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Generalized earthquake classification
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Abstract—We characterize the source of an earthquake based on identifying
the nodal lines of the radiation pattern it produces. These characteristics are
the mode of failure of the rock (shear or tensile), the orientation of the fault
plane and direction of slip. We will also derive a correlation coefficient comparing
the source mechanisms of different earthquakes. The problem is formulated in
terms of a simple binary classification on the surface of the sphere. Our design
goal was to derive an algorithm that would be both robust to misclassification
of the observed data and suitable for online processing. We will then go on
to derive a mapping which translates the learned solution for the separating
hyper-plane back to the physics of the problem, that is, the probable source type
and orientation. For reproducibility, we will demonstrate our algorithm using the
example data provided with the HASH earthquake classification software, which
is available online.

Index Terms—machine learning, earthquake, hazard, classification.

Introduction

In this paper we are going to explain how to classify earthquake
data using a support vector classifier (SVC) and then how to
interpret the result physically. We will be drawing on the scikit-
learn [sklearn] project for the SVC, the ObsPy seismological
Python package [ObsPy] for some utility routines and mplstere-
onet [mplstereonet], which is a matplotlib [mpl] plugin for visual-
ization.

Much of the discussion will center around deriving a mapping
from the solution of the SVC to the physical process that origi-
nated the earthquake. The key concept we will be elaborating on
is understanding the relationship between what we call the input
and feature spaces of the SVC. The results of the classification
are curves separating points on the surface of the focal sphere (the
input space), which is the domain of the input data. However, the
physics and understanding of the result lies in the representation
of the solution in the feature space, which a higher dimensional
space where the classifier may linearly separate the data.

For the sake of reproducibility, the demonstration will use the
same dataset provided with the US Geological Survey (USGS)
HASH software. HASH [HASH] is an earthquake classification
code provided by the USGS and it is built upon an earlier package
called FPFIT, which implements a least squares classifier. For each
case we will be comparing and contrasting our solutions with those
generated by HASH, which we generally expect to be similar.
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Fig. 1: A seismogram measured at the WR1 node of the Warramunga
seismic array showing displacement due to an aftershock of the April
2007 Solomon Islands earthquake. The red dot indicates the first break
motion. The data was obtained by querying the IRIS database http:
//ds.iris.edu/ds/nodes/dmc/data/ types/events/ .

Fig. 2: A portion of the Australian seismic network showing the
location of the Warramunga seismic array, the map was obtained
from http://www.fdsn.org/networks/detail/AU/ .

Our discussion will include annotated software explaining
the important steps in the computation. We will be contributing
software1 to reproduce the results of this paper.

1. https://github.com/blasscoc/FocalMechClassifier
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Problem statement

Consider a particular example where we would apply the analysis
presented in this paper. In Fig. 1, we show a seismogram (record-
ing) of an earthquake that was located in Solomon Islands. The
black and white glyph is a graphical representation of the type of
focal mechanism. The orientation of the nodal lines of this glyph
displays the orientation of the fault plane. The recording shown
was made by the WR1 node of the Warramunga seismic array,
which is part of the Australian seismic network, shown partially
in Fig. 2. The goal of hazard monitoring in this case would be to
characterize the deformation of the earth (focal mechanism) that
caused this earthquake. This analysis would involve first locating
the source spatially and then classifying its focal mechanism, and
importantly the orientation of the fault plane. The orientation of
the fault plan is important because displacement of the sea-floor
can cause the formation of tsunamis. The algorithm discussed in
this paper provides the analysis of the focal mechanism, with the
extension that we can also compare the spectrum of the solution
with a past events located in this area. This additional information
may be useful for decision making regarding what action should be
taken given the risk of a historical (or perhaps modeled) scenario
repeating.

We proceed by detailing exactly the parameters of the problem
at hand. The raw data are recordings of the initial arrival of
energy from this earthquake, measured across a seismic network.
From each recording, the initial displacement (or first motion) is
identified (or picked), as shown by a red dot in Fig. 2. Consider
this is as a radiation amplitude from the earthquake measured
at a particular location. Further measurements across the seismic
network begin to inform the shape of the radiation pattern created
by the event. However, a radiation pattern measured far from the
event becomes distorted because of the refraction of the seismic
wave as it propagates through the earth. To remove this distortion,
this energy must migrated, along an estimated ray path, back to
the neighborhood of the estimated source location . We call this
neighborhood the focal sphere. The process of picking, locating
and migrating seismic events is beyond the scope of this paper.
However, seismograms can be requested from the IRIS database2

and a suite of Python tools for processing this data is made
available by the ObsPy [ObsPy] Python project.

