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Abstract—pyMolDyn is an interactive viewer of atomic systems defined in a unit
cell and is particularly useful for crystalline and amorphous materials. It identifies
and visualizes cavities (vacancies, voids) in simulation cells corresponding to all
seven 3D Bravais lattices, makes no assumptions about cavity shapes, allows
for atoms of different size, and locates the cavity centers (the centers of the
largest spheres not including an atom center). We define three types of cavity
and develop a method based on the split and merge algorithm to calculate all
three. The visualization of the cavities uses the marching cubes algorithm. The
program allows one to calculate and export pair distribution functions (between
atoms and/or cavities), as well as bonding and dihedral angles, cavity volumes
and surface areas, and measures of cavity shapes, including asphericity, acylin-
dricity, and relative shape anisotropy. The open source Python program is based
on GR framework and GR3 routines and can be used to generate high
resolution graphics and videos.

Index Terms—Cavity shape, volume, and surface area; Python; marching
cubes; split and merge

Introduction

The properties of many materials are influenced significantly or
even dominated by the presence of empty regions, referred to
as cavities, vacancies, or voids. In phase change materials, for
example, they play an essential role in the rapid and reversible
transformation between amorphous and crystalline regions of
chalcogenide semiconductors [AJ07], [AJ08], [AJ12]. In soft
matter, such as polymers, cavities can lead to structural failure and
are often crucial for diffusion of small molecules. Voids caused by
radiation (neutrons, x-rays) can lead to dramatic changes in the
strength of materials. It is essential to provide efficient algorithms
and programs to visualize cavities in the course of computer
simulations. We describe here methods developed in the context
of phase change materials, where the empty regions are rarely
larger than a few atomic volumes, and the term "vacancy" is also
in common use [LE11b]. The approach will be useful in other
contexts. The present manuscript is an extended and corrected
version of [Hetal17].

Geometrical algorithms to identify cavities have a long history
in the discussion of disordered materials. Bernal [Be64] discussed
liquid structures in terms of space-filling polyhedra and noted
that "holes" or "pseudonuclei" would occur in general. Finney
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[Fi70] extended this analysis by using the Dirichlet [Di50] or
Voronoi [Vo08] construction, where space is divided into regions
bounded by planes that bisect interatomic vectors perpendicularly.
This construction for a crystalline solid leads to the well-known
Wigner-Seitz cell. The polyhedron associated with an atom is
the smallest surrounding the atom in question, and its structural
features (volume, number of vertexes, etc.) can be used for
identification and characterization. A small Voronoi polyhedron
indicates an interstitial defect, and a local assembly of large
polyhedra could imply the existence of a cavity. This approach has
been used to analyze defect structures in simulations of radiation
damage [CL85] and the motion of vacancies in colloids [LAC13],
although the coordination number (the number of faces of the
Voronoi cell) is not necessarily a convenient measure of their
positions [LAC13]. Similar techniques have been applied to the
distinction between solute and solvent in a liquid, such as hydrated
peptide molecules [Vetal11].

Delaunay triangulation [De34], a division of space closely
related to the Dirichlet-Voronoi analysis, has been used to iden-
tify the "unoccupied space" [AMS92] or "cavities" [VBM15] in
polymer systems and to analyze their connectivity, and it has
been used to analyze the normal modes in a molecular dynamics
simulation of a glass [LMNS00]. Efficient programs are available
for performing Voronoi analyses (see, for example, Ref. [Ry09])
and its extension to Voronoi S-surfaces, which are appropriate for
systems with atoms of different sizes [MVLG06], [VNP]. Ref.
[MVLG06] contains many references to physical applications of
Dirichlet-Voronoi-Delaunay analyses. The present work and the
above approaches focus on the geometrical arrangement resulting
from a simulation, rather than determining other physical quanti-
ties such as local atomic pressures [LN88].

