
PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017) 41

SciSheets: Providing the Power of Programming With
The Simplicity of Spreadsheets

Alicia Clark§, Joseph L. Hellerstein‡∗

https://www.youtube.com/watch?v=2-qCCR5r01A

F

Abstract—Digital spreadsheets are arguably the most pervasive environment
for end user programming on the planet. Although spreadsheets simplify many
calculations, they fail to address requirements for expressivity, reuse, complex
data, and performance. SciSheets (from "scientific spreadsheets") is an open
source project that provides novel features to address these requirements:
(1) formulas can be arbitrary Python scripts as well as expressions (formula
scripts), which addresses expressivity by allowing calculations to be written as
algorithms; (2) spreadsheets can be exported as functions in a Python module
(function export), which addresses reuse since exported codes can be reused
in formulas and/or by external programs and improves performance since cal-
culations can execute in a low overhead environment; and (3) tables can have
columns that are themselves tables (subtables), which addresses complex data
such as representing hierarchically structured data and n-to-m relationships.
Our future directions include refinements to subtables, github integration, and
plotting. At present, SciSheets can do robust demos, but it is not yet beta code.

Index Terms—software engineering

1. Introduction

Digital spreadsheets are the "killer app" that ushered in the
PC revolution. This is largely because spreadsheets provide a
conceptually simple way to do calculations that (a) closely as-
sociates data with the calculations that produce the data and (b)
avoids the mental burdens of programming such as control flow,
data dependencies, and data structures. Over 800M professionals
author spreadsheet formulas as part of their work [MODE2017],
which is over 50 times the number of software developers world
wide [THIB2013].

We categorize spreadsheet users as follows:

• Novices want to evaluate equations, but they do not have
the prior programming experience necessary to create
reusable functions and longer scripts. Spreadsheet formu-
las work well for Novices since: (a) they can ignore data
dependencies; (b) they can avoid flow control by using

§ Department of Mechanical Engineering, University of Washington
* Corresponding author: joseph.hellerstein@gmail.com
‡ eScience Institute and School of Computer Science, University of Wash-
ington. This work was made possible by the Moore/Sloan Data Science
Environments Project at the University of Washington supported by grants
from the Gordon and Betty Moore Foundation (Award #3835) and the Alfred
P. Sloan Foundation (Award #2013-10-29).

Copyright © 2017 Alicia Clark et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

"copy" and "paste" for iteration; and (c) data structures are
"visual" (e.g., rectangular blocks).

• Scripters feel comfortable with expressing calculations
algorithmically using for and if statements; and they
can use simple data structures such as lists and pandas
DataFrames. However, Scripters rarely encapsulate
code into functions, preferring "copy" and "paste" to get
reuse.

• Programmers know about sophisticated data structures,
modularization, reuse, and testing.

Our experience is primarily with technical users such as
scientists. Most commonly, we encounter Novices and Scripters
with limited prior programming experience. We do not expect
these groups of users to take advantage of spreadsheet macro
capabilities (e.g., Visual Basic for Microsoft Excel or AppScript
in Google Sheets); we anticipate this functionality to be taken
advantage of only by Programmers.

Based on this experience, we find existing spreadsheets lack
several key requirements. First, they lack the expressivity re-
quirement in that (a) they only permit a limited set of functions to
be used in formulas (e.g., so that static dependency checking can
be done); and (b) they only support formulas that are expressions,
not scripts. In particular, the latter means that Scripters cannot
express calculations as algorithms, and Novices cannot write
linear workflows to articulate a computational recipe. A second
consideration is the reuse requirement. Today, it is impossible
to reuse spreadsheet formulas in other spreadsheet formulas or
in software systems. Third, current spreadsheet systems cannot
handle the complex data requirement, such as manipulating
data that are hierarchically structured or data that have n-to-m
relationships. Finally, existing spreadsheets cannot address the
performance requirement in that spreadsheets scale poorly with
the size of data and the number of formulas.