The input data to our analysis is the polarity (signed amplitude)
of the picks, and the azimuth and co-latitude of the observation
migrated onto the focal sphere.The design goal is to provide an
online tool for characterizing the source mechanism. The emphasis
is on robustness of the algorithm, without the need for post facto
processing of the data. We also need a system that provides natural
metrics of similarity between seismic events.

Physically, the initial arrival of energy will be in the form
of a compressional wave. The amplitude of these compressional
waves are solutions to the scalar wave equation, which are the
spherical harmonic functions3. Hence any function that classifies
the polarity data should be a superposition of these spherical
harmonics. We will learn this classifying function using the SVC.
However, it is the spectral representation (harmonic content) of
the radiation pattern that contains the physical meaning of the
solution.

2. http://www.iris.edu
3. http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_

harm.html

Source (Fault normal/slip) Template
Shear (31) + (13) −i(Y12 +Y−12)

Tensile (3) αY00 +4
√

5Y02
Tangential (3) Y02− i

2 (Y22 +Y−22) .

TABLE 1: Describes the angular variation of the displacement
due to three types of earthquake sources in terms of a basis of
spherical harmonic functions. The source templates summarized are
shear, tensile and tangential dislocation. The brackets (·, ·) define the
template direction of the fault normal and the direction of slip in
rectangular coordinates. The constant α = 2+ 3 λ

µ
, where λ and µ

are the first Lamé parameter and the shear modulus respectively.

In Sec. Theory we will review the basic results we need from
the theory of seismic sources. In Sec. Existing Least Squares
Methods we will review existing methods for classifying earth-
quake data. The Sec. Earthquake - Learning with Kernels reviews
the Python code used in the classification, and derives a mapping
between the input space of the problem, to the feature space
(represented by the spectrum). In Sec. Physical Interpretation we
translate this spectral representation back to the physics of the
problem, and explain how to evaluate the correlation metric. In
Sec. Discussion we provide an example of the analysis and then
we wrap things up with Sec. Conclusions.

Theory

The observed displacement created by the collective motion of
particles along a fault plane is described by the theory of seismic
sources. We will not go into all the details here, but the reference
on seismic source theory we follow is Ben-Menahem and Singh
[Ben81]. The key result we will draw upon is a formula for the
displacement for various types of seismic sources summarized
in Table 4.4 of [Ben81], which is presented in terms of Hansen
vectors. Physically, a shear type failure would represent the slip
of rock along the fault plane and a tensile failure would represent
cracking of the rock. The results of [Ben81] are general, however
we are only modeling the angular variation of the displacement
due to the compressional wave measured radially to the focal
sphere. From this simplification we can translate solutions of
[Ben81] into solutions for just the angular variation using the basis
of spherical harmonic functions, which we tabulate in Table 1.
Notes on translating between [Ben81] and Table 1 are summarized
in the Appendix. This result gives us an analytical expression for
the spectral content of seismic sources given a certain orientation
of the fault plane. We will use this information to find general
solutions in Sec. Physical Interpretation.

The amplitude of the radiation pattern cannot typically be
migrated back to the location of the event unless an accurate model
of seismic attenuation is available, which is not generally the case,
even in commercial applications. However, supposing the source
type and orientation were known, then the sign of this radiation
pattern is a function that must classify the polarity data on the
focal sphere. As an example, in Fig. 3 we render in, 3-dimensions,
the signed radiation pattern predicted for shear and tensile source,
in a particular orientation.

The black areas of this beachball diagram represents the
region where the displacement at the source is radially outward
(vice versa for the white regions). The nodal lines represent the
separating margin between classes of data (outward and inward
displacement). For the shear source, the nodal lines are called the
fault and auxiliary planes respectively.

http://www.iris.edu
http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
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Fig. 3: Rendered in 3-dimensions, (left) the signed radiation pattern
for a possible tensile type source. (right) Similarly for the case of
shear type source. Figures are generated using SciPy’s spherical
harmonic functions and Mayavi.