In the following section, we define essential terms and describe
the analysis, based on the "split and merge" [HP76] and "marching
cubes" [LC87], [NY06] algorithms, that we have used to study
three definitions of cavities:

• Regions (sometimes referred to as "domains") where each
point is outside spheres centered on the atoms. The radii of
the spheres are generally element-dependent, but an equal
cutoff for all elements (2.5 Å) was chosen in a study of
Ge/Sb/Te phase change materials [LE11b].

• "Center-based" cavities resulting from a Dirichlet-Voronoi
construction using the atomic positions and the cavity
centers.

• "Surface-based" cavities [AJ07], where the boundaries are
determined by Dirichlet-Voronoi constructions from each
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point on the domain surface to neighboring atoms, have
been used in numerous studies of phase change materials
[AJ12], [CBP10], [KAJ14].

The code, the ways to access it, and the online documentation
are described below, and an application demonstrates some of its
features.

Definitions and Algorithms

Essential input for a calculation of cavities and their properties
is the location of the atoms, which is often provided as a list
of coordinates and atom types within an appropriate unit cell.
However, the definition of a cavity is not unique and is a pre-
requisite for any study. Calculation of pair distribution functions
involving cavities (with atoms and with other cavities) means that
we must also associate appropriate coordinates with the center of
each cavity. We now define cavities and describe how we calculate
their centers.

Cavity domains and cavity centers

The first step is the discretization of the simulation cell by
creating a cuboid grid containing the cell bounding box and a
surrounding layer, which enables periodic boundary condition
to be implemented effectively. The resolution dmax refers to the
number of points along the longest edge, and two units are added
at each end of each cell edge. Each grid point outside the cell has
one equivalent point inside. If there are more than one equivalent
inside points, we choose the one closest to the origin or—if this is
still ambiguous—search for the smallest component in the order
x, y, z. Outside points are labeled with the index of the translation
vector pointing to the equivalent inside point. This step depends
only on the cell shape and the resolution of the discrete grid, and
the results can be cached and used for other data files.

As shown in Fig. 1(a), we now construct spheres centered on
each atom with radii specified for each atom type (element). In ear-
lier work on alloys of Ge/Sb/Te [AJ07], [AJ12] and Ag/In/Sb/Te
[Metal11], the radius was chosen to be the same (2.8 Å) for
all elements [rC in Fig. 1(a)]. Points outside the simulation cell
are replaced by equivalent points inside. All points outside these
spheres form "cavity domains" [yellow in Fig. 1(a)], and the
"cavity center" [X in the 2D scheme 1(b)] is the center of the
largest sphere that does not overlap a neighboring atom. It is
possible, for example in unusually long, thin cavities, that more
than one point satisfy this condition approximately equally well,
so that the center can switch between them as a simulation
proceeds.

Some structures are unusually sensitive to the choice of cutoff
radius rC and/or resolution, particularly when the cavity domains
are very small, and it is essential to carry out detailed tests before
performing production runs. The program provides a warning
when one or more cavity domains consist of a single cell of
the discretization grid. The calculation should be repeated with
a higher resolution to increase the number of numerically stable
cavity domains.

Domains and center-based cavities

A knowledge of the positions of the atoms and the cavity center
enables us to perform a Dirichlet-Voronoi construction (see above)
leading to the cavities shown as red in Fig. 1(b). Overlapping cav-
ities from different domains are merged to form "multicavities",

rc

(a)

(b)

Fig. 1: Construction for a 2D geometry of (a) "cavity domain" (yellow,
cutoff radius rC) and "surface-based cavity" (red), (b) cavity center
(X) and "center-based" cavity (red).

and the volumes and surface areas of cavities and cavity domains
are determined as follows.

Points in domains are grouped together by applying the split
and merge algorithm [HP76], which consists of three main steps
for periodic cells. First, the discrete grid is split recursively into
subgrids until they contain either atoms or domain points. Subgrids
containing atom points are not needed to determine the domains
and are ignored. During the split phase the direct neighbors of
each subgrid are recorded, and neighboring subgrid points are then
merged to form the cavity domains. As noted above, these domains
can be identified as cavities by choosing an appropriate cutoff
radius [LE11b].

