PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Composable Multi-Threading for Python Libraries

Anton Malakhov**

https://youtu.be/kfQcWez2URE

Abstract—Python is popular among numeric communities that value it for easy
to use number crunching modules like [NumPYy], [SciPy], [Dask], [Numba], and
many others. These modules often use multi-threading for efficient multi-core
parallelism in order to utilize all the available CPU cores. Nevertheless, their
threads can interfere with each other leading to overhead and inefficiency if used
together in one application. The loss of performance can be prevented if all the
multi-threaded parties are coordinated. This paper describes usage of Intel®
Threading Building Blocks (Intel® TBB), an open-source cross-platform library
for multi-core parallelism [TBB], as the composability layer for Python modules.
It helps to unlock additional performance for numeric applications on multi-core
systems.

Index Terms—Multi-threading, Over-subscription, Parallel Computations,
Nested Parallelism, Multi-core, Python, GIL, Dask, Joblib, NumPy, SciPy,
Numba, TBB

Motivation

The fundamental shift toward parallelism was loudly declared
more than 11 years ago [HSutter] and multi-core processors have
become ubiquitous nowadays [WTichy]. However, the adoption
of multi-core parallelism in the software world has been slow and
Python along with its computing ecosystem is not an exception.
Python suffers from several issues which make it suboptimal for
parallel processing.

The parallelism with multiple isolated processes is popular
in Python but it is prone to inefficiency due to memory-related
overhead. On the other hand, multi-threaded parallelism is known
to be more efficient but with Python, though it suffers from the
limitations of the global interpreter lock [GIL], which prevents
scaling of Python programs effectively serializing them. However,
when it comes to numeric computations, most of the time is spent
in native code where the GIL can easily be released and programs
can scale.

Scaling parallel programs is not an easy thing. There are
two fundamental laws which mathematically describe and predict
scalability of a program: Amdahl’s Law and Gustafson-Barsis’
Law [AGlaws]. According to Amdahl’s Law, speedup is limited
by the serial portion of the work, which effectively puts a limit
on scalability of parallel processing for a fixed-size job. Python
is especially vulnerable to this because it makes the serial part
of the same code much slower compared to implementations in
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some other languages due to its deeply dynamic and interpretative
nature. Moreover, the GIL makes things serial often where they
potentially can be parallel, further adding to the serial portion of a
program.

Gustafson-Barsis’ law offers some hope stating that if the
problem-size grows along with the number of parallel processors,
while the serial portion grows slowly or remains fixed, speedup
grows as processors are added. This might relax the concerns
regarding Python as a language for parallel computing since
the serial portion is mostly fixed in Python when all the data-
processing is hidden behind libraries like NumPy and SciPy which
are written in other languages. Nevertheless, a larger problem size
demands more operational memory to be used for processing it,
but memory is a limited resource. Thus, even working with "Big
Data", it must be processed by chunks that fit into memory, which
puts a limit for the growth of the problem-size. As result, the
best strategy to efficiently load a multi-core system is still to fight
against serial regions and synchronization.

Nested Parallelism

One way to do that is to expose parallelism on all the pos-
sible levels of an application, for example, by making outer-
most loops parallel or exploring functional or pipeline types
of parallelism on the application level. Python libraries that
help to achieve this are Dask [Dask], Joblib [Joblib], and even
the built-in multiprocessing module [mproc] (including its
ThreadPool class). On the innermost level, data-parallelism
can be delivered by Python modules like NumPy [?] and SciPy
[SciPy]. These modules can be accelerated with an optimized math
library like Intel® Math Kernel Library (Intel® MKL) [MKL],
which is multi-threaded internally using OpenMP [OpenMP] (with
default settings).

When everything is combined together, it results in a construc-
tion where code from one parallel region calls a function with
another parallel region inside. This is called nested parallelism.
It is an efficient way for hiding latencies of synchronization and
serial regions which are an inevitable part of regular NumPy/SciPy
programs.

Issues of Over-subscription

Nevertheless, the libraries named above do not coordinate the cre-
ation or pooling of threads, which may lead to over-subscription,
where there are more active software threads than available
hardware resources. It can lead to sub-optimal execution due to
frequent context switches, thread migration, broken cache-locality,
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and finally to a load imbalance when some threads have finished
their work but others are stuck, thus halting the overall progress.

For example, OpenMP (used by NumPy/SciPy) may keep
its threads active for some time to start subsequent parallel
regions quickly. Usually, this is a useful approach to reduce work
distribution overhead. Yet with another active thread pool in the
application, it impairs better performance because while OpenMP
worker threads keep consuming CPU time in busy-waiting loops,
the other parallel work cannot start until OpenMP threads stop
spinning or are preempted by the OS.