Fig. 4: For event 3146815 from north1 dataset (blue) preferred nodal
line estimated by HASH, (red) a sample from the set of acceptable
estimates.

One observation we can immediately take away from Fig 3
is that two diagrams are topologically different. The nodal lines
of the shear source are great circles, which is not the case from
the tensile source. That means there is no rotation or smooth
deformation that can make one look like the other. This suggests
that the two source are distinguishable, but also that there is
some potential of identifying admixtures of the two based on their
spectral content.

Existing Least Squares Methods

Currently, a common method (called FPFIT [FPFIT]) for earth-
quake classification is to assume that shear failure is the source
mechanism, and then, through a least squares optimization, find
the fault plane orientation that minimizes the rate of misclassifi-
cation to the data. A modern code built upon FPFIT is the HASH
algorithm [HASH]. The HASH software is available for download
from the USGS4 website. The HASH software comes with an
example "NorthRidge" dataset which we will use to demonstrate
our method. We compare the results of our algorithm with the
results of HASH, which is the current state of the art. HashPy

Fig. 5: A schematic of the optimization strategy of the SVC. The
dashed lines represent the edges of the separating margin. The blue
open and red closed dots are the polarity data represented in a feature
space. The dashed lines represent a separating margin between the
two classes, the solid line represents the optimal separating hyper-
plane.

[HashPy] is a Python project for that provides a wrapper for
HASH.

Figure 4 demonstrates how the FPFIT algorithm works.
The coordinate system in the figure is a stereonet projection
[mplstereonet] of the lower half space of a sphere. The solid red
(open blue) dots are positive (negative) polarity measured across
a seismic network for the 3146815 event, which was taken from
the Northridge dataset "north1.phase" supplied with the HASH
software. Recall, FPFIT is a least squares method, however the
function it is optimizing need not be convex. As such, there
are many solutions that have a similar goodness of fit. Using a
grid search method, FPFIT draws a ensemble of these possible
solutions (red lines). The blue line is the preferred or most likely
solution.

Earthquake - Learning with Kernels

In this section we discuss the classification algorithm we develop
using the scikit-learn [sklearn] library. Whilst our interest was
classification of earthquakes, the algorithm is applicable for any
classification problem defined on a sphere.

Define the input space of the problem as the surface of the
focal sphere, represented for example by the stereonet in Fig.
4. The data is not linearly separable on this space. The strategy
of the SVC is to project the problem into a higher dimensional
feature space. And in this feature space, determine the best hyper-
plane to separate the two classes of data by maximizing the
width of the separating margin, subject to the constraint that the
classes are either side of the separating margin, Fig. 5 shows a
schematic of the algorithm. An important feature of the SVC is
that it is robust to misclassification close to the decision boundary.
Physically these are curves where the amplitude of the radiation
is becoming small and then changing sign. What we believe to

4. http://earthquake.usgs.gov/research/software/index.php

http://earthquake.usgs.gov/research/software/index.php
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be more important than the overall rate of misclassification of the
algorithm, is the stability of the result given erroneous input data.
from sklearn import svm

def classify(cartesian_coords, polarity,
kernel_degree=2):

"""
cartesian_coords - x, y, z coordinates on
sphere polarity (1,-1) first break polarity
kernel_degree - truncates the dimension of
expansion.
"""

# C : slack variable, use the default of 1.0
poly_svc = svm.SVC(kernel='poly',

degree=kernel_degree,
coef0=1, C=1.0).fit(cartesian_coords,

polarity)

intercept = poly_svc.intercept_
# Angle [0,pi] - the colatitude
colat = arccos(poly_svc.support_vectors_[:,2])
# Angle [0,2*pi] measured as azimuth
azim = arctan2(poly_svc.support_vectors_[:,1],

poly_svc.support_vectors_[:,0])
# The lagrange multipliers * class,
# classes are labeled -1 or 1.
dual_coeff = poly_svc.dual_coef_[0,:]
# Remember which points where mis-classified
in_sample = poly_svc.predict(c_[inputs])

return (dual_coeff, azim, colat,
intercept, in_sample)

A Python implementation of the support vector classifier5 is
included in scikit-learn. The projection to a higher dimensional
space is done using a kernel, and evaluated in the input space
using the kernel trick. For classification on a sphere, we need to
use an inner product kernel, which has the form

k(~x,~xi) = (〈~x,~xi〉+1)d .

