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Abstract—By 2020 roughly 200 million people worldwide will suffer from pho-
toreceptor diseases such as retinitis pigmentosa and age-related macular de-
generation, and a variety of retinal sight restoration technologies are being
developed to target these diseases. One technology, analogous to cochlear im-
plants, uses a grid of electrodes to stimulate remaining retinal cells. Two brands
of retinal prostheses are currently approved for implantation in patients with
late stage photoreceptor disease. Clinical experience with these implants has
made it apparent that the vision restored by these devices differs substantially
from normal sight. To better understand the outcomes of this technology, we
developed pulseZpercept, an open-source Python implementation of a computa-
tional model that predicts the perceptual experience of retinal prosthesis patients
across a wide range of implant configurations. A modular and extensible user
interface exposes the different building blocks of the software, making it easy for
users to simulate novel implants, stimuli, and retinal models. We hope that this
library will contribute substantially to the field of medicine by providing a tool to
accelerate the development of visual prostheses.

Index Terms—bionic vision, retinal implant, pulse2percept, prosthesis

Introduction

Two frequent causes of blindness in the developed world are
age-related macular degeneration (AMD) and retinitis pigmentosa
(RP) [BBB " 84], [Gro04]. Both of these diseases have a hereditary
component, and are characterized by a progressive degeneration of
photoreceptors in the retina that lead to gradual loss of vision.

Microelectronic retinal prostheses have been developed in an
effort to restore sight to RP and AMD patients. Analogous to
cochlear implants, these devices function by electrically stimulat-
ing surviving retinal neurons in order to evoke neuronal responses
that are transmitted to the brain and interpreted by patients as
visual percepts (Fig. 1). Two of these devices are already approved
for commercial use, and a number of other companies have either
started or are planning to start clinical trials of devices in the
near future. Other types of technologies, such as optogenetics and
genetic modification are also areas of active research. Blinded
individuals may potentially be offered a wide range of sight
restoration options within a decade [FCL15].
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Fig. 1: Electronic retinal prosthesis. Light from the visual scene is
captured by an external camera and transformed into electrical pulses
delivered through microelectrodes to stimulate the retina.

One major challenge in the development of retinal prostheses
is predicting what patients will see when they use their devices.
Interactions between implant electronics and the underlying neu-
rophysiology cause nontrivial perceptual distortions in both space
and time [FB15], [BRBFss] that severely limit the quality of the
generated visual experience.

Our goal was to develop a simulation framework that could
describe the visual percepts of retinal prosthesis patients over
space and time. We refer to these simulations as ‘virtual patients’,
analogous to the virtual prototyping that has proved so useful in
other complex engineering applications.

Here we present an open-source implementation of these
models as part of pulse2percept, a BSD-licensed Python-based
simulation framework [BSD17] that relies on the NumPy and
SciPy stacks, as well as contributions from the broader Python
community. Based on the detailed specification of a patient’s
implant configuration, and given a desired electrical stimulus, the
model predicts the perceptual distortions experienced by ‘virtual
patients’ over both space and time.

We hope that this library will contribute substantially to the
field of medicine by providing a tool to accelerate the development
of visual prostheses. Researchers may use this tool to improve
stimulation protocols of existing implants or to aid development of
future devices. In addition, this tool might guide government agen-
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cies, such as the FDA and Medicare, in making reimbursement
decisions. Furthermore, this tool can be used to guide patients and
doctors in their decision as to when or whether to be implanted,
and which device to select.

The remainder of this paper is organized as follows: We
start by introducing the neuroscience background necessary to
understand the interactions between implant electronics and the
underlying neurophysiology. We then detail the computational
model that underlies pulse2percept, before we give a simple usage
example and go into implementation details. We then review
our solutions to various technical challenges, and conclude by
discussing the broader impact for this work for computational
neuroscience and neural engineering communities in more detail.

Background

The first steps in seeing begin in the retina, where a mosaic of
photoreceptors converts incoming light into electrochemical sig-
nals that encode the intensity of light as a function of position (two
dimensions), wavelength, and time [Rod98]. The electrochemical
signal is passed on to specialized neuronal circuits consisting of
a variety of cell types (such as bipolar, amacrine, and horizontal
cells), which act as feature detectors for basic sensory properties,
such as spatial contrast and temporal frequency. These sensory
features are then encoded in parallel across approximately 1.5
million retinal ganglion cells, which form the output layer of the
retina. Each ganglion cell relays the electrical signal to the brain
via a long axon fiber that passes from the ganglion cell body to
the optic nerve and on to the brain.