Because overhead from linear over-subscription (e.g. 2x) is
not always visible on the application level (especially for small
systems), it can be tolerated in many cases when the work for
parallel regions is big enough. However, in the worst case a
program starts multiple parallel tasks and each of these tasks
ends up executing an OpenMP parallel region. This results in
quadratic over-subscription (with default settings) which ruins
multi-threaded performance on systems with a significant number
of threads (roughly more than ten). In some big systems, it may
not even be possible to create as many software threads as the
number of hardware threads multiplied by itself due to insufficient
resources.

Threading Composability

Altogether, the co-existing issues of multi-threaded components
define threading composability of a program module or a com-
ponent. A perfectly composable component should be able to
function efficiently among other such components without affect-
ing their efficiency. The first aspect of building a composable
threading system is to avoid creation of an excessive number
of software threads, preventing over-subscription. That effectively
means that a component and especially a parallel region cannot
dictate how many threads it needs for execution (mandatory
parallelism). Instead, it should expose available parallelism to a
work scheduler (optional parallelism), which is often implemented
as a user-level work stealing task scheduler that coordinates tasks
between components and parallel regions and map them onto
software threads. Since such a task scheduler shares a single thread
pool among all the program modules and native libraries, it has to
be efficient enough to be attractive for high-performance libraries.
Otherwise, these libraries will not be able or willing to switch their
own threading model to the new scheme.

Intel Solution

Intel’s approach to achieve threading composability is to use
Intel® Threading Building Blocks (Intel® TBB) library as the
common work scheduler, see Figure 1. Intel® TBB is an open-
source, cross-platform, mature and recognized C++ library for
enabling multi-core parallelism. It was designed for composability,
as well as optional and nested parallelism support.

In the Intel® Distribution for Python 2017 Beta and later,
as part of Intel® TBB release 4.4 Update 5, I introduce an
experimental module which unlocks the potential for additional
performance for multi-threaded Python programs by enabling
threading composability between two or more thread-enabled
libraries. Thanks to threading composability, it can accelerate
programs by avoiding inefficient thread allocation as discussed
above.

The TBB module implements a Pool class with the standard
Python interface using Intel® TBB which can be used to replace
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Fig. 1: Intel® Threading Building Blocks is used as a common runtime
for different Python modules.

Python’s ThreadPool. Python allows users to dynamically re-
place any object (e.g. class or function) at runtime (monkey patch-
ing). Thanks to this technique implemented in class Monkey, no
source code change is needed in order to enable single thread pool
across different Python modules. The TBB module also switches
Intel® MKL to use TBB-based threading layer, which automat-
ically enables composable parallelism [ParUniv] for NumPy and
SciPy calls.

Usage example

For our first experiment, we need Intel® Distribution for Python
[IntelPy] to be installed along with the Dask [Dask] library which
simplifies parallelism with Python.

# install Intel (R) Distribution for Python

<path to installer of the Distribution>/install.sh
# setup environment

source <path to the Distribution>/bin/pythonvars.sh
# install Dask

conda install dask

The code below is a simple program using NumPy that validates
QR decomposition by multiplying computed components and
comparing the result against the original input:

1 import time, numpy as np

np.random.random( (100000,
time.time ()

4q, r = np.linalg.qgr (x)

s test = np.allclose(x,

6 assert (test)

7 print (time.time ()

2 X =
3t0 =

2000))

g.dot (r))
- t0)

And here is the same program using Dask:

| import time, dask, dask.array as da
2 x = da.random.random( (100000, 2000),

3 chunks= (10000, 2000))
4t0 = time.time ()

5q, r = da.linalg.qgr (x)

6 test = da.all(da.isclose(x, g.dot(r)))
7 assert (test.compute ()) # threaded

8§ print (time.time () - tO0)

Here, Dask splits the array into 10 chunks and processes them in
parallel using multiple threads. However, each Dask task executes
the same NumPy matrix operations which are accelerated using
Intel® MKL under the hood and thus multi-threaded by default.
This combination results in nested parallelism, i.e. when one par-
allel component calls another component, which is also threaded.

The reason why the Dask version was set to have only 10
tasks is to model real-life applications with limited parallelism
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Fig. 2: Execution times for QR validation example.

on the outermost level, which is quite typical for functional and
pipeline types of parallelism. Such cases might benefit the most
from enabling parallelism at inner levels of the code. In the case
when the top-level parallelism can load all the available cores and
is well-balanced, nested parallelism is not that likely to improve
performance (but can make it much worse without a composable
threading solution).