Here "d" is the degree of the kernel. The parameter "C" in
the above code snippet is a slack variable. This provides a soft
thresholding, which allows for some misclassification; the default
value is usually sufficient. Given a set of data yi, the support vector
machine learns a corresponding set of coefficients αi and intercept
β0, which determines a classifying function in the input space,

f (~x) =
N

∑
i=1

αiyik(~x,~xi)+β0 . (1)

In our application, the zero of this function is the nodal line, and
the sign of the function is a prediction for the direction of the
displacement radial to the focal sphere, given the observed data.
Not all of the data is relevant for determining the best separating
margin, many of the coefficients αi may be zero. The support
vectors are the locations of the data where αi are non-zero. The
product αiyi associated with each of the support vectors are called
the dual coefficients (see the code snippet).

In Fig. 6 we demonstrate the SVC classifier applied to an
event from the Northridge dataset. The red line represents zeros of
the classifying function f(x), the green line is the solution for the
fault (and auxiliary) planes determined by HASH. Note that the
auxiliary plane is computed using the aux_plane function provided
by the ObsPy library [ObsPy]. The learned nodal line is simply
connected, the zeros of the classifying function f(x) have been
determined using matplotlib’s contour function.

5. http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Fig. 6: For event 3146815 from the NorthRidge dataset. The green
nodal line is estimated by HASH and the red nodal line is estimated
by the SVC.

Both the HASH solution and the learned solution have a
similar rate of misclassification. However the learned solution is
still unsatisfactory to us because we cannot make physical sense
of the result. What we want is an explanation of the type of source
mechanism and its orientation. To be physically meaningful, we
need an expression for the nodal lines in terms of its spectrum
in the basis of spherical harmonic functions. In this basis we can
then use the seismic source theory of [Ben81] to relate the result
to a physical process. What we want is to determine the spectral
content of f(x),

f (~x) =
∞

∑
l=1

l

∑
m=−l

f̂lmYlm(θ ,φ)

that is, we want to derive its representation in the feature space.
Here, the azimuth θ and colatitude φ , are the angles that orientate
the unit vector ~x. The steps in deriving this representation are to
first expand the inner product kernel in terms of the Legendre
polynomials [Scholkopf],

al =
∫ 1

−1
dx (x+1)dPl(x) (2)

al =

{
2d+1Γ(d+1)

Γ(d+2+l)Γ(d+1−l) +
1
2

√
1
π

β0δl0 if l ≤ d

0 otherwise
.

When we do this, we see that the degree parameter provides
a natural truncation on the complexity of the function we are
learning. This gives us an intermediate result which expresses the
separating margin in terms of Legendre polynomials

f (~x) =
N

∑
i=1

αiyi

∞

∑
l=1

alPl(〈~x,~xi〉) .

The next step is to apply the addition theorem to express this in
terms of the spherical harmonics,

Pl(〈~x,~xi〉) =
l

∑
m=−l

Y ∗lm(θ
′,φ ′) Ylm(θ ,φ) .

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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The result is a formula for the spectral content of the focal
mechanism given the dual coefficients estimated by the support
vector classifier,

f̂lm =
4π

2l +1

N

∑
i=1

αiyial Y ∗lm(θ
′,φ ′) .

Finally, suppose we have solutions for the classification from two
different sources, either observed or modeled from Table 1. A
natural metric for comparing the two sources is a correlation
coefficient,

ρ =
‖〈g, f 〉‖2

‖g‖‖ f‖
. (3)

Using the orthogonality condition of the spherical harmonic func-
tions, we can show that inner product is,

〈g, f 〉 =
∫

d3x g∗(~x) f (~x)

=
∞

∑
l=0

∑
m,n

ĝ∗ln f̂lm ,

here the integral is over the surface of the focal sphere and the
star-notation means complex conjugation.

In the context of hazard monitoring, we could use the as a
metric of risk, without having to propose a source mechanism or
fault plane orientation.

Physical Interpretation

In the previous section we derived the general earthquake classi-
fication algorithm and a metric of correlation. Now suppose we
were to assume a model for the source mechanism (e.g shear
failure), how would we estimate the most likely orientation of
the fault plane in this model?