Diseases such as RP and AMD are characterized by a pro-
gressive degeneration of photoreceptors, gradually affecting other
layers of the retina [HPdJ"99], [MNSO08]. In severe end-stage RP,
roughly 95% of photoreceptors, 20% of bipolar cells, and 70%
of ganglion cells degenerate [SHd " 97]. In addition, the remaining
cells undergo corruptive re-modeling in late stages of the disease
[MJWSO03], [MJ03], so that little or no useful vision is retained.

Microelectronic retinal prostheses have been developed in an
effort to restore sight to individuals suffering from RP or AMD.
Analogous to cochlear implants, the goal of retinal prostheses
is to electrically stimulate surviving bipolar or ganglion cells
in order to evoke neuronal responses that are interpreted by
the brain as visual percepts. The electrical stimulus delivers
charge to the cell membrane that depolarizes the neuron and
opens voltage-sensitive ion channels. This bypasses the natural
presynaptic neurotransmitter excitation and causes the activated
neurons to stimulate their postsynaptic targets. Therefore, selective
spatiotemporal modulation of retinal neurons with an array of
electrodes should allow a prosthesis to coordinate retinal activity
in place of natural photoreceptor input [WWH16].

Several types of retinal prostheses are currently in develop-
ment. These vary in their user interface, light-detection method,
signal processing, and microelectrode placement within the retina
(for a recent review see [WWH16]). As far as our model is con-
cerned, the critical factor is the placement of the microelectrodes
on the retina (Fig. 2). The three main locations for microelectrode
implant placement are epiretinal (i.e., on top of the retinal surface,
above the ganglion cells), subretinal (i.e., next to the bipolar cells
in the space of the missing photoreceptors), and suprachoroidal
(i.e., between the choroid and the sclera). Each of these approaches
is similar in that light from the visual scene is captured via a
camera and transformed into electrical pulses delivered through
electrodes to stimulate the retina.
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Fig. 2: Diagram of the retina and common locations of retinal
prosthesis microelectrode arrays. Retinitis pigmentosa causes severe
photoreceptor degeneration. Epiretinal electrode arrays are placed in
the vitreous, next to the optic fiber layer (OFL). Subretinal arrays
are placed by creating a space between the choroid and remaining
retinal tissue. Suprachoroidal arrays are placed behind the choroid.
pulse2percept allows for simulation of processing in the inner nuclear
layer (INL), ganglion cell layer (GCL), and optic fiber layer (OFL).
Based on "Retina layers" by Peter Hartmann, CC BY-SA 3.0.

As mentioned above, two devices are currently approved for
commercial use and are being implanted in patients across the US
and Europe: the Argus II device (epiretinal, Second Sight Medical
Products Inc., [d{CDH ™ 16]) and the Alpha-IMS system (subretinal,
Retina Implant AG, [SBSB " 15]). At the same time, a number of
other companies have either started or are planning to start clinical
trials in the near future, potentially offering a wide range of sight
restoration options for the blind within a decade [FCL15].

However, clinical experience with existing retinal prostheses
makes it apparent that the vision provided by these devices differs
substantially from normal sight. Interactions between implant
electronics and the underlying neurophysiology cause nontrivial
perceptual distortions in both space and time [FB15], [BRBFss]
that severely limit the quality of the generated visual experience.
For example, stimulating a single electrode rarely produces the
experience of a ‘dot’ of light, instead leading to percepts that
vary drastically in shape, varying in description from ‘blobs’, to
‘streaks’ and ‘half-moons’. The percept produced by stimulating
a single electrode with a continuous pulse train also fades over
time, usually disappearing over a course of seconds. As a result,
patients do not report seeing an interpretable world. One patient
describes it as like: "... looking at the night sky where you have
millions of twinkly lights that almost look like chaos" [Prel5].