Center-based cavities comprise points that are closer to domain
centers than to any atom, and their construction requires points
inside atomic spheres for which there is an atom no farther away
than the largest atomic sphere radius. The grid is split into cubes
with sides of at least this length, for which only atoms and surface
or center points inside neighboring cubes are relevant. If a point
is closer to the center of cavity domain i than to the nearest
atom, it is marked as part of cavity i. In the case of multicavities,
intersections are detected by checking the neighboring points of
the surface of a cavity. If two such points belong to different
cavities, the two cavities are parts of a common multicavity.

The surface of each domain, cavity, or multicavity is important
for calculating the surface area and for visualization, and it
is determined by applying a variation of the marching cubes
algorithm [LC87], [NY06] to new grids based on those derived
above. Each grid contains the bounding box of a cavity domain or
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multicavity, and each point in the grid is assigned the number of
neighboring points inside the domain or cavity. The algorithm then
constructs a surface containing all points with a non-zero count.
Neighboring grid points are grouped together into disjoint cubes,
and points with a count of 1 are found by interpolation along the
edges and connected to form triangles. The set of all such triangles
is the surface of a domain or cavity.

Surface-based cavities

The surface-based cavity [red in Fig. 1(a)] can be determined
as for center-based cavities, except that the Dirichlet-Voronoi
construction is performed from each point of the domain surface
to the neighboring atoms.

Analysis of structure and cavities

A range of quantities can be calculated for the atomic structure
(including bond and dihedral angles) and for each of the above
definitions of cavity. In addition to the volume VC, surface area,
and location of the center, we calculate the characteristic radius
rchar = (3VC/4π)1/3, which is the radius of a spherical cavity
with volume VC. We also evaluate and export pair distribution
functions (PDF) between all atom types and/or cavity centers.
Continuous representations can be generated using Gaussian,
Epanechnikov [Ep69], compact, triangular, box, right box, and
left box window functions. The corresponding kernels are listed in
the online documentation, and the default bandwidth σ is 0.4 in
all cases. Following earlier work [AMS92], [VBM15], [TS85], we
calculate the volume-weighted gyration tensor R, which describes
the second moment of the coordinates (x, y, z) of points inside a
cavity

R =
1

VC

xx xy xz
yx yy yz
zx zy zz

 .

Here xx = ∑
nc
j v jx jx j, xy = ∑

nc
j v jx jy j, . . . , v j is the volume of

cell j, and nc is the number of cells in cavity C. (x j,y j,z j) are
the Cartesian coordinates of the center of cell j relative to the
centroid or center of gyration of the cavity, which differs in general
from the center defined above. Measures of the size and shape
of individual cavities are the squared radius of gyration R2

g, the
asphericity η , the acylindricity c, and the relative shape anisotropy
κ2. These are defined as

R2
g = λ1 +λ2 +λ3

η =
(
λ1 −0.5(λ2 +λ3)

)
/(λ1 +λ2 +λ3)

c = (λ2 −λ3)/(λ1 +λ2 +λ3)

κ
2 =

(
η

2 +0.75c2)/R4
g,

where λ1, λ2, and λ3 are the ordered eigenvalues of R (λ1 ≥ λ2 ≥
λ3).

These quantities provide compact information about the sym-
metry and overall shape of a cavity and have been useful in
the context of diffusants in polymers [AMS92]. The asphericity
is always non-negative and is zero only when the cavity is
symmetric with respect to the three coordinate axes, e.g. for a
spherically symmetric or a cubic cavity. The acylindricity is zero
when the cavity is symmetric with respect to two coordinate axes,
e.g., for a cylinder. The relative shape anisotropy is bounded by
zero (spherical symmetry) and unity (all points collinear). The
calculation of these shape parameters requires particular care (and
more computer time) when cavities cross the boundaries of the

unit cell, and the default is not to calculate these parameters. The
parameters are also not calculated for (infinite) cavities that span
the simulation cell, and a warning is issued in this case.