Academic computer science has recognized the growing im-
portance of end-user programming (EUP) [BURN2009]. Even so,
there is little academic literature on spreadsheets, arguably the
most pervasive EUP environment on the planet. [MCLU2006]
discusses object oriented spreadsheets that introduce a sophis-
ticated object model, but the complexity of this proposal is
unlikely to appeal to Novices. [JONE2003] describes a way
that users can implement functions within a spreadsheet to get
reuse. However, the approach imposes a significant burden on
the user, and does not address reuse of formulas outside the
spreadsheet environment. Industry has had significant interest in

https://www.youtube.com/watch?v=2-qCCR5r01A
mailto:joseph.hellerstein@gmail.com

42 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

innovating spreadsheets. Google Fusion Tables [GONZ2010] and
the "Tables" feature of Microsoft Excel [MICROSOF] use column
formulas to avoid a common source of error, copying formulas as
rows are added/deleted from a table. The Pyspread [PYSPREAD]
project uses Python as the formula language, but Pyspread for-
mulas cannot be Python scripts. A more radical approach is taken
by Stencila [STENCILA], a document system that provides ways
to execute code that updates tables (an approach that is in the
same spirit as Jupyter Notebooks [PERE2015]). Stencila supports
a variety of languages including JavaScript, Python, and SQL.
However, Stencila lacks features that spreadsheet users expect:
(a) closely associating data with the calculations that produce
the data and (b) avoiding considerations of data dependencies in
calculations.

This paper introduces SciSheets [SCISHEETS], a new spread-
sheet system with the objective of providing the power of program-
ming with the simplicity of spreadsheets. The name SciSheets is
a contraction of the phrase "Scientific Spreadsheet", a nod to the
users who motivated the requirements that we address. That said,
our target users are more broadly technical professionals who do
complex calculations on structured data. We use the term scisheet
to refer to a SciSheets spreadsheet. We note in passing that our
focus for scisheets is on calculations, not document processing
features such as formatting and drawing figures.

SciSheets addresses the above requirements by introducing
several novel features.

• Formula Scripts. Scisheet formulas can be arbitrary Python
scripts as well as expressions. This addresses expressivity
by allowing calculations to be written as algorithms.

• Function Export. Scisheets can be exported as functions
in a Python module. This addresses reuse since exported
codes can be reused in SciSheets formulas and/or by
external programs. Further, performance is improved by
the export feature since calculations execute in a low
overhead environment.

• Subtables. Tables can have columns that are themselves
tables (columns within columns). This addresses the com-
plex data requirement, such as representing hierarhically
structured data and n-to-m relationships.

The remainder of the paper is organized as follows. Section 2
describes the requirements that we consider, and Section 3 details
the SciSheets features that address these requirements. The design
of SciSheets is discussed in Section 4, and Section 5 discusses
features planned for SciSheets. Our conclusions are contained in
Section 6.

2. Requirements

This section presents examples that motivate the requirements of
expressivity, reuse, and complex data.

Our first example is drawn from biochemistry labs studying
enzyme mediated chemical reactions. Commonly, the Michaelis-
Menten [BERG2002] Model of enzyme activity is used in which
there is a single chemical species, called the substrate, that
interacts with the enzyme to produce a new chemical species (the
product). Two properties of enzymes are of much interest: the
maximum reaction rate, denoted by VMAX , and the concentration
KM of substrate that achieves a reaction rate equal to half of VMAX .

To perform the Michaelis-Menten analysis, laboratory data are
collected for different values of the substrate concentrations S and

Fig. 1: Data view for an Excel spreadsheet that calculates Michaelis-
Menten Parameters.

Fig. 2: Formulas used in Fig. 1.

associated reaction rates V . Then, a calculation is done to obtain
the parameters VMAX and KM using the following recipe.

1) Compute 1/S and 1/V , the inverses of S and V .
2) Compute the intercept and slope of the regression of 1/V

on 1/S.
3) Calculate VMAX and KM from the intercept and slope.

Fig. 1 shows an Excel spreadsheet that implements this recipe
with column names that correspond to the variables in the recipe.
Fig. 2 displays the formulas that perform these calculations.
Readability can be improved by using column formulas (e.g., as
in Fusion Tables). However, two problems remain. Novices cannot
explicitly articulate the computational recipe; rather, the recipe is
implicit in the order of the columns. Even more serious, there is
no way to reuse these formulas in other formulas (other than error-
prone copy-and-paste), and there is no way to reuse formulas in
an external program.