Previous work by our group has focused on development
of computational models to describe some of these distortions
for a small number of behavioral observations in either space
[NFH'12] or time [HGW"09]. Here we present a model that
can describe spatial distortions, temporal nonlinearities, and spa-
tiotemporal interactions reported across a wide range of condi-
tions, devices, and patients.
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Fig. 3: Full model cascade. A simulated electrical stimulus is processed by a series of linear filtering and nonlinear processing steps that
model the spatial (A, B) and temporal sensitivity (C-F) of the retinal tissue. An Argus I device is shown (16 electrodes of 260 or 520 microns
diameter arranged in a checkerboard pattern). The output of the model is a prediction of the visual percept in both space and time (example

frame shown), which can be compared to human patients’ drawings.

Computational Model of Bionic Vision

Analogous to models of cochlear implants [Sha89], the goal of
our computational model is to approximate, via a number of linear
filtering and nonlinear processing steps, the neural computations
that convert electrical pulse trains across multiple electrodes into
a perceptual experience in space and time.

Model parameters were chosen to fit data from a variety of
behavioral experiments in patients with prosthetic devices. For
example, in threshold experiments patients were asked to report
whether or not they detected a percept. Across many trials, the
minimum stimulation current amplitude needed to reliably detect
the presence of a percept on 80% of trials was found. This
threshold was measured across a variety of pulse trains that varied
across dimensions such as frequency, duty cycle, and duration. In
other experiments patients reported the apparent brightness or size
of percepts on a rating scale. In others patients drew the shapes
of the percepts evoked by stimulation. The model has been shown
to generalize across individual electrodes, patients, and devices,
as well as across different experiments. Detailed methods of how
the model was validated can be found in [HGW "09], [NFH " 12],
[BRBFss]. Here we provide a brief overview of the model cascade.

The full model cascade for an Argus I epiretinal prosthesis is
illustrated in Fig. 3. The Argus I device simulated here consists
of electrodes of 260 um and 520 pum diameter, arranged in a
checkerboard pattern (Fig. 3 A). In this example, input to the
model is a pair of simulated pulse trains phase-shifted by § ms,
which are delivered to two individual simulated electrodes.

The first stages of the model describe the spatial distortions
resulting from interactions between the electronics and the neu-
roanatomy of the retina. We assume that the current density caused
by electrical stimulation decreases as a function of distance from
the edge of the electrode [ABK " 08]:

c(d) = —

a+adn
where d is the 3D Euclidean distance to the electrode edge, & =
14000 and the exponent n = 1.69. Current fields for two stimulated
electrodes are shown, Fig. 3 A (the hotter the color, the higher the
current).

Due to the fact that epiretinal implants sit on top of the optic
fiber layer (Fig. 2), they do not only stimulate ganglion cell bodies
but also ganglion cell axons. It is critical to note that, perceptually,
activating an axon fiber that passes under a stimulated electrode
is indistinguishable from the percept that would be elicited by
activating the corresponding ganglion cell body. The produced
visual percept will appear in the spatial location in visual space for
which the corresponding ganglion cell and axon usually encodes
information. Ganglion cells send their axons on highly stereotyped

(1)

pathways to the optic disc (green lines in Fig. 3 B), which have
been mathematically described [JNST09]. As a result, electrical
stimulation of axon fibers leads to predictable visual ‘streaks’ or
‘comet trails’ that are aligned with the axonal pathways.

We therefore convert the spatial map of current densities into
a tissue activation map by accounting for axonal stimulation. We
model the sensitivity of axon fibers as decreasing exponentially as
a function of distance from the corresponding ganglion cell bodies.
The resulting tissue activation map across the retinal surface is
shown as a heatmap in Fig. 3 B (the hotter the color, the larger the
amount of tissue stimulation).

The remaining stages of the model describe temporal non-
linearities. Every pixel of the tissue activation map is modulated
over time by the applied electrical pulse train in order to predict a
perceived brightness value that varies over time. This involves
applying a series of linear filtering (Fig. 3 C, D, and F) and
nonlinear processing (Fig. 3 E) steps in the time domain that
are designed to approximate the processing of visual information
within the retina and visual cortex.

Linear responses in Fig. 3 C, D, and F are modeled as temporal
low-pass filters, or ‘leaky integrators’, using gamma functions of

order n: (—1/7) /1 1
_exp(— 1\~
8(tmT) = 0 T (1:) @

where ¢ is time, n is the number of identical, cascading stages, and
T is the time constant of the filter.

