn lane markings by drawing bounding boxes.

Fig. 5: Left: Examples of visible turn lane markings that are included
in the training set. Right: Defaced or obscured turn lane markings,
such as those covered by cars, are excluded from the training set.
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Fig. 6: Object Detection Data Engineering Pipeline: Annotated Open-
StreetMap GeoJSON features are converted to image pixel space,
stored as JSON image attributes and used as training labels. These
labels are then combined with each of their respective imagery tiles,
fetched from the Mapbox Maps API (Satellite), to create a training set
for turn lane marking detection.

Fig. 7: Left: Original satellite image. Right: Semantic segmentation
of roads, buildings and vegetation.

designed to create and process training data in large quantities.
This data engineering pipeline is capable of streaming any set of
prefixes off of Amazon S3 into prepared training sets. Several pre-
processing steps are taken to convert annotations to the appropriate
data storage format before combining them with real imagery. The
turn lane marking annotations are initially stored as GeoJSON
polygons grouped by class. Each of these polygons is streamed out
of the GeoJSON files on S3, converted to image pixel coordinates,
and stored as JSON image attributes to abstract tiles [tile]. The
pre-processed annotations are randomly assigned to training and
testing datasets with a ratio of 4:1. The abstract tiles are then
replaced by the corresponding real image tiles, fetched from the
Satellite layer of the Mapbox Maps API. At this point, each
training sample consisted of a photographic image paired with its
corresponding JSON image attribute. Finally, the training and test
sets are zipped and uploaded to Amazon S3. This process is scaled
up to run multiple cities in parallel on Amazon Elastic Container
Service3. This data engineering pipeline is shown in Figure 6.

Data Preparation for Semantic Segmentation. Semantic
segmentation is the computer vision task that partitions an image
into semantically meaningful parts, and classifies each part into
one of any pre-determined classes. This can be understood as
assigning a class to each pixel in the image, or equivalently
as drawing non-overlapping masks or polygons with associated
classes over the image. As an example of the polygonal approach,
in addition to distinguishing roads from buildings and vegetation,
we also delineate the boundaries of each object in Figure 7.

The parking lot training set is created by combining imagery
tiles collected from Mapbox Satellite with parking lots poly-
gons. Parking lot polygons are generated by querying the Open-
StreetMap database with Osmium [osmium] for OpenStreetMap
features with attributes “tag:amenity=parking=*” using the rs ex-

tract tool [rs-extract] in Robosat, our segmentation pipeline. These
parking lot polygons are stored as two-dimensional single-channel
numpy arrays, or binary mask clipped and scaled to the Mapbox
Satellite tiling scheme using the rs rasterize tool [rs-rasterize].
Each mask array is paired with its corresponding photographic
image tile. Conceptually, this can be compared to concatenating
a fourth channel, the mask, onto a standard red, green, and blue
image. 55,710 parking lots are annotated for the initial training set.
Our tools and processes can be generalized to any OpenStreetMap
feature and any data source. For example, we also experiment with
building segmentation in unmanned aerial vehicle (UAV) imagery
from the OpenAerialMap project in Tanzania [tanzania]. One can
generate training sets for any OpenStreetMap feature in this way
by writing custom Osmium handlers to convert OpenStreetMap
geometries into polygons.

2. Model

Fully Convolutional Neural Networks. Fully convolutional net-
works (FCNs) are neural networks composed only of convolu-
tional layers. They are contrasted with more conventional net-
works that typically have fully connected layers or other non-
convolutional subarchitectures as “decision-makers” just before
the output. For the purposes considered here, FCNs show several
significant advantages. First, FCNs can handle input images of
different resolutions, while most alternatives require input dimen-
sions to be of a certain size [FCN]. For example, architectures
like AlexNet can only work with input images sizes that are 224
x 224 x 3 [FCN]. Second, FCNs are well suited to handling
spatially dense prediction tasks like segmentation because one
would no longer be constrained by the number of object categories
or complexity of the scenes. Networks with fully connect layers, in
contrast, generally lose spatial information in these layers because
all output neurons are connected to all input neurons [FCN].