We consider a second example to illustrate problems with
handling non-trivial data relationships in spreadsheets. Fig. 3
displays data that a university might have for students in two
departments in the School of Engineering, Computer Science
& Engineering (CSE) and Biology. The data are organized into
two tables (CSE and Biology) grouped under Engineering,
with separate columns for student identifiers and grades. These
tables are adjacent to each other to facilitate comparisons between
students. However, the tables are independent of each other in

Fig. 3: Illustrative example of student grade data from two depart-
ments in the School of Engineering. CSE and Biology are separate
tables that are grouped together for convenience of analysis. In
existing spreadsheet systems, users cannot perform row operations
such as insert, delete, and/or hide on one subtable without affecting
the other subtable.

SCISHEETS: PROVIDING THE POWER OF PROGRAMMING WITH THE SIMPLICITY OF SPREADSHEETS 43

Fig. 4: Column popup menu in a scisheet for the Michaelis-Menten
calculation.

that we should be able to insert, delete, and hide rows in one
table without affecting the other table. Unfortunately, existing
spreadsheet systems do not handle this well; inserting, deleting,
or hiding a row in one table affects every table that overlaps that
row in the spreadsheet. Note that arranging the tables vertically
does not help since the problem becomes inserting, deleting, and
hiding columns. We could arrange the tables in a diagonal, but this
makes it difficult to make visual comparisons between tables.

3. Features

This section describes SciSheets features that address the require-
ments of expressivity, reuse, complex data, and performance. We
begin with a discussion of the SciSheets user interface in Section
3.1. Then, Sections 3.2, 3.3, and 3.4 present formula scripts (which
addresses expressivity), function export (which addresses reuse
and performance), and subtables (which addresses complex data)
respectively.

3.1 User Interface

Fig. 4 displays a scisheet that performs the Michaelis-Menten
calculations as we did in Fig. 1. Note that columns containing
a formula have a name annotated with an *.

A scisheet has the familiar tabular structure of a spreadsheet.
However, unlike existing spreadsheets, SciSheets knows about
the elements of a scisheet: tables, columns, rows, and cells. In
SciSheets, there are two types of columns. Data columns contain
data values; subtable columns contain a table. The name of a data
column is a Python variable that can be referenced in formulas.
These column variables are numpy Arrays. This means that
formulas can be written using column names to express vector
calculation using a rich set of operators that properly handle
missing data (e.g., using NaN values).

SciSheets users interact directly with the scisheet element
appropriate for the desired action. A left click on a scisheet
element results in a popup menu. For example, in Fig. 4 we
see the column popup for INV_S. Users select an item from
the popup, and this may in turn present additional menus. The
popup menus for row, column, and table have common items for
insert, delete, hide/unhide. Columns additionally have a formula
item. The scisheet popup has items for saving and renaming the
scisheet as well as undoing/redoing operations on the scisheet. The
cell popup is an editor for the value in the cell.

Fig. 5 displays the results of selecting the formula item from
the popup menu in Fig. 4 for the column INV_S. A simple line
editor is displayed. The formula is an expression that references
the column S.

Fig. 5: Formula for computing the inverse of the input value S.

Fig. 6: Formula for the complete calculation of VMAX and KM . The
formula is a simple script, allowing a Novice to see exactly how the
data in the scisheet are produced.

3.2 Formula Scripts and Formula Evaluation

SciSheets allows formulas to be scripts with arbitrary Python
statements. For example, Fig. 6 displays a script that contains the
entire computational recipe for the Michaelis-Menten calculation
described in Section 2. This capability greatly increases the ability
of spreadsheet users to describe and document their calculations.

The formula scripts feature has a significant implication on
how formulas are evaluated. Since a formula may contain arbi-
trary Python codes including eval expressions, we cannot use
static dependency analysis to determine data dependencies. Thus,
formula evaluation is done iteratively. But how many times must
this iteration be done?