The first temporal processing step convolves the timeseries of
tissue activation strengths f(¢) at a particular spatial location with
a one-stage gamma function (n = 1, time constant 7; = 0.42 ms)
to model the impulse response function of retinal ganglion cells
(Fig. 3 O):

rl(t):f(t)*(s(t7lafl)7 3

where * denotes convolution.

Behavioral data suggests that the system becomes less sensi-
tive as a function of accumulated charge. This is implemented by
calculating the amount of accumulating charge at each point of
time in the stimulus, ¢(¢), and by convolving this accumulation
with a second one-stage gamma function (n = 1, time constant
T, = 45.3 ms; Fig. 3 D). The output of this convolution is scaled
by a factor € = 8.3 and subtracted from r; (Eq. 3):

rz(t):rl(l)—81(c(t)>k5(t,1,72)>. @)

The response r»(¢) is then passed through a stationary nonlinearity
(Fig. 3 E) to model the nonlinear input-output relationship of
ganglion cell spike generation:

o

S—max; (1)
s

r3(t) = rz(t) (®)]

1+exp
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where a = 14 (asymptote), s = 3 (slope), and 6 = 16 (shift) are
chosen to match the observed psychophysical data.

Finally, the response r3(¢) is convolved with another low-pass
filter described as a three-stage gamma function (n = 3, 73 = 26.3
ms) intended to model slower perceptual processes in the brain
(Fig. 3 F):

I’4(t)=821’3(t)*5(l,3,1’3), (6)

where & = 1000 is a scaling factor used to scale the output to
subjective brightness values in the range [0, 100].

The output of the model is thus a movie of brightness values
that corresponds to the predicted perceptual experience of the
patient. An example percept generated is shown on the right-hand
side of Fig. 3 (‘predicted percept’, brightest frame in the movie).

Implementation and Results
Code Organization

The pulse2percept project seeks a trade-off between optimizing
for computational performance and ease of use. To facilitate ease
of use, we organized the software as a standard Python package,
consisting of the following primary modules:

e« api: atop-level Application Programming Interface.

¢ implants: implementations of the details of different
retinal prosthetic implants. This includes Second Sight’s
Argus I and Argus II implants, but can easily be extended
to feature custom implants (see Section Extensibility).

e retina: implementation of a model of the retinal dis-
tribution of nerve fibers, based on [JNS*09], and an im-
plementation of the temporal cascade of events described
in Eqgs. 2-6. Again, this can easily be extended to custom
temporal models (see Section Extensibility).

e stimuli: implementations of commonly used electrical
stimulation protocols, including methods for translating
images and movies into simulated electrical pulse trains.
Again, this can easily be extended to custom stimulation
protocols (see Section Extensibility).

e files: ameans to load/store data as images and videos.

e utils: various utility and helper functions.

Basic Usage

Here we give a minimal usage example to produce the percept
shown on the right-hand side of Fig. 3.

Convention is to import the main pulse2percept module
as p2p. Throughout this paper, if a class is referred to with the
prefix p2p, it means this class belongs to the main pulse2percept
library (e.g., p2p.retina):

1 import pulse2percept as p2p

p2p.implants: Our goal was to create electrode im-
plant objects that could be configured in a highly flexible manner.
As far as placement is concerned, an implant can be placed at a
particular location on the retina (x_center, y_center) with
respect to the fovea (in microns), and rotated as you see fit (rot):

2 import numpy as np

3 implant = p2p.implants.ArgusI (x_center=-800,

4 y_center=0,

5 h=80,

6 rot=np.deg2rad(35))

Here, we make use of the ArgusT array type, which provides pre-
defined values for array type (‘epiretinal’) and electrode diameters.
In addition, the distance between the array and the retinal tissue

PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

can be specified via the height parameter (h), either on a per-
electrode basis (as a list) or using the same value for all electrodes
(as a scalar).

The electrodes within the implant can also be
specified. An implant is a wrapper around a list of
p2p.implants.Electrode objects, which are accessible
via indexing or iteration (e.g., via [for 1 in implant]).
This allows for specification of electrode diameter, position,
and distance to the retinal tissue on a per-electrode basis. Once
configured, every Electrode object in the implant can also
be assigned a name (in the Argus I implant, they are Al - A16;
corresponding to the names that are commonly used by Second
Sight Medical Products Inc.). The first electrode in the implant
can be accessed both via its index (implant [0]) and its name
(implant ['A1']).

