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Abstract—Inference on time series data is a common requirement in many
scientific disciplines and internet of things (IoT) applications, yet there are few
resources available to domain scientists to easily, robustly, and repeatably build
such complex inference workflows: traditional statistical models of time series
are often too rigid to explain complex time domain behavior, while popular
machine learning packages require already-featurized dataset inputs. Moreover,
the software engineering tasks required to instantiate the computational plat-
form are daunting. cesium is an end-to-end time series analysis framework,
consisting of a Python library as well as a web front-end interface, that allows re-
searchers to featurize raw data and apply modern machine learning techniques
in a simple, reproducible, and extensible way. Users can apply out-of-the-box
feature engineering workflows as well as save and replay their own analyses.
Any steps taken in the front end can also be exported to a Jupyter notebook, so
users can iterate between possible models within the front end and then fine-
tune their analysis using the additional capabilities of the back-end library. The
open-source packages make us of many use modern Python toolkits, including
xarray, dask, Celery, Flask, and scikit-learn.

Index Terms—time series, machine learning, reproducible science

Introduction

From the reading of electroencephalograms (EEGs) to earthquake
seismograms to light curves of astronomical variable stars, glean-
ing insight from time series data has been central to a broad
range of scientific disciplines. When simple analytical thresholds
or models suffice, technicians and experts can be easily removed
from the process of inspection and discovery by employing custom
algorithms. But when dynamical systems are not easily modeled
(e.g., through physics-based models or standard regression tech-
niques), classification and anomaly detection have traditionally
been reserved for the domain expert: digitally recorded data are
visually scanned to ascertain the nature of the time variability and
find important (perhaps life-threatening) outliers. Does this person
have an irregular heartbeat? What type of supernova occurred in
that galaxy? Even in the presence of sensor noise and intrinsic
diversity of the samples, well-trained domain specialists show a
remarkable ability to make discerning statements about complex
data.
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In an era when more time series data are being collected
than can be visually inspected by domain experts, computational
frameworks must necessarily act as human surrogates. Capturing
the subtleties that domain experts intuit in time series data (let
alone besting the experts) is a non-trivial task. In this respect,
machine learning has already been used to great success in several
disciplines, including text classification, image retrieval, segmen-
tation of remote sensing data, internet traffic classification, video
analysis, and classification of medical data. Even if the results
are similar, some obvious advantages over human involvement
are that machine learning algorithms are tunable, repeatable, and
deterministic. A computational framework built with elasticity can
scale, whereas experts (and even crowdsourcing) cannot.

Despite the importance of time series in scientific research,
there are few resources available that allow domain scientists to
easily build robust computational inference workflows for their
own time series data, let alone data gathered more broadly in their
field. The difficulties involved in constructing such a framework
can often greatly outweigh those of analyzing the data itself:

It may be surprising to the academic community
to know that only a tiny fraction of the code in many
machine learning systems is actually doing "machine
learning"...a mature system might end up being (at most)
5% machine learning code and (at least) 95% glue code.
[SHG+14]

Even if a domain scientist works closely with machine learning
experts, the software engineering requirements can be daunting. It
is our opinion that being a modern data-driven scientist should
not require an army of software engineers, machine learning
experts, statisticians and production operators. cesium [cT16]
was created to allow domain experts to focus on the inference
questions at hand rather than needing to assemble a complete
engineering project.

The analysis workflow of cesium can be used in two forms:
a web front end which allows researchers to upload their data, per-
form analyses, and visualize their models all within the browser;
and a Python library which exposes more flexible interfaces to
the same analysis tools. The web front end is designed to handle
many of the more cumbersome aspects of machine learning
analysis, including data uploading and management, scaling of
computational resources, and tracking of results from previous
experiments. The Python library is used within the web back end
for the main steps of the analysis workflow: extracting features
from raw time series, building models from these features, and
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Fig. 1: Typical data for a classification task on variable stars from
the All Sky Automated Survey; shown are flux measurements for three
stars irregularly sampled in time [RSM+12].

generating predictions. The library also supplies data structures
for storing time series (including support for irregularly-sampled
time series and measurement errors), features, and other relevant
metadata.