First of all, in Table 1, we have a template for the spectral
content of the shear source given a particular orientation. Using
this template we compute a function g(x), and then generate a
rotation in the input space to realign it with the classifying function
f(x). This rotation would be estimated by optimizing a correlation
coefficient with respect to the Euler angles,

〈g, f 〉 = arg max
α,β ,γ

∫
d3x g∗(R(α,β ,γ)~x) f (~x)

Here, R represents a rotation matrix. This would be a relatively
complicated procedure in the input space because we would
need to re-evaluate the function g(x) at each iteration of the
optimization. It is far more efficient to instead generate rotations
in the feature space. To do this we borrow from quantum theory,
and present Wigner’s D-matrices,

g(R(α,β ,γ)~x) =
∞

∑
l=0

∑
m,n

Dl
mn(α,β ,γ)ĝlnYlm(θ ,φ) .

Wigner’s D-matrices are operators which generate rotations in the
feature space of the problem. This means that we can translate a
template solution (Table 1.) in a particular orientation, to a solution
in any arbitrary orientation, by acting on its spectral content.
from scipy.optimize import minimize

def _corr_shear(x, alm):
strike, dip, rake = x
# Wigner is ZYZ Euler rotation, \gamma = -rake
D = WignerD2(strike, dip, -rake).conjugate()
# Template (13)/(31) : glm = (0, -1j, 0, -1j, 0)
prop = (inner(D[:,3], alm) +

Fig. 7: For event 314681 from NorthRidge dataset. The green nodal
line estimated by HASH and the solid red line is the optimal solution
for the nodal lines derived from the SVC assuming a shear source.
The dashed red line is the nodal line estimated by the SVC.

inner(D[:,1], alm))*1j
# Maximize, not minimize.
return -norm(prop)

def corr_shear(Alm):
# pick a good starting point.
x0 = _scan_shear(alm)
f = lambda x : _corr_shear(x,alm)
results = minimize(f, x0=x0,

bounds=((0,2*pi), (0,pi), (0,2*pi)))
return rad2deg(results.x), results.fun

The function corr_shear shown in the code snippet implements
the optimization of the above equation. The function WignerD2
implements the Wigner-D matrices defined in [Morrison], the
variable "prop" is the projection of the learned solution onto the
rotated template shear solution shown in Table 1, and Alm is the
learned spectral content of the source. The initial guess is found
scanning a coarse grid to find the best the quadrant with the highest
initial correlation. This stops SciPy’s default minimization [scipy]
getting stuck in a local minima.

As an example, in Fig. 7 we show the classification results for
the 3146815 event. The (dashed red) line shows the nodal line of
the classifier function. The (solid red) line is the template shear
solution, orientated by optimizing the correlation function, and
the (solid green) line shows the preferred solution estimated by
HASH.

Discussion

In Figures 6 and 7 we have shown examples of the classification
and fault plane estimation methods. In this section we want to
explore the robustness of the algorithm and try to gain some
insight into the utility of the correlation functions.

The HASH program has an input (scsn.reverse) which identi-
fies stations whose polarity was found to be erroneous in the past.
These reversals are applied post facto to correct the input polarity
data. We will use this feature to demonstrate an example where the
support vector and least squares classifiers behave differently. In
Fig 8 we give an example where we flipped the polarity of a single
datum (indicated by the black arrow). The corresponding solutions
are shown with (solid lines) and without (dashed lines) the benefit
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Fig. 8: For event 3145744 from the NorthRidge dataset. The color
scheme for each subplot as in Fig. 7, the dashed lines are solutions
without the station reversal being applied. The black arrow points to
datum for which the polarity is flipped.

Fig. 9: The correlation score for each event in the Northridge dataset,
comparing to event 3146815. (red) The events with maximum and
minimum correlation score. (green) The correlation between 3146815
and itself rotated by 90-degrees strike, (cyan) the correlation between
3146815 and the tensile source found in Table 1.

of the polarity correction. The datum that was changed is close
to the nodal line estimated by the SVC, which, given the soft
thresholding, is forgiving of misclassification along its separating
margin. The SVC solution for the nodal line is largely unchanged.
On the other hand, the strategy of FPFIT is to minimize the overall
rate of misclassification. And indeed, in each case, it finds the
optimal solution on this basis. In fact, in terms of misclassified
points, FPFIT outperforms the SVC classifier. But we would
question whether minimizing the overall rate of misclassification
is reasonable from an applied perspective. Consider that since
the nodal line represents a point where the radiation pattern is
changing sign, we expect that the signal to noise level will be
smaller in this region. Conversely, from the point of view of the
SVC, these are also the points that are most informative to the
proper location of its separating margin. Indeed, many of the best
quality picks far from the nodal lines will not influence the solution
for the separating plane (recall dual coefficients can be zero). And
it is reasonable that data of the correct class located far from the
separating margin should not influence the solution. Looking at
the problem from this perspective the solution of the SVC is more
reasonable.