Once the implant is created, it can be passed to the simulation
framework. This is also where you specify the back end (currently
supported are ‘serial’, ‘joblib’ [Job16], and ‘dask’ [Das16]):

7 sim = p2p.Simulation (implant, engine='joblib',
8 num_jobs=8)
The simulation framework provides a number of setter functions
for the different layers of the retina. These allow for flexible
specification of optional settings, while abstracting the underlying
functionality.

p2p.retina: This includes the implementation of a
model of the retinal distribution of nerve fibers, based on
[JNST09], and implementations of the temporal cascade of events
described in Egs. 2-6.

Things that can be set include the spatial sampling rate of the
optic fiber layer (ssample) as well as the spatial extent of the
retinal patch to be simulated (given by the corner points [x1o,
ylo] and [xhi, yhil]). If the coordinates of the latter are not
given, a patch large enough to fit the specified electrode array will
be automatically selected:

9 ssample = 100 # microns

10 num_axon_samples = 801

11 sim.set_optic_fiber_layer (ssample=ssample,

12 num_axon_samples=801)
Similarly, for the ganglion cell layer we can choose one of the
pre-existing cascade models and specify a temporal sampling rate:
13 tsample = 0.005 / 1000

14 sim.set_ganglion_cell_ layer ('Nanduri2012',
15 tsample=tsample)

# seconds

As its name suggest, 'Nanduri2012' implements the model
detailed in [NFH " 12]. Other options include 'Horsager2009"
[HGW'09] and 'latest'.

It’s also possible to specify your own (custom) model, see
Section Extensibility below.

p2p.stimuli: A stimulation protocol can be specified
by assigning stimuli from the p2p.stimuli module to specific
electrodes. An example is to set up a pulse train of particular
stimulation frequency, current amplitude and duration. Because
of safety considerations, all real-world stimuli must be balanced
biphasic pulse trains (i.e., they must have a positive and negative
phase of equal area, so that the net current delivered to the tissue
sums to zero).

It is possible to specify a pulse train for each electrode in the
implant as follows:
16 # Stimulate two
17 stim = []

18 for elec in implant:

electrodes, oth
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Fig. 4: Model input/output generated by the example code. (A) An
epiretinal Argus I array is placed near the fovea, and two electrodes
(‘C1’ and ‘B3’) are stimulated with 50 Hz, 20 uA pulse trains. The
plot is created by lines 34-36. Note that the retinal image is flipped, so
that the upper hemisphere corresponds to the upper visual field. (B)
Predicted visual percept (example frame shown). The plot is created
by line 41.

c1

uA,

.name or elec.name == 'B3':

Hz
Hz,

p2p.

if elec ==
4o 5N
0

S

# 0.5 sec duration

stimuli.PulseTrain (tsample,
freg=50.0,
amp=20.0,
dur=0.5)

pt

else:
pt = p2p.stimuli.PulseTrain(tsample,
stim.append (pt)

freg=0)

However, since implants are likely to have electrodes numbering in
the hundreds or thousands, this method will rapidly become cum-
bersome when assigning pulse trains across multiple electrodes.
Therefore, an alternative is to assign pulse trains to electrodes via
a dictionary:

28 stim = {

29 'Cl': p2p.stimuli.PulseTrain(tsample, freg=50.0,
30 amp=20.0, dur=0.5)
31 'B3': p2p.stimuli.PulseTrain(tsample, freg=50.0,
3 amp=20.0, dur=0.5)

33}

At this point, we can highlight the stimulated electrodes in the
array:

34 import matplotlib.pyplot as plt

35 $matplotlib inline

36 sim.plot_fundus (stim)

The output can be seen in Fig. 4 A.

Finally, the created stimulus serves as input to
sim.pulse2percept, which is used to convert the pulse
trains into a percept. This allows users to simulate the predicted
percepts for simple input stimuli, such as stimulating a pair of
electrodes, or more complex stimuli, such as stimulating a grid of
electrodes in the shape of the letter A.
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At this stage in the model it is possible to consider which
retinal layers are included in the temporal model, by selecting
from the following list (see Fig. 2 for a schematic of the anatomy):

e« 'OFL': optic fiber layer (OFL), where ganglion cell axons
reside,

e 'GCL': ganglion cell layer (GCL), where ganglion cell
bodies reside, and

e '"INL': inner nuclear layer (INL), where bipolar cells
reside.