Consider an evaluation of N formula columns assuming that
there are no circular references or other anomalies in the formulas.
Then, at most N iterations are needed for convergence since on
each iteration at least one column variable is assigned its final
value. If after N iterations, there is an exception, (e.g., a column
variable does not have a value assigned), this is reported to the
user since there is likely an error in the formulas. Otherwise, the
scisheet is updated with the new values of the column variables.
Actually, we can do better than this since if the values of column
variables converge after loop iteration M < N (and there is no
exception), then formula evaluation stops. We refer to the above
workflow as the formula evaluation loop.

SciSheets augments the formula evaluation loop by providing
users with the opportunity to specify two additional formulas. The
prologue formula is executed once at the beginning of formula
evaluation; the epilogue formula is executed once at the end of
formula evaluation. These formulas provide a way to do high
overhead operations in a one-shot manner, a feature that assists
the performance requirement. For example, a user may have a
prologue formula that reads a file (e.g., to initialize input values
in a table) at the beginning of the calculation, and an epilogue
formula that writes results at the end of the calculation. Prologue
and epilogue formulas are modified through the scisheet popup
menu.

At present, variable names have a global scope within the
scisheet. This is often a desirable feature. For example, in Fig.
6, values computed in one column formula are assigned to another
column. However, as discussed in Section 5, there are some
interesting use cases for having subtable name scoping, a feature
that we are implementing.

44 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 7: Menu to export a scisheet as a function in a Python module.

3.3. Function Export

A scisheet can be exported as a function in a Python module.
This feature addresses the reuse requirement since exported codes
can be used in scisheet formulas and/or external programs. The
export feature also addresses the performance requirement since
executing standalone code eliminates many overheads.

At first glance, it may seem that being able to export a
scisheet as a function is in conflict with an appealing feature of
spreadsheets--that data are closely associated with the calculations
that produce the data. It is a central concern of SciSheets to
preserve this feature of spreadsheets. Thus, users specify formulas
for columns and/or for table prologues and epilogues without
regard to how code might be exported. SciSheets automatically
structures code for export.

Fig. 7 displays the scisheet popup menu for function export.
The user sees a menu with entries for the function name, inputs (a
list of column names), and outputs (a list of column names).

Function export produces two files. The first is the Python
module containing the exported function. The second is a Python
file containing a test for the exported function.

We begin with the first file. The code in this file is structured
into several sections:

• Function definition and setup
• Formula evaluation
• Function close

The function definition and setup contain the function defi-
nition, imports, and the scisheet prologue formula. Note that the
prologue formula is a convenient place to import Python packages.

Function definition
def michaelis(S, V):
from scisheets.core import api as api
s = api.APIPlugin('michaelis.scish')
s.initialize()
_table = s.getTable()
Prologue
s.controller.startBlock('Prologue')
Begin Prologue
import math as mt
import numpy as np
from os import listdir
from os.path import isfile, join
import pandas as pd
import scipy as sp
from numpy import nan # Must follow sympy import

End Prologue
s.controller.endBlock()

In the above code, the imported package
scisheets.core.api contains the SciSheets runtime.
The object s is constructed using a serialization of the scisheet
that is written at the time of function export. scisheets are
serialized in a JSON format to a file that has the extension
.scish.

We see that prologue formulas can be lengthy scripts. For
example, one scisheet developed with a plant biologist has a
prologue formula with over fifty statements. As such, it is essential
that syntax and execution errors are localized to a line within the
script. We refer to this as the script debuggability requirement.
SciSheets handles this requirement by using the paired state-
ments s.controller.startBlock('Prologue') and
s.controller.endBlock(). These statements "bracket" the
script so that if an exception occurs, SciSheets can compute the
line number within the script for that exception.

Next, we consider the formula evaluation loop. Below is the
code that is generated for the beginning of the loop and the
evaluation of the formula for INV_S.
s.controller.initializeLoop()
while not s.controller.isTerminateLoop():

s.controller.startAnIteration()
Formula evaluation blocks
try:

Column INV_S
s.controller.startBlock('INV_S')
INV_S = 1/S
s.controller.endBlock()
INV_S = s.coerceValues('INV_S', INV_S)

except Exception as exc:
s.controller.exceptionForBlock(exc)

s.controller.initializeLoop() snapshots column
variables. s.controller.isTerminateLoop() counts
loop iterations, looks for convergence of column variables, and
checks to see if the last loop iteration has an exception. Each
formula column has a pair of try and except statements
that execute the formula and record exceptions. Note that loop
execution continues even if there is an exception for one or
more formula columns. This is done to handle situations in
which formula columns are not ordered according to their data
dependencies.