In the next section, we describe a few motivating examples of
scientific time series analysis problems. The subsequent sections
describe in detail the cesium library and web front end, including
the different pieces of functionality provided and various design
questions and decisions that arose during the development process.
Finally, we present an end-to-end analysis of an EEG seizure
dataset, first using the Python library and then via the web front
end.

Example time series machine learning problems

cesium was designed with several time series inference use cases
across various scientific disciplines in mind.

1) Astronomical time series classification. Beginning in
2020, the Large Synoptic Survey Telescope (LSST) will
survey the entire night’s sky every few days producing
high-quality time series data on approximately 800 mil-
lion transient events and sources with variable brightness
(Figure 1 depicts the brightness of several types of star
over the course of several years) [AAA+09]. Much of
the best science in the time domain (e.g., the discovery
of the accelerating universe and dark energy using Type
Ia supernovae [PAG+99], [RFC+98]) consists of first
identifying possible phenomena of interest using broad
data mining approaches and following up by collecting
more detailed data using other, more precise observa-
tional tools. For many transient events, the time scale
during which observations can be collected can be on the
order of days or hours. Not knowing which of the millions
of variable sources to examine more closely with larger
telescopes and specialized instruments is tantamount to
not having discovered those sources at all. Discoveries
must be identified quickly or in real time so that informed
decisions can be made about how best to allocate addi-
tional observational resources.
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Fig. 2: EEG signals from patients with epilepsy [ALM+01].

2) Neuroscience time series classification. that might need
to be classified in order to make treatment decisions. Neu-
roscience experiments now produce vast amounts of time
series data that can have entirely different structures and
spatial/temporal resolutions, depending on the recording
technique. Figure 2 shows an example of different types
of EEG signals The neuroscience community is turning to
the use of large-scale machine learning tools to extract in-
sight from large, complex datasets [LCL+07]. However,
the community lacks tools to validate and compare data
analysis approaches in a robust, efficient and reproducible
manner: even recent expert reviews on the matter leave
many of these critical methodological questions open for
the user to explore in an ad hoc way and with little
principled guidance [PG07].

3) Earthquake detection, characterization and warning.
Earthquake early warning (EEW) systems are currently
in operation in Japan, Mexico, Turkey, Taiwan and Ro-
mania [AGKB09] and are under development in the US
[BAH+11]. These systems have employed sophisticated
remote sensors, real-time connectivity to major broadcast
outlets (such as TV and radio), and have a growing
resumé of successful rapid assessment of threat levels
to populations and industry. Traditionally these warning
systems trigger from data obtained by high-quality seis-
mic networks with sensors placed every ~10 km. Today,
however, accelerometers are embedded in many con-
sumer electronics including computers and smartphones.
There is tremendous potential to improve earthquake
detection methods using streaming classification analysis
both using traditional network data and also harnessing
massive data from consumer electronics.

Simple and reproducible workflows

In recent years, there has been rapid growth in the availability
of open-source tools that implement a wide variety of machine
learning algorithms: packages within the R [T+13] and Python
programming languages [PVG+11], standalone Java-based pack-
ages such as Moa [BHKP10] and Weka [HFH+09], and online
webservices such as the Google Prediction API, to name a few.
To a domain scientist that does not have formal training in
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machine learning, however, the availability of such packages is
both a blessing and a curse. On one hand, most machine learning
algorithms are now widely accessible to all researchers. At the
same time, these algorithms tend to be black boxes with potentially
many enigmatic knobs to turn. A domain scientist may rightfully
ask just which of the many algorithms to use, which parameters to
tune, and what the results actually mean.

The goal of cesium is to simplify the analysis pipeline so
that scientists can spend less time solving technical computing
problems and more time answering scientific questions. cesium
provides a library of feature extraction techniques inspired by
analyses from many scientific disciplines, as well as a surrounding
framework for building and analyzing models from the resulting
feature information using scikit-learn (or potentially other
machine learning tools).

By recording the inputs, parameters, and outputs of previous
experiments, cesium‘ allows researchers to answer new questions
that arise out of previous lines of inquiry. Saved cesium work-
flows can be applied to new data as it arrives and shared with
collaborators or published so that others may apply the same
beginning-to-end analysis for their own data.

For advanced users or users who wish to delve into the source
code corresponding to a workflow produced through the cesium
web front end, we are implementing the ability to produce a
Jupyter notebook [PG07] from a saved workflow with a single
click. While our goal is to have the front end to be as robust and
flexible as possible, ultimately there will always be special cases
where an analysis requires tools which have not been anticipated,
or where the debugging process requires a more detailed look at
the intermediate stages of the analysis. Exporting a workflow to
a runnable notebook provides a more detailed, lower-level look at
how the analysis is being performed, and can also allow the user to
reuse certain steps from a given analysis within any other Python
program.

cesium library

The first half of the cesium framework is the back-end Python-
based library, aimed at addressing the following uses cases:

1) A domain scientist who is comfortable with programming
but is unfamiliar with time series analysis or machine
learning.

2) A scientist who is experienced with time series analysis
but is looking for new features that can better capture
patterns within their data.

3) A user of the cesium web front end who realizes
they require additional functionality and wishes to add
additional stages to their workflow.

Our framework primarily implements "feature-based meth-
ods", wherein the raw input time series data is used to compute
"features" that compactly capture the complexity of the signal
space within a lower-dimensional feature space. Standard machine
learning approaches (such as random forests [Bre01] and support
vector machines [SV99]) may then be used for supervised classi-
fication or regression.

cesium allows users to select from a large library of features,
including both general time series features and domain-specific
features drawn from various scientific disciplines. Some specific
advantages of the cesium featurization process include:

• Support for both regularly and irregularly sampled time
series.
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Fig. 3: Fitted multi-harmonic Lomb-Scargle model for a light curve
from a periodic Mira-class star. cesium automatically generates
numerous features based on Lomb-Scargle periodogram analysis.

• Ability to incorporate measurement errors, which can
be provided for each data point of each time series (if
applicable).

• Support for multi-channel data, in which case features are
computed separately for each dimension of the input data.

Example features

Some cesium features are extremely simple and intuitive: sum-
mary statistics such as maximum/minimum values, mean/median
values, and standard deviation or median absolute deviation are a
few such examples. Other features involve measurement errors if
they are available: for example, a mean and standard deviation that
is weighted by measurement errors allows noisy data with large
outliers to be modeled more precisely.

Other more involved features could be the estimated parame-
ters for various fitted statistical models: Figure 3 shows a multi-
frequency, multi-harmonic Lomb-Scargle model that describes the
rich periodic behavior in an example time series [Lom76], [Sca82].
The Lomb-Scargle method is one approach for generalizing the
process of Fourier analysis of frequency spectra to the case of
irregularly sampled time series. In particular, a time series is
modeled as a superposition of periodic functions

ỹ(t) =
m

∑
k=1

n

∑
l=1

Akl coskωlt +Bkl sinkωlt,

where the parameters Akl ,Bkl , and ωl are selected via non-convex
optimization to minimize the residual sum of squares (weighted
by measurement errors if applicable). The estimated periods,
amplitudes, phases, goodness-of-fits, and power spectrum can then
be used as features which broadly characterize the periodicity of
the input time series.

Usage overview

Here we provide a few examples of the main cesium API com-
ponents that would be used in a typical analysis task. A workflow
will typically consist of three steps: featurization, model building,
and prediction on new data. The majority of cesium func-
tionality is contained within the cesium.featurize module;
the cesium.build_model and cesium.predict modules
primarily provide interfaces between sets of feature data, which
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contain both feature data and a variety of metadata about the input
time series, and machine learning models from scikit-learn
[PVG+11], which require dense, rectangular input data. Note that,
as cesium is under active development, some of the following
details are subject to change.

The featurization step is performed using one of two main
functions:

• featurize_time_series(times, values,
errors, ...)

– Takes in data that is already present in memory
and computes the requested features (passed in as
string feature names) for each time series.

– Features can be computed in parallel across work-
ers via Celery, a Python distributed task queue
[Sol14], or locally in serial.

– Class labels/regression targets and meta-
data/features with known values are passed
in and stored in the output dataset.

– Additional feature functions can be passed in as
custom_functions.

• featurize_data_files(uris, ...),

– Takes in a list of file paths or URIs and dispatches
featurization tasks to be computed in parallel via
Celery.

– Data is loaded only remotely by the workers rather
than being copied, so this approach should be
preferred for very large input datasets.

– Features, metadata, and custom feature
functions are passed in the same way as
featurize_data_files.

The output of both functions is a Dataset object from the
xarray library [Hoy15], which will also be referred to here
as a "feature set" (more about xarray is given in the next
section). The feature set stores the computed feature values for
each function (indexed by channel, if the input data is multi-
channel), as well as time series filenames or labels, class labels
or regression targets, and other arbitrary metadata to be used in
building a statistical model.

The build_model contains tools meant to to simplify
the process of building sckit-learn models from (non-
rectangular) feature set data:

• model_from_featureset(featureset, ...)

– Returns a fitted scikit-learn model based on
the input feature data.

– A pre-initialized (but untrained) model can be
passed in, or the model type can be passed in as a
string.

– Model parameters can be passed in as fixed values,
or as ranges of values from which to select via
cross-validation.

Analogous helper functions for prediction are available in the
predict module:

• model_predictions(featureset, model,
...)

– Generates predictions from a feature set
outputted by featurize_time_series
or featurize_data_files.

• predict_data_files(file_paths, model,
...)

– Like featurize_data_files, generate pre-
dictions for time series which have not yet been
featurized by dispatching featurization tasks to
Celery workers and then passing the resulting
featureset to model_predictions.

After a model is initially trained or predictions have been
made, new models can be trained with more features or unin-
formative features can be removed until the result is satisfactory.

Implementation details

cesium is implemented in Python, along with some C code
(integrated via Cython) for especially computationally-intensive
feature calculations. Our library also relies upon many other open
source Python projects, including scikit-learn, pandas,
xarray, and dask. As the first two choices are somewhat
obvious, here we briefly describe the roles of the latter two
libraries.

As mentioned above, feature data generated by cesium is
returned as a Dataset object from the xarray package, which
according to the documentation "resembles an in-memory repre-
sentation of a NetCDF file, and consists of variables, coordinates
and attributes which together form a self describing dataset".
A Dataset allows multi-channel feature data to be faithfully
represented in memory as a multidimensional array so that the
effects of each feature (across all channels) or channel (across all
features) can be evaluated directly, while also storing metadata
and features that are not channel-specific. Storing feature outputs
in NetCDF format allows for faster and more space-efficient
serialization and loading of results (as compared to a text-based
format).

The dask library provides a wide range of tools for organizing
computational full process of exporting tasks. cesium makes use
of only one small component: within dask, tasks are organized
as a directed acyclic graph (DAG), with the results of some tasks
serving as the inputs to others. Tasks can then be computed in
an efficient order by dask’s scheduler. Within cesium, many
features rely on other features as inputs, so internally we represent
our computations as dask graphs in order to minimize redundant
computations and peak memory usage. Part of an example DAG
involving the Lomb-Scargle periodogram is depicted in Figure 4:
circles represent functions, and rectangles the inputs/outputs of the
various steps. In addition to the built-in features, custom feature
functions passed in directly by the user can similarly make use of
the internal dask representation so that built-in features can be
reused for the evaluation of user-specified functions.

Web front end

The cesium front end provides web-based access to time series
analysis, addressing three common use cases:

1) A scientist needs to perform time series analysis, but is
unfamiliar with programming and library usage.

2) A group of scientists want to collaboratively explore
different methods for time-series analysis.

3) A scientist is unfamiliar with time-series analysis, and
wants to learn how to apply various methods to their
data, using industry best practices.
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Fig. 4: Example of a directed feature computation graph using dask.

The front-end system (together with its deployed back end),
offers the following features:

• Distributed, parallelized fitting of machine learning mod-
els.

• Isolated1, cloud-based execution of user-uploaded featur-
ization code.

• Visualization and analysis of results.
• Tracking of an entire exploratory workflow from start-to-

finish for reproducibility (in progress).
• Downloads of Jupyter notebooks to replicate analyses2.

Implementation

The cesium web front end consists of several components:

• A Python-based Flask [Ron15] server which provides a
REST API for managing datasets and launching featuriza-
tion, model-building, and prediction tasks.

• A JavaScript-based web