A list of retinal layers to be included in the simulation is then
passed to the pulse2percept method:

37 # From pulse train to
38 percept

39

percept

sim.pulse2percept (stim, tol=0.25,

layers=['GCL', 'OFL'])

This allows the user to run simulations that include only the
layers relevant to a particular simulation. For example, axonal
stimulation and the resulting axon streaks can be ignored by
omitting 'OFL' from the list. By default, all three supported
layers are included.

Here, the output percept isap2p.utils.TimeSeries
object that contains the time series data in its data container.
This time series consists of brightness values (arbitrary units in [0,
100]) for every pixel in the percept image.

Alternatively, it is possible to retrieve the brightest (mean over
all pixels) frame of the time series:

40 frame

p2p.get_brightest_frame (percept)

Then we can plot it with the help of Matplotlib (Fig. 4 B):

41 plt.imshow (frame, cmap='gray')

p2p.files: pulse2percept offers a collection of func-

tions to convert the p2p.utils.TimeSeries output into a
movie file via scikit-video [Scil7] and ffmpeg [FFm10].

For example, a percept can be stored to an MP4 file as follows:

second

'mypercept.mp4d’,

4 # Save movie at
$3 p2p.files.save_video (percept,

44 fps=15)

frames per

For convenience, pulse2percept provides a function to load a video
file and convert it to the p2p.utils.TimeSeries format:

of

er

o1 ames
mype

rcept.mpé4")

Analogously, pulse2percept also provides functionality to go
directly from images or videos to electrical stimulation on an
electrode array:

4 from_img
49
5o from_vid

51

p2p.stimuli.image2pulsetrain('myimg. jpg’
implant)

p2p.stimuli.video2pulsetrain ('mymov.avi'
implant)

These functions are based on functionality provided by scikit-
image [S v14] and scikit-video [Scil7], respectively, and come
with a number of options to specify whether brightness should be
encoded as pulse train amplitude or frequency, at what frame rate
to sample the movie, whether to maximize or invert the contrast,
and so on.

Extensibility

As described above, our software is designed to allow for implants,
retinal models, and pulse trains to be customized. We provide
extensibility mainly through mechanisms of class inheritance.

’
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Retinal Implants: Creating a new implant involves in-
heriting from p2p.implants.ElectrodeArray and pro-
viding a property etype, which is the electrode type (e.g.,
'epiretinal', 'subretinal'):

52 import pulse2percept as p2p
53

54 class MyImplant (p2p.implants.ElectrodeArray) :
55

56 def __init__ (self, etype):

57 """Custom electrode array

58

59 Parameters

60 0 e

61 etype str

62 Electrode type, {'epiretinal',
63 'subretinal'}

64 e

65 self.etype = etype

66 self.num_electrodes = 0

67 self.electrodes = []

Then new electrodes can be added by utilizing the

add_electrodes method of the base class:

68 myimplant = MyImplant ('epiretinal')

¢ r = 150 # electrode radius (um)

70x, vy =10, 20 # distance from fovea (um)
71h = 50 # height from retinal surface (um)
72 myimplant.add_electrodes(r, x, y, h)

Retinal cell models: Any new ganglion cell model is
described as a series of temporal operations that are carried out
on a single pixel of the image. It must provide a property called
tsample, which is the temporal sampling rate, and a method
called model_cascade, which translates a single-pixel pulse
train into a single-pixel percept over time:

73 class MyGanglionCellModel (p2p.retina.TemporalModel) :

74 def model_cascade(self, in_arr, pt_list, layers,
75 use_jit):

76 """Custom ganglion cell model

77

78 Parameters

9 e

80 in_arr array_like

81 2D array <#layers x #time points> of
82 effective current values at a single
83 pixel location.

84 pt_list list

85 List of pulse train ‘data’ containers.
86 layers list

87 List of retinal layers to simulate.

88 Choose from:
'"OFL': optic fiber layer
'"GCL': ganglion cell layer

89 -
90 -

91 — 'INL': inner nuclear layer

92 use_jit bool

93 If True, applies just—-in-time (JIT)

94 compilation to expensive computations
95 for additional speedup (requires Numba)
96 e

97 return p2p.utils.TimeSeries (self.tsample,
98 in_arr [0, :])

This method can then be passed to the simulation framework:

99 mymodel = MyGanglionCellModel ()
100 sim.set_ganglion_cell_layer (mymodel)

It will then automatically be selected as the implemented ganglion
cell model when sim.pulse2percept is called.