Last, there is the function close. The occurrence of an excep-
tion in the formula evaluation loop causes an exception with the
line number in the formula in which the (last) exception occurred.
If there is no exception, then the epilogue formula is executed, and
the output values of the function are returned (assuming there is
no exception in the epilogue formula).
if s.controller.getException() is not None:
raise Exception(s.controller.formatError(

is_absolute_linenumber=True))
s.controller.startBlock('Epilogue')
Epilogue (empty)
s.controller.endBlock()
return V_MAX,K_M

The second file produced by SciSheets function export contains
test code. Test code makes use of unittest with a setUp
method that assigns self.s the value of a SciSheets runtime
object.
def testBasics(self):

S = self.s.getColumnValue('S')
V = self.s.getColumnValue('V')
V_MAX,K_M = michaelis(S,V)

SCISHEETS: PROVIDING THE POWER OF PROGRAMMING WITH THE SIMPLICITY OF SPREADSHEETS 45

Fig. 8: A scisheet that processes many CSV files.

Fig. 9: Column formula for K_M in Fig. 8 that is a script to process a
list of CSV files.

self.assertTrue(
self.s.compareToColumnValues('V_MAX', V_MAX))

self.assertTrue(
self.s.compareToColumnValues('K_M', K_M))

The above test compares the results of running the exported
function michaelis on the input columns S and V with the
values of output columns V_MAX and K_M.

The combination of the features function export and formula
scripts is extremely powerful. To see this, consider a common pain
point with spreadsheets - doing the same computation for different
data sets. For example, the Michaelis-Menten calculation in Fig.
1 needs to be done for data collected from many experiments that
are stored in several comma separated variable (CSV) files. Fig.
8 displays a scisheet that does the Michaelis-Menten calculation
for the list of CSV files in the column CSV_FILE. (This list
is computed by the prologue formula based on the contents of
the current directory.) Fig. 9 displays a script that reuses the
michaelis function exported previously to compute values for
K_M and V_MAX. Thus, whenever new CSV files are available,
K_M and V_MAX are calculated without changing the scisheet in
Fig. 8.

3.4. Subtables

Subtables provide a way for SciSheets to deal with complex data
by having tables nested within tables.

Fig. 10: The table Engineering has two subtables CSE and
Biology. The subtables are independent of one another, which is
indicated by the square brackets around their names and the presence
of separate row columns.

Fig. 11: Menu to insert a row in one subtable. The menu is accessed
by left-clicking on the "3" cell in the column labelled "row" in the
CSE subtable.

Fig. 12: Result of inserting a row in the CSE subtable. Note that the
Biology substable is unchanged.

We illustrate this by revisiting the example in Fig. 3. Fig. 10
displays a scisheet for these data in which CSE and Biology are
independent subtables (indicated by the square brackets around
the names of the subtables). Note that there is a column named
row for each subtable since the rows of CSE are independent of
the rows of Biology.

Recall that in Section 2 we could not insert a row into CSE
without also inserting a row into Biology. SciSheets addresses
this requirement by providing a separate row popup for each
subtable. This is shown in Fig. 11 where there is a popup for
row 3 of CSE. The result of selecting insert is displayed in Fig.
12. Note that the Biology subtable is not modified when there
is an insert into CSE.

4. Design

SciSheets uses a client-server design. The client runs in the
browser using HTML and JavaScript; the server runs Python using
the Django framework [DJANGOPR]. This design provides a zero
install deployment, and leverages the rapid pace of innovation in
browser technologies.

Our strategy has been to limit the scope of the client code to
presentation and handling end-user interactions. When the client
requires data from the server to perform end-user interactions
(e.g., populate a list of saved scisheets), the client uses AJAX
calls. The client also makes use of several JavaScript packages
including JQuery [JQUERYPR], YUI DataTable [YUIDATAT],
and JQueryLinedText [JQUERYLI].