Description of the Code

The program pyMolDyn is written in Python (2.7.13), uses
the graphical user interface Qt 5.8.0, the Python module PyQt5
(5.8.2), and the GR Framework and GR3 packages (0.24.0)
[HRH15] for 2D- and 3D-graphics, respectively. It has been tested
with NumPy (1.12.1). Numerically intensive sections are written
in C, compiled using Apple Clang 8.1.0 (macOS) or gcc 4.2.1
(Linux) and embedded using ctypes and extension modules. A
ready-to-use bundle for OS X (Mavericks, Yosemite, El Capitan)
and macOS Sierra is provided at:
http://pgi-jcns.fz-juelich.de/pub/downloads/software/pyMolDyn.
dmg
with installation scripts and a package repository for Linux [De-
bian 8 (Jessie), Ubuntu 16.04 LTS (Xenial Xerus), Centos 7.2,
Fedora 25, and OpenSUSE Leap 42.2] at:
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-main.html
Documentation is available in the same directory under pymoldyn-
doc.html, with links to the graphical user and command line inter-
faces. The source code is available via the public git repository:
http://github.com/sciapp/pyMolDyn.

The program supports unit cells of all seven 3D Bravais
lattices: triclinic (TRI), monoclinic (MON), orthorhombic (ORT),
tetragonal (TET), rhombohedral (RHO), hexagonal (HEX), and
cubic (CUB). These cells and the parameters required for their
definition are shown in Fig. 2. The bond length cutoffs in all
visualizations are 15% longer than the sum of the covalent radii of
the elements [OB], [Cetal08]. The default colors for the elements
are those used in Jmol/JSmol [Jmol] and other programs ("CPK",
Corey-Pauling-Koltun) [SF].

Each frame to be analyzed requires input in the .xyz-form,
which can be read by Jmol/JSmol and other packages. The first
lines of an .xyz file are typically:

<number of atoms>
<comment>
<element> <X> <Y> <Z>
...

where element is the symbol for the element in question, e.g.
SB or TE, and <X>, <Y>, and <Z> are the Cartesian coordinates
of the first atom. For each atom there is an input line with its
coordinates. In pyMolDyn, the second (usually comment) line
provides the necessary information concerning the Bravais lattice
and its parameters. In the case of a hexagonal lattice with a =
17.68942 and c = 22.61158 (in Å), for example, we write:
HEX 17.68943 22.61158
Additional comments on the first line (after the number of atoms
and a space) or the second line are ignored, and the space may be
used to store additional information.
The organization of the program and the workflow in practice are
clarified in the video linked after the title.

Application

The use of pyMolDyn is described in detail in the online doc-
umentation (see links above). To illustrate its usage, we take the
attached input file AgGeS-BOX.xyz, which shows a result of a
500-atom simulation of an amorphous alloy of Ag, Ge, and S

http://pgi-jcns.fz-juelich.de/pub/downloads/software/pyMolDyn.dmg
http://pgi-jcns.fz-juelich.de/pub/downloads/software/pyMolDyn.dmg
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-main.html
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-doc.html
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-doc.html
http://github.com/sciapp/pyMolDyn
https://pgi-jcns.fz-juelich.de/pub/media/pymoldyn_algorithms.mp4
https://raw.githubusercontent.com/sciapp/pyMolDyn/develop/data/AgGeS-BOX.xyz


PYMOLDYN: IDENTIFICATION, STRUCTURE, AND PROPERTIES OF CAVITIES IN CONDENSED MATTER AND MOLECULES 31

Triclinic

α
β

γ

a

b

c

a 6= b 6= c

α, β, γ 6= 90◦

Monoclinic

·

β

·

a b

c

a 6= b 6= c

β 6= 90◦ α, γ = 90◦

Orthorhombic

·

·
·

a b

c

a 6= b 6= c

α, β, γ = 90◦

Tetragonal

·
·

·

a a

c

a = b 6= c

α, β, γ = 90◦

Rhombohedral

α

αα

a a

a

a = b = c

α = β = γ 6= 90◦

Cubic

·
·

·

a a

a

a = b = c

α = β = γ = 90◦

Hexagonal

a

c

Fig. 2: The unit cells of the seven 3D Bravais lattices, together with
the parameters that define them.