Stimuli: The smallest stimulus building block provided by
pulse2percept consists of a single pulse of either positive current
(anodic) or negative current (cathodic), which can be created via
p2p.stimuli.MonophasicPulse. However, as described
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above, any real-world stimulus must consist of biphasic pulses
with zero net current. A single biphasic pulse can be created
via p2p.stimuli.BiphasicPulse. A train of such pulses
can be created via p2p.stimuli.PulseTrain. This setup
gives the user the opportunity to build their own stimuli by
creating pulse trains of varying amplitude, frequency, and inter-
pulse intervals.

In order to define new pulse shapes and custom stimuli, the
user can either inherit from any of these stimuli classes or directly
fromp2p.utils.TimeSeries. For example, a biphasic pulse
can be built from two monophasic pulses as follows:

101 from pulse2percept.stimuli import MonophasicPulse

102
103
104
105
106

107
108

class MyBiphasicPulse (p2p.utils.TimeSeries):

def _ _init__ (self, pdur, tsample):
""r"A charge-balanced pulse with a cathodic
and anodic phase

109 Parameters

m- e

111 tsample float

112 Sampling time step in seconds.

13 pdur float

114 Single-pulse phase duration (seconds).
115 e

116 on = MonophasicPulse ('anodic', pdur, tsample,
17 0, pdur)

118 off = MonophasicPulse('cathodic', pdur,

119 tsample, 0, pdur)

120 on.append (off)

121 utils.TimeSeries.__init__ (self, tsample, on)

Implementation Details

pulse2percept’s main technical challenge is computational cost:
the simulations require a fine subsampling of space, and span
several orders of magnitude in time. In the space domain the
software needs to be able to simulate electrical activation of
individual retinal ganglion cells on the order of microns. In the
time domain the model needs to be capable of dealing with pulse
trains containing individual pulses on the sub-millisecond time
scale that last over several seconds.

Like the brain, we solve this problem through parallelization.
Spatial interactions are confined to an initial stage of processing
(Fig. 3 A, B), after which all spatial computations are parallelized
using two back ends (Joblib [Job16] and Dask [Das16]), with both
multithreading and multiprocessing options.

However, even after parallelization, computing the temporal
response remains a computational bottleneck. Initial stages of the
temporal model require convolutions of arrays (e.g., Eqs. 2 and 3)
that describe responses of the model at high temporal resolution
(sampling rates on the order of 10 microseconds) for pulse trains
lasting for at least 500 milliseconds. These numerically-heavy
sections of the code are sped up using a conjunction of three
strategies. First, as described above, any given electrode generally
only stimulates a subregion of the retina. As a consequence, when
only a few electrodes are active, we can often obtain substantial
speed savings by ignoring pixels which are not significantly stim-
ulated by any electrode (see tolerance parameter t ol on line 38 of
the example code). Second, electrical stimulation is often carried
out at relatively low pulse train frequencies of less than 50 Hz.
Since the individual pulses within the pulse train are usually very
short (~75-450 microseconds), input pulse trains tend to be sparse.
We can exploit this fact to speed up computation time by avoiding
direct convolution with the entire time-series whenever possible,
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Fig. 5: Computational performance. (A) Compute time to generate an ‘effective stimulation map’ is shown as a function of the number of
spatial sampling points used to characterize the retina. (B) Speedup factor (serial execution time / parallel execution time) is shown as a
Sfunction of the number of CPU cores. Execution times were collected for the an Argus Il array (60 electrodes) simulating the letter ‘A’ (roughly
40 active electrodes, 20 Hz/20 uA pulse trains) over a period of 500 ms (t sample was 10 microseconds, ssample was 50 microns). Joblib

and Dask parallelization back ends gave similar results.

and instead relying on a custom-built sparse convolution function.
Preprocessing of sparse pulse train arrays allows us to carry out
temporal convolution only for those parts of the time-series that
include nonzero current amplitudes. Finally, these convolutions are
sped up wih LLVM-base compilation implemented using Numba
[LPS15].

Computational Performance

We measured computational performance of the model for both
spatial and temporal processing using a 12-core Intel Core i7-
5930K operating at 3.50 GHz (64GB of RAM).