The SciSheets server handles the details of user requests,
which also requires maintaining the data associated with scisheets.
Fig 13 displays the core classes used in the SciSheets server. Core
classes have several required methods. For example, the copy
method makes a copy of the object for which it is invoked. To do
this, the object calls the copy method of its parent class as well,
and this is done recursively. Further, the object must call the copy
method for core objects that are in its instance variables, such as

46 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 13: SciSheets core classes.

ColumnContainer which has the instance variable columns
that contains a list of Column objects. Other examples of required
methods are isEquivalent, which tests if two objects have the
same values of instance variables, and deserialize, which
creates objects based on data serialized in a JSON structure.

Next, we describe the classes in Fig. 13. Tree implements
a tree that is used to express hierarchical relationships such
as between Table and Column objects. Tree also provides
a mapping between the name of the scisheet element and
the object associated with the name (e.g., to handle user re-
quests). ColumnContainer manages a collections of Table
and Column objects. Column is a container of data values.
Table knows about rows, and it does formula evaluation using
evaluate(). UITable handles user requests (e.g., renaming a
column and inserting a row) in a way that is independent of the
client implementation. DTTable provides client specific services,
such as rendering tables into HTML using render().

The classes NameSpace (a Python namespace) and
ColumnVariable are at the center of formula evaluation. The
evaluate() method in Table generates Python code that is
executed in a Python namespace. The SciSheets runtime creates
an instance of ColumnVariable for each Column in the
scisheet being evaluated. ColumnVariable puts the name of
its corresponding Column into the namespace, and assigns to this
name a numpy Array that is populated with the values of the
Column.

Last, we consider performance. There are two common causes
of poor performance in the current implementation of SciSheets.
The first relates to data size. At present, SciSheets embeds data
with the HTML document that is rendered by the browser. We
will address this by downloading data on demand and caching
data locally.

The second cause of poor performance is having many iter-
ations of the formula evaluation loop. If there is more than one
formula column, then the best case is to evaluate each formula
column twice. The first execution produces the desired result (e.g.,
if the formula columns are in order of their data dependencies);
the second execution confirms that the result has converged. Some
efficiencies can be gained by using the prologue and epilogue
features for one-shot execution of high overhead operations (e.g.,
file I/O). In addition, we are exploring the extent to which
SciSheets can automatically detect if static dependency checking
can be used so that formula evaluation is done only once.

Clearly, performance can be improved by reducing the number

of formula columns since this reduces the maximum number of
iterations of the formulation evaluation loop. SciSheets supports
this strategy by permitting formulas to be scripts. This is a
reasonable strategy for a Scripter, but it may work poorly for a
Novice who is unaware of data dependencies.

5. Future Work

This section describes several features that are under development.

5.1 Subtable Name Scoping

This feature addresses the reuse requirement. Today, spreadsheet
users typically employ copy-and-paste to reuse formulas. This
approach has many drawbacks. First, it is error prone since there
are often mistakes as to what is copied and where it is pasted.
Second, fixing bugs in formulas requires repeating the same error
prone copy-and-paste.

It turns out that a modest change to the subtable feature can
provide a robust approach to reuse through copy-and-paste. This
change is to have a subtable define a name scope. This means that
the same column name can be present in two different subtables
since these names are in different scopes.

We illustrate the benefits of subtable name scoping. Consider
Fig. 10 with the subtables CSE and Biology. Suppose that the
column GradePtAvg in CSE is renamed to GPA so that both
CSE and Biology have a column named GPA. Now, consider
adding the column TypicalGPA to both subtables; this column
will have a formula that computes the mean value of GPA. The
approach would be as follows:

1) Add the column TypicalGPA to CSE.
2) Create the formula np.mean(GPA) in TypicalGPA.

This formula will compute the mean of the values of the
GPA column in the CSE subtable (because of subtable
name scoping).

3) Copy the column TypicalGPA to subtable Biology.
Because of subtable name scoping, the formula
np.mean(GPA) will reference the column GPA in
Biology, and so compute the mean of the values of
GPA in the Biology subtable.

Now suppose that we want to change the calculation of
TypicalGPA to be the median instead of the mean. This is
handled as follows:

1) The user edits the formula for the column
TypicalGPA in subtable CSE, changing the formula to
np.median(GPA).