Object Detection Models. Many of our applications require
low latency prediction from their object detection algorithms.
We implement YOLOv2 [yolov2], the improved version of the
real-time object detection system You Only Look Once (YOLO)
[yolo], in our turn lane markings detection pipeline. YOLOv2
outperforms other state-of-the-art methods, like Faster R-CNN
with ResNet [resnet] and Single Shot MultiBox Detector (SSD)
[ssd], in both speed and detection accuracy [yolov2]. It works
by first dividing the input image into 13 × 13 grid cells (i.e.,
there are 169 total cells for any input image). Each grid cell is
responsible for generating 5 bounding boxes. Each bounding box
is composed of its center coordinates relative to the location of its
corresponding grid cell, its normalized width and height, a confi-
dence score for "objectness," and an array of class probabilities.
A logistic activation is used to constrain the network’s location
prediction to fall between 0 and 1, so that the network is more
stable. The objectness predicts the intersection over union (IOU)
of the ground truth and the proposed box. The class probabilities
predict the conditional probability of each class for the proposed
object, given that there is an object in the box [yolov2].

6 classes are defined for the turn lane markings detection
project. With 4 coordinates defining each box’s geometry, the

3. Osmium [osmium] is a fast and flexible C++ library for working with
OpenStreetMap data.

4. Amazon ECS [ecs] is a highly scalable, fast, container management
service that makes it easy to run, stop, and manage Docker containers on
specified type of instances



148 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 8: Clustering of box dimensions in the turn lane marking training
set. We run k-means clustering on the dimensions of bounding boxes
to get anchor boxes for our model. We used k = 5, as suggested by
the YOLOv2 authors, who found that this cluster count gives a good
tradeoff for recall v. complexity of the model.

"objectness" confidence, and 6 class probabilities, each bounding
box object is comprised of 11 numbers. Multiplying by boxes per
grid cell and grid cells per image, this project’s YOLOv2 network
therefore always yields 13 x 13 x 5 x 11 = 9,295 outputs per
image.

The base feature extractor of YOLOv2 is Darknet-19
[darknet], a FCN composed of 19 convolutional layers and 5
maxpooling layers. Detection is done by replacing the last convo-
lutional layer of Darknet-19 with three 3 × 3 convolutional layers,
each outputting 1024 channels. A final 1 × 1 convolutional layer
is then applied to convert the 13 × 13 × 1024 output into 13 ×
13 × 55. We follow two suggestions proposed by the YOLOv2
authors when designing our model. The first is incorporating
batch normalization after every convolutional layer. During batch
normalization, the output of a previous activation layer is nor-
malized by subtracting the batch mean and dividing by the batch
standard deviation. This technique stabilizes training, improves
the model convergence, and regularizes the model [yolov2_batch].
By including batch normalization, YOLOv2 authors saw a 2%
improvement in mAP on the VOC2007 dataset [yolov2] compared
to the original YOLO model. The second suggestion is the use
of anchor boxes and dimension clusters to predict the actual
bounding box of the object. This step is acheieved by running
k-means clustering on the turn lane marking training set bounding
boxes. As seen in Figure 8, the ground truth bounding boxes for
turn lane markings follow specific height-width ratios. Instead of
directly predicting bounding box coordinates, our model predicts
the width and height of the box as offsets from cluster centroids.
The center coordinates of the box relative to the location of filter
application is predicted by using a sigmoid function.

Our model is first pre-trained on ImageNet 224 × 224 res-
olution imagery. The network is then resized and fine-tuned for
classification on 448 × 448 turn lane marking imagery, to ensure
that the relatively small features of interest are still reliably
detected.