The initial stages of the model scale as a function of the
number of spatial sampling points in the retina, as shown in
Fig. 5 A. Since the spatial arrangement of axonal pathways
does not depend on the stimulation protocol or retinal implant,
pulse2percept automatically stores and re-uses the generated spa-
tial map depending on the specified set of spatial parameters.

The remainder of the model is carried out in parallel, with
the resulting speedup factor shown in Fig. 5 B. Here, the speedup
factor is calculated as the ratio of single-core execution time and
parallel execution time. On this particular machine, the maximum
speedup factor is obtained with eight cores, above which the
simulation shifts from being CPU bound to being memory bound,
leading to a decrease in speedup. At its best, simulating typical
stimulation of an Argus II over a timecourse of 500 milliseconds
(at 50 microns spatial resolution and 10 ms temporal resolution)
required 79 seconds of execution time. According to line profiling,
most of the time is spent executing the slow convolutions (Fig. 3
D, F), thus heavily relying on the computational performance of
the SciPy implementation of the Fast Fourier Transform. Due to
the current design constraints (see Discussion), the software is
better suited for rapid prototyping rather than real-time execution
- although we aim to alleviate this in the future through GPU
parallelization (via CUDA [KPL™12] and Dask [Das16]) and
cluster computing (via Spark [Apal6]).

Software availability and development

All code can be found at https://github.com/uwescience/
pulse2percept, with up-to-date source code documentation avail-
able at https://uwescience.github.io/pulse2percept. In addition, the

latest stable release is available on the Python Package Index and
can be installed using pip:
$ pip install pulse2percept

The library’s test suite can be run as follows:
$ py.test —--pyargs pulselpercept —--doctest-modules

All code presented in this paper is current as of the v0.2 release.

Discussion

We presented here an open-source, Python-based framework for
modeling the visual processing in retinal prosthesis patients. This
software generates a simulation of the perceptual experience of
individual prosthetic users - a ‘virtual patient’.

The goal of pulse2percept is to provide open-source simula-
tions that can allow any user to evaluate the perceptual experiences
likely to be produced across both current and future devices.
Specifically, the software is designed to meet four software design
specifications:

o Ease of use: The intended users of this simulation include
researchers and government officials who collect or assess
perceptual data on prosthetic implants. These researchers
are likely to be MDs rather than computer scientists, and
might therefore lack technical backgrounds in computing.
In the future, we plan for pulseZpercept to become the
back end of a web application similar to [KDM " ss].

e Modularity: As research continues in this field, it is likely
that the underlying computational models converting elec-
trical stimulation to patient percepts will improve. The
modular design of the current release makes it easy to
update individual components of the model.

o Flexibility: pulse2percept allows for rapid prototyping and
integration with other analysis or visualization libraries
from the Python community. It allows users to play with
parameters, and use the ones that fit their desired device.
Indeed, within most companies the specifications of im-
plants currently in design is closely guarded intellectual
property.

o Extensibility: The software can easily be extended to
include custom implants, stimulation protocols, and retinal
models.
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As a result of these design considerations, pulse2percept has a
number of potential uses.

Device developers can use virtual patients to get an idea of
how their implant will perform even before a physical prototype
has been created. This is reminiscent of the practice of virtual
prototyping in other engineering fields. It becomes possible to
make predictions about the perceptual consequences of individual
design considerations, such as specific electrode geometries and
stimulation protocols. As a result, virtual patients provide a useful
tool for implant development, making it possible to rapidly predict
vision across different implant configurations. We are currently
collaborating with two leading manufacturers to validate the use
of this software for both of these purposes.

Virtual patients can also play an important role in the wider
community. To a naive viewer, simulations of prosthetic vision
currently provided by manufacturers and the press might provide
misleading visual outcomes, because these simulations do not take
account of the substantial distortions in space and time that are
observed by actual patients. On our website we provide example
stimulations of real-world vision based on the pulse2percept
virtual patient.

Prosthetic implants are expensive technology - costing roughly
$100k per patient. Currently, these implants are reimbursed on
a trial-by-trial basis across many countries in Europe, and are
only reimbursed in a subset of states in the USA. Hence our
simulations can help guide government agencies such as the FDA
and Medicare in reimbursement decisions. Most importantly, these
simulations can help patients, their families, and doctors make an
informed choice when deciding at what stage of vision loss a
prosthetic device would be helpful.
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