2) SciSheets responds by asking if the user wants the copies
of this formula to be updated as well.

3) The user answers "yes", and the formula is changed for
TypicalGPA in subtable Biology.

Note that we would have the same result in the above proce-
dure if the user had in step (1) modified the Biology subtable.

5.2 Github Integration

A common problem with spreadsheets is that calculations are
difficult to reproduce because some steps are manual (e.g., menu
interactions). Additionally, it can be difficult to reproduce a
spreadsheet due to the presence of errors. We refer to this as
the reproducibility requirement. Version control is an integral
part of reproducibility. Today, a spreadsheet file as a whole can be

SCISHEETS: PROVIDING THE POWER OF PROGRAMMING WITH THE SIMPLICITY OF SPREADSHEETS 47

Fig. 14: Mockup showing how a scisheet can be split into two
branches (e.g., for testing and/or feature exploration).

version controlled, but this granularity is too coarse. More detailed
version control can be done manually. However, this is error
prone, especially in a collaborative environment. One automated
approach is a revision history, such as Google Sheets. However,
this technique fails to record the sequence in which changes were
made, by whom, and for what reason.

The method of serialization used in SciSheets lends itself well
to github integration. Scisheets are serialized as JSON files with
separate lines used for data, formulas, and structural relationships
between columns, tables, and the scisheet. Although the structural
relationships have a complex representation, it does seem that
SciSheets can be integrated with the line oriented version control
of github.

We are in the process of designing an integration of SciSheets
with github that is natural for Novices and Scripters. The scope
includes the following use cases:

• Branching. Users should be able to create branches to
explore new calculations and features in a scisheet. Fig.
14 shows how a scisheet can be split into two branches.
As with branching for software teams, branching with a
spreadsheet will allow collaborators to work on their part
of the project without affecting the work of others.

• Merging. Users will be able to utilize the existing
github strategies for merging documents. In addition, we
intend to develop a visual way for users to detect and re-
solve merge conflicts. Fig. 15 illustrates how two scisheets
can be merged. Our thinking is that name conflicts will
be handled in a manner similar to that used in pandas
with join operations. Our implementation will likely be
similar to the nbdime package developed for merging and
differencing Jupyter notebooks [NBDIME].

• Differencing. Users will be able to review the history of
git commit operations. Fig. 16 displays a mockup of a
visualization of the history of a scisheet. The user will
be able to select any point in history (similar to git
checkout). This functionality will allow collaborators
to gain a greater understanding of changes made.

Fig. 15: Mockup displaying two scisheets can be merged (assuming
no merge conflicts).

Fig. 16: Mockup visualization of the change history of a scisheet. The
versions in green show when columns have been added; the versions
in red show when columns have been removed.

5.3 Plotting

At present, SciSheets does not support plotting. However, there
is clearly a plotting requirement for any reasonable spreadsheet
system. Our approach to plotting will most likely be to leverage the
bokeh package [BOKEHPRO] since it provides a convenient way
to generate HTML and JavaScript for plots that can be embedded
into HTML documents. Our vision is to make plot a function
that can be used in a formula. A plot column will have its cells
rendered as HTML.

6. Conclusions

SciSheets is a new spreadsheet system with the guiding principle
of providing the power of programming with the simplicity of
spreadsheets. Our target users are technical professionals who do
complex calculations on structured data.

SciSheets addresses several requirements that are not handled
in existing spreadsheet systems, especially the requirements of
expressivity, reuse, complex data, and performance. SciSheets ad-
dresses these requirements by introducing several novel features.

• Formula Scripts. Scisheet formulas can be Python scripts,
not just expressions. This addresses expressivity by allow-
ing calculations to be written as algorithms.

• Function Export. Scisheets can be exported as functions
in a Python module. This addresses reuse since exported
codes can be reused in SciSheets formulas and/or by
external programs. Further, performance is improved by
the export feature since calculations execute in a low
overhead environment.