Segmentation Models. For parking lot segmentation, we
select an approach of binary segmentation (distinguishing parking
lots from the background), and found U-Net [unet] to be a suitable
architecture. The U-Net architecture can be found in Figure 9. It
consists of a contracting path, to capture context, and a symmetric
expanding path, which allows precise localization. This type of
network can be trained end-to-end with very few training images

Fig. 9: U-Net architecture.

and can yield more precise segmentations than prior state-of-the-
art methods such as sliding-window convolutional networks. The
first part of the U-Net network downsamples, and is similar in
design and purpose to the encoding part of an autoencoder. It
repeatedly applies convolution blocks followed by maxpool down-
samplings, encoding the input image into increasingly abstract
representations at successively deeper levels. The second part of
the network consists of upsampling and concatenation, followed
by ordinary convolution operations. Concatenation combines rela-
tively “raw” information with relatively “processed” information.
This can be understood as allowing the network to assign a class
to a pixel with sensitivity to small-scale, less-abstract information
about the pixel and its immediate neighborhood (e.g., whether it
is gray) and simultaneously with sensitivity to large-scale, more-
abstract information about the pixel’s context (e.g., whether there
are nearby cars aligned in the patterns typical of parking lots).
we gain a modest 1% improvement in accuracy by making two
additional changes. First we replace the standard U-Net encoder
with pre-trained ResNet50 [resnet] encoder. Then, we switch
out the learned deconvolutions with nearest neighbor upsampling
followed by a convolution for refinement.

We experiment with a Pyramid Scene Parsing Network (PSP-
Net) [pspnet] architecture for a 4-class segmentation task on
buildings, roads, water, and vegetation. PSPNet is one of the few
pixel-wise segmentation methods that focuses on global priors,
while most methods fuse low-level, high resolution features with
high-level, low resolution ones to develope comprehensive feature
representations. Global priors can be especially useful for objects
that have similar spatial features. For instance, runways and
freeways have similar color and texture features, but they belong
to different classes, which can be discriminated by adding car and
building information. PSPNet uses pre-trained ResNet to generate
a feature map that is 1/8 the size of the input image. The feature
map is then fed through the pyramid parsing module, a hierarchical
global prior that aggregates different scales of information. After
upsampling and concatenation, the final feature representatation is
fused with a 3 x 3 convolution to produce the final prediction map.
As seen in Figure 6, PSPNet produced good-quality segmentation
masks in our tests on scenes with complex features such as irreg-
ularly shaped trees, buildings and roads. For the 2-class parking
lot task, however, we found PSPNet unnecessarily complex and
time-consuming.

Hard Negative Mining. This is a technique we apply to
improve model accuracy [hnm] . We first train a model with an
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Fig. 10: A probability mask marking the pixels that our model believes
belong to parking lots.

initial subset of negative examples, and collect negative examples
that are incorrectly classified by this initial model to form a set of
hard negatives. A new model is then trained with the hard negative
examples and the process may be repeated a few times.

Figure 10 shows a model’s output as a probability mask
overlaid on Mapbox Satellite. Increasingly opaque red indicates
an increasingly high probability estimate of the underlying pixel
belonging to a parking lot. We use this type of visualization to find
representative falsely detected patches for use as hard negatives in
hard negative mining.

3. Post-Processing

Figure 11 shows an example of the raw segmentation mask derived
from our U-Net model. It cannot be used directly as input for
OpenStreetMap. We perform a series of post-processing steps to
refine and transform the mask until it met quality and format
requirements for OpenStreetMap consumption:

Noise Removal. Noise in the output mask is removed by two
morphological operations: erosion followed by dilation. Erosion
removes some positive speckle noise ("islands"), but it also shrinks
objects. Dilation re-expands the objects.

Fill in holes. The converse of the previous step, removing
"lakes" (small false or topologically inconvenient negatives) in the
mask.

Contouring. During this step, continuous pixels having same
color or intensity along the boundary of the mask are joined. The
output is a binary mask with contours.