Here is an example of running the benchmark program in three
different modes:

1 python bench.py # Default MKL
2 OMP_NUM_THREADS=1 python bench.py # Serial MKL
3 python -m TBB bench.py # Intel TBB mode

Figure 2 shows performance results acquired on a 32-core (no
hyper-threading) machine with 64GB memory. The results pre-
sented here were acquired with cpython v3.5.1; however, there is
no performance difference with cpython v2.7.1. The Dask version
runs slower than the NumPy version with the default setting
because 10 outermost tasks end up calling 10 OpenMP-based
parallel regions that create 10 times more threads than available
hardware resources.

The second command runs this benchmark with innermost
OpenMP parallelism disabled. It results in the worst performance
for the NumPy version since everything is now serialized. More-
over, the Dask version is not able to close the gap completely since
it has only 10 tasks, which can run in parallel, while NumPy with
parallel MKL is able to utilize the whole machine with 32 threads.

The last command demonstrates how Intel® TBB can be
enabled as the orchestrator of multi-threaded modules. The
TBB module runs the benchmark in the context of with
TBB.Monkey () : which replaces the standard Python Thread-
Pool class used by Dask and also switches MKL into TBB
mode. In this mode, NumPy executes in more than twice the
time compared to the default NumPy run. This happens because
TBB-based threading in MKL is new and not as optimized as the
OpenMP-based MKL threading implementation. However despite
that fact, Dask in TBB mode shows the best performance for this
benchmark, 46% improvement compared to default NumPy. This
happens because the Dask version exposes more parallelism to
the system without over-subscription overhead, hiding latencies of
serial regions and fork-join synchronization in MKL functions.

1. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]
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Fig. 3: Case study results: Generation of User Recommendations.

Case study

The previous example was intentionally selected to be small
enough to fit into this paper with all the sources. Here is another
case study [FedLitC] that is closer to real-world applications. It
implements a recommendation system similar to the ones used
on popular web-sites for generating suggestions for the next
application to download or the next movie to watch. However,
the core of the algorithm is still quite simple and spends most of
the time in matrix multiplication. Figure 3 shows results collected
on an older machine with a bigger number of cores.

The leftmost result in Figure 3 was acquired on pure, non-
accelerated Python that comes by default on Fedora 23. It is
used as the base of comparison. Running the same application
without modifications with Intel® Distribution for Python results
in a 17 times speedup. One reason for this performance increase
is that Intel® MKL runs computations in parallel. Thus, for the
sake of experiment, outermost parallelism was implemented on
the application level processing different user requests in parallel.
For the same system-default python, the new version helped to
close the gap with the MKL-based version though not completely:
executing 15 times faster than the base. However, running the
same parallel application with the Intel Distribution resulted in
worse performance (11x). This is explained by overhead induced
by over-subscription.

In order to remove overhead, the previous experiment was
executed with the TBB module on the command line. It results
in the best performance for the application - 27 times speedup
over the base.

Numba

NumPy and SciPy provide a rich but fixed set of mathematical
instruments accelerated with C extensions. However, sometimes
one might need non-standard math to be as fast as C extensions.
That’s where Numba [Numba] can be efficiently used. Numba is
a Just-In-Time compiler (JIT) based on LLVM [LLVM]. It aims
to close the gap in performance between Python and statically
typed, compiled languages like C/C++, which also have popular
implementation based on LLVM.

Numba implements the notion of universal functions (ufunc,
a scalar function which can be used for processing arrays as
well) defined in SciPy [ufunc] and extends it to a computation
kernel that can be not only mapped onto arrays but can also
spread the work across multiple cores. The original Numba version
implements it using a pool of native threads and a simple work-
sharing scheduler, which coordinates work distribution between
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Fig. 4: Black Scholes benchmark running with Numba on 32 threads.

them. If used in a parallel numeric Python application, it adds
a third thread pool to the existing threading mess described in
previous sections. Thus, our strategy was to put it on top of the
common Intel® TBB runtime as well.

The original version of Numba’s multi-threading runtime was
replaced with a very basic and naive implementation based on
TBB tasks. Nevertheless, even without nested parallelism and
advanced features of Intel® TBB such as work partitioning al-
gorithms, it resulted in improved performance.

Figure 4 shows how original Numba and TBB-based versions
perform with the Black Scholes [BSform] benchmark imple-
mented with Numba. Whether the problem size is small or big,
they work at almost the same speed. However, TBB-based Numba
performs up to 3 or 4 times faster for the problem sizes in between.