48 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Requirement SciSheets Feature

• Expressivity • Python formulas
• Formula scripts

• Reuse • Function export
• Subtable name scop-

ing

• Complex Data • Subtables

• Performance • Function export
• Prologue, Epilogue
• Load data on demand
• Conditional static de-

pendency checking

• Plotting • Embed bokeh compo-
nents

• Script Debugga-
bility

• Localized exceptions

• Reproducibility • github integration

TABLE 1: Summary of requirements and SciSheets features that
address these requirements. Features in italics are planned but not
yet implemented.

• Subtables. Tables can have columns that are themselves
tables (columns within columns). This addresses the com-
plex data requirement, such as representing n-to-m rela-
tionships.

Table 1 displays a comprehensive list of the requirements we
plan to address and the corresponding SciSheets features.

One goal for SciSheets is to make users more productive with
their existing workflows for developing and evaluating formulas.
However, we also hope that SciSheets becomes a vehicle for
elevating the skills of users, making Novices into Scripters and
Scripters into Programmers.

At present, SciSheets is capable of doing robust demos.
Some work remains to create a beta. We are exploring possible
deployment vehicles. For example, rather than having SciSheets
be a standalone tool, another possibility is integration with Jupyter
notebooks.

REFERENCES

[BERG2002] Berg, Jermey et al. Biochemistry, W H Freeman, 2002.
[BOKEHPRO] Bokeh Project. http://bokeh.pydata.org/.
[BURN2009] Burnett, M. What is end-user software engineering and why

does it matter?, Lecture Notes in Computer Science, 2009
[DJANGOPR] Django Project. http://www.djangoproject.com.
[GONZ2010] Google Fusion Tables: Web-Centered Data Management and

Collaboration, Hector Gonzalez et al., SIGMOD, 2010.
[JONE2003] Jones, S., Blackwell, A., and Burnett, M. i A user-centred

approach to functions in excel, SIGPLAN Notices, 2003.
[JQUERYLI] JQueryLinedText. https://github.com/aw20/JQueryLinedText.

[JQUERYPR] JQuery Package. https://jquery.com/.
[MCCU2006] McCutchen, M., Itzhaky, S., and Jackson, D. Object spread-

sheets: a new computational model for end-user development of
data-centric web applications, Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 2006.

[MICROSOF] Microsoft Corporation. Overview of Excel tables,
https://support.office.com/en-us/article/Overview-of-Excel-
tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c.

[MODE2017] MODELOFF - Financial Modeling World Championships,
http://www.modeloff.com/the-legend/.

[NBDIME] nbdime, https://github.com/jupyter/nbdime.
[PERE2015] Perez, Fernando and Branger, Brian. Project Jupyter: Computa-

tional Narratives as the Engine of Collaborative Data Science,
http://archive.iPython.org/JupyterGrantNarrative-2015.pdf.

[PYSPREAD] Manns, M. PYSPREAD, http://github.com/manns/pyspread.
[SCISHEET] SciSheets, https://github.com/ScienceStacks/SciSheets.
[STENCILA] Stencila, https://stenci.la/.
[THIB2013] Thibodeau, Patrick. India to overtake U.S. on number of devel-

opers by 2017, COMPUTERWORLD, Jul 10, 2013.
[YUIDATAT] Yahoo User Interface DataTable. https://yuilibrary.com/yui/

docs/datatable/.

http://bokeh.pydata.org/
http://www.djangoproject.com
https://github.com/aw20/JQueryLinedText
https://jquery.com/
https://support.office.com/en-us/article/Overview-of-Excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c
https://support.office.com/en-us/article/Overview-of-Excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c
http://www.modeloff.com/the-legend/
https://github.com/jupyter/nbdime
http://archive.iPython.org/JupyterGrantNarrative-2015.pdf
http://github.com/manns/pyspread
https://github.com/ScienceStacks/SciSheets
https://stenci.la/
https://yuilibrary.com/yui/docs/datatable/
https://yuilibrary.com/yui/docs/datatable/

	1. Introduction
	2. Requirements
	3. Features
	3.1 User Interface
	3.2 Formula Scripts and Formula Evaluation
	3.3. Function Export
	3.4. Subtables

	4. Design
	5. Future Work
	5.1 Subtable Name Scoping
	5.2 Github Integration
	5.3 Plotting

	6. Conclusions
	References