Simplification. We apply Douglas-Peucker simplification
[DP], which takes a curve composed of line segments and gives a
similar curve with fewer vertexes. OpenStreetMap favors polygons
with the least number of vertexes necessary to represent the ground
truth accurately, so this step is important to increase the data’s
quality as percieved by its end users.

Transform Data. Polygons are converted from in-tile pixel
coordinates to GeoJSONs in geographic coordinates (longitude
and latitude).

Fig. 11: An example of border artifacts and holes in raw segmentation
masks produced by our U-Net model.

Fig. 12: Left: Polygons crossing tile boundaries, and other adjacent
polygons, are combined. Right: Combined polygons.

Merging multiple polygons. This tool combines polygons
that are nearly overlapping, such as those that represent a single
feature broken by tile boundaries, into a single polygon. See
Figure 12.

Deduplication. Cleaned GeoJSON polygons are compared
against parking lot polygons that already exist in OpenStreetMap,
so that only previously unmapped features are uploaded.

All post-processing tools can be found in our Robosat
[robosat] GitHub repository.

4. Conclusion

We demonstrated the steps to building deep learning-based com-
puter vision pipelines that can run object detection and segmen-
tation tasks at scale. With these pipeline designs, we are able
to create training data with minimal manual effort, experiment
with different network architectures, run inference, and apply post-
process algorithms to tens of thousands of image tiles in parallel
using Amazon ECS. The outputs of the processing pipelines
discussed are turn lane markings and parking lots in the form of
GeoJSON features suitable for adding to OpenStreetMap. Mapbox
routing engines then take these OpenStreetMap features into
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Fig. 13: Front-end UI for instant turn lane marking detection on
Mapbox Satellite layer, a global imagery collection.

account when calculating optimal navigation routes. As we make
various improvements to our baseline model and post-processing
algorithms (see below), we keep human control over the final
decision to add a given feature to OpenStreetMap. Figure 13
shows a front-end user interface (UI) created to allow users to
run instant turn lane marking detection and visualize the results
on top of Mapbox Satellite. Users can select a model, adjust the
level of confidence for the model, choose from any Mapbox map
styles [mapbox_style], and determine the area on the map to run
inference on [mapbox_zoom].

IV. Future Work

We are now working on making a few improvements to Robosat,
our segmentation pipeline, so that it becomes more flexible in
handling input image of different resolutions. First, our existing
post-processing handler is designed for parking lot features and is
specifically tuned with thresholds set for zoom level 18 imagery
[osm_zoom]. We are replacing these hard-coded thresholds with
generalized ones that are calculated based on resolution in meters
per pixel. We also plan to experiment with a feature pyramid-
based deep convolutional network called Feature Pyramid Net-
work (FPN) [FPN]. It is a practical and accurate solution to
multi-scale object detection. Similar to U-Net, the FPN has lateral
connections between the bottom-up pyramid (left) and the top-
down pyramid (right). The main difference is where U-net only
copies features and appends them, FPN applies a 1x1 convolution
layer before adding the features. We will most likely follow the
authors’ footsteps and use ResNet as the backbone of this network.

There two other modifications planned for the post-processing
steps. First, we want to experiment with a more sophisticated
polygon simplication algorithm besides Douglas-Peucker. Second,
we are rethinking the ordering of first performing simplication
then merging. The current post-process workflow performs simpli-
cation on individual extracted polygons and then merges polygons
that are across imagery tiles together. The resulting polygons,
according to this process, may no longer be in the simplest shape.

We design our tools and pipelines with the intent that other
practitioners would find it straightforward to adapt them to other
landscapes, landscape features, and imagery data sources. For in-
stance, we generated 184,000 turn restriction detections following
a similar process applying deep learning models on Microsoft’s
street-level imagery [streetside]. We released these turn restriction
detections located across 35,200 intersections and 23 cities for

the OpenStreetMap community [turn-restrict] in June 2018. For
future work we will continue to look for ways to bring different
sources and structures of data together to build better computer
vision pipelines.
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