(Ag100Ge168S232) in a cubic box of size 21.799 Å [Aetal15]. The
first three lines of the input are then:

500
CUB 21.799
AG -7.738 ...

At this point, clicking "pyMolDyn/Preferences" (OS X, macOS)
or "File/Settings" (Linux) allows changes to be made to the de-
fault colors for background (black), bounding box (white), bonds
(grey), domains (green), and center-based (brown) and surface-
based cavities (blue), as well as the cutoff value rC for calculating
surface-based cavities. The default is 2.8 Å for all atoms (we
use 2.5 Å in the present application because of the relatively
small sulfur atoms), but distinct cutoff radii may be chosen for
each element. To guide this choice, the covalent radii for the
elements present are provided when setting up the calculation.
The resolution can be set by the user and is 384 in the present
application. The program is started with the command:

pymoldyn

The choice of file can be made after clicking "Open", after which
"Calculate" leads to the window shown in Fig. 3.

Fig. 3: Window prior to setting parameters for calculation.

The resolution and other quantities can then be changed
as needed in the appropriate box, after which "OK" starts the
calculation and leads to the screen shown in Fig. 4.

The program allows the generation of high-resolution images
for publications and presentations, as well as creating videos
that illustrate changes in structure (and cavities) as a function
of time. Statistics generated by the program include surface
areas and volumes (and the surface/volume ratio) of all cavities
and domains, pair distribution functions and partial PDF, the
distributions of bond types and of bond and dihedral angles, as
well as the shape parameters discussed above. Pair distribution
functions can be calculated and represented using seven window
functions, and properties of individual atoms and cavities may be
filtered. This information is available graphically, as an ASCII
file, or as hdf5 output. For more details, see https://pgi-jcns.fz-
juelich.de/portal/pages/pymoldyn-gui.html

A batch (command line interface) version is useful for gener-
ating multiple frames needed for videos and can be called via

pymoldyn --batch <filename>

Further information concerning the batch version is provided in
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-cli.html

Concluding Remarks

The open source program pyMolDyn identifies cavities (vacan-
cies, voids) in periodic systems of atoms in a unit cell with one of
the seven 3D Bravais lattices. The program makes no assumptions
about cavity shapes, allows for atoms of different sizes, and it
calculates cavities defined in three ways: (a) "domains" determined
by excluding spherical regions around each atom, (b) "center-
based" cavities determined by Dirichlet-Voronoi constructions for
atoms and cavity centers, and (c) Dirichlet-Voronoi constructions
for atoms and points of domain surfaces ("surface-based" cavities).
The "split and merge" and "marching cubes" algorithms are
utilized. The program is based on the GR3 and GR framework
software [HRH15] and the input files use the .xyz format used
in Jmol/JSmol and other packages.

The size of systems that can be calculated depends on the
number of atoms, the necessary resolution, and on the computing

https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-gui.html
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-gui.html
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-cli.html
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Fig. 4: Visualization of structure of Ag/Ge/S (silver: Ag, green: Ge, yellow: S) and surface-based cavities (blue).

resolution time

128 4.0 s
192 6.5 s
256 15.3 s
384 43.0 s
512 158.3 s

TABLE 1: Time consumption for calculating surface and center based
cavities for AgGeS-BOX.xyz on a 2.5 GHz Core i7 with 16 GB
RAM.

hardware (processor, memory) used. Systems with 500 atoms (for
example AgGeS-BOX.xyz) can be computed in minutes on a 2.5
GHz Intel Core i7 (see TABLE 1).

Up to a resolution of 512 points the memory consumption is
modest (4 GB of RAM are adequate). For higher resolutions over
10 GB of memory should be available.

Extensions to simplify calculations for isolated molecules and
to allow the easy use of many-core, large memory computers are
being implemented. We welcome suggestions and contributions
to this ongoing project. Full details are available on https://pgi-
jcns.fz-juelich.de/portal/pages/pymoldyn-main.html.
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