Fig. 10: The color scheme for each subplot as in Fig. 7. (top left) The
solution for event 3146815, (top right) the solution for events 3158361
and (bottom right) 3153955. Events 3158361 and 3153955 represent
the maximum and minimum correlation score with event 3146815.

Finally, we derived a metric of similarity based on a correlation
score Eq. 3. To provide an example of how we might use this
correlation score, we take the event 3146815, which has the largest
number of data associate with it, and compute the correlation
coefficient with each of the other events in the Northridge dataset.
According to [HASH], the NorthRidge dataset we analyzed is
expected to contain similar source mechanisms and certainly we
see that the correlation score is high for the majority of the
events. To test the sensitivity of the metric, we also compute
the correlation between event 3146815 and itself rotated by 90-
degrees strike, and we see that this has low correlation, which we
would expect.

In Fig. 10 we provide a visualization of the events with the
highest (top right) and lowest (bottom right) correlation score
comparing with event 3146815 (top left). The orientation of the
nodal lines for event 3153955, which has the lowest correlation
score, indeed is qualitatively different than the solution for event
3146815. Qualitatively, we have demonstrated that the correlation
score is a reasonable metric of similarity. Determining the actual
statistical significance of the correlation score is left as future
work.

Conclusions

We have presented a tool for classifying and comparing earth-
quake source mechanisms using tools from the scientific Python
ecosystem. The important steps were to define the problem in
terms of classification, which is solved robustly by the scikit-
learn [sklearn] support vector classifier. We then used results from
seismic source theory [Ben81] to derive a mapping between the
input and feature spaces of the classification problem. Using the
representation of the solution in the feature space, we derived a
correlation coefficient.

This allowed us to generalize the earthquake classification to
support both shear and tensile sources. As a particular example,
we showed how maximizing correlation with the template shear
solution could be used to estimate fault plane orientation. The key
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to efficiency here was to generate rotations in the feature space of
the problem using Wigner’s D matrices.

At each step along the way, we made a comparison with
similar solutions obtained with the HASH algorithm [HASH], and
found good general agreement. However, we argued that for this
application, the optimization strategy of the SVC should prove
more robust to misclassification than the least squares method.

Finally, we showed qualitatively, that the correlation coeffi-
cient provided a good metric for comparison between sources
within the Northridge dataset. This technique has some promise
as a tool for earthquake monitoring.

Appendix

The template solutions shown in Table 1 were derived from
solutions tabulated in Table 4.4 of [Ben81]. Here, [Ben81] gives
the solutions for the first P-wave arrival in terms of the Hansen
vector L (in spherical polar coordinates) of the form,

~Llm(r,θ ,φ) = ~∇h2
l (r)Ỹlm(θ ,φ) ,

where "h" is the spherical Hankel functions of a second kind. The
amplitudes of the first break are required to be measured radially
to the focal sphere, the projection of the Hansen vector radially is,

r̂ ·~Llm(r,θ ,φ) =
∂

∂ r
h2

l (r)Ỹlm(θ ,φ) .

The angular variation is given by the spherical harmonic function,
up to an overall phase associated with radial component. Asymp-
totically (measurements are made far from the source), in this limit
the Hankel functions tend to [Morse53],

h2
l (x) =

1
x
(i)l+1exp−ix ,

which introduces a relative phase when collecting terms of differ-
ent degree. We also note that the normalization of the spherical
harmonics used in [Ben81] does not include the Cordon Shortley
phase convention. Since we are using Wigner-D matrices to
generate rotations, it is convenient to use that convention,

Ỹlm(θ ,φ) = (−1)m

√
4π(l +m)!

(2l +1)(l−m)!
Ylm(θ ,φ) .

The reference implementation6 includes its own sph_harm func-
tion to add this phase factor. With these adjustments, the am-
plitudes (up to an overall constant) for a common set of source
mechanism, in terms of the spherical harmonics, are given in Table
1.
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