The following code is a simplified version of this benchmark
that gives an idea how to write parallel code using Numba:

1 import numba as nb, numpy.random as rng
2 from math import sqgrt, log, erf, exp

4 @nb.vectorize (' (£8,£8,f8,£8,f8)',target="parallel’)

5 def BlackScholes (S, X, T, R, V):

6 VgT = V % sqrt (T)

7 dl = (log(S / X) + (R + .5%xV«V) = T) / VvVgT
8 d2 = dl - vqT

9 nl = .5 + .5 % erf(dl ~ 1./sqgrt(2.))

10 n2 = .5 + .5 % erf(d2 » 1./sqrt(2.))

11 eRT = exp(-R = T)

12 return S * nl - X x eRT » n2 # Call price
13 # Put price = (X % eRT % (1.-n2) - S % (1.-nl))
14

15 price = rng.uniform(10., 50., 10%xx6) # array
16 strike = rng.uniform(10., 50., 10%xx6) # array
17 time = rng.uniform(1.0, 2.0, 10xx6) # array
18 BlackScholes (price, strike, time, .1, .2)

Here is the scalar function BlackScholes, consisting of
many elementary and transcendental operations, which is ap-
plied (broadcasted) by Numba to every element of the input
arrays. Additionally, target="parallel"' specifies to run the
computation using multiple threads. The real benchmark also
computes the put price using numba.guvectorize, uses an
approximated function instead of erf () for better SIMD opti-
mization, optimizes the sequence of math operations for speed,
and repeats the calculation multiple times.

Limitations and Future Work

Intel® TBB does not work well for blocking I/O operations
because it limits the number of active threads. It is applicable
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only for tasks, which do not block in the operating system. If your
program uses blocking 1/O, please consider using asynchronous
I/O that blocks only one thread for the event loop and so prevents
other threads from being blocked.

The Python module for Intel® TBB is in an experimental
stage and might be not sufficiently optimized and verified with
different use-cases. In particular, it does not yet use the master
thread efficiently as a regular TBB program is supposed to do.
This reduces performance for small workloads and on systems
with small numbers of hardware threads.

As was discussed above, the TBB-based implementation of
Intel® MKL threading layer is yet in its infancy and is therefore
suboptimal. However, all these problems can be eliminated as
more users will become interested in solving their composability
issues and Intel® MKL and the TBB module are further devel-
oped.

Another limitation is that Intel® TBB only coordinates threads
inside a single process while the most popular approach to
parallelism in Python is multi-processing. Intel® TBB survives
in an oversubscribed environment better than OpenMP because
it does not rely on the particular number of threads participating
in a parallel computation at any given moment, thus the threads
preempted by the OS do not prevent the computation from making
an overall progress. Nevertheless, it is possible to implement a
cross-process mechanism to coordinate resources utilization and
avoid over-subscription.

A different approach is suggested by the observation that a
moderate over-subscription, such as from two fully subscribed
thread pools, does not significantly affect performance for most
use cases. In this case, preventing quadratic over-subscription from
the nested parallelism (in particular, with OpenMP) can be a prac-
tical alternative. Therefore, the solution for that can be as simple as
"Global OpenMP Lock" (GOL) or a more elaborate inter-process
semaphore that coordinates OpenMP parallel regions.

Conclusion

This paper starts with substantiating the necessity of broader usage
of nested parallelism for multi-core systems. Then, it defines
threading composability and discusses the issues of Python pro-
grams and libraries which use nested parallelism with multi-core
systems, such as GIL and over-subscription. These issues affect
performance of Python programs that use libraries like NumPy,
SciPy, Dask, and Numba.

The suggested solution is to use a common threading runtime
library such as Intel® TBB which limits the number of threads
in order to prevent over-subscription and coordinates parallel
execution of independent program modules. A Python module
for Intel® TBB was introduced to substitute Python’s ThreadPool
implementation and switch Intel® MKL into TBB-based thread-
ing mode, which enables threading composability for mentioned
Python libraries.

The examples referred in the paper show promising results,
where, thanks to nested parallelism and threading composability,
the best performance was achieved. In particular, QR decom-
position example is faster by 46% comparing to the baseline
implementation that uses parallelism only on the innermost level.
This result was confirmed by the case study of a recommendation
system where 59% increase was achieved for the similar base.

2. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]
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And finally, Intel® TBB was proved as a mature multi-threading
system by replacing threading runtime implemented in Numba and
achieving more than 3 times speedup on several problem sizes.

Intel® TBB along with the Python module are available in
open-source [TBB] for different platforms and architectures while
Intel® Distribution for Python accelerated with Intel® MKL is
available for free as a stand-alone package [IntelPy] and on
anaconda.org/intel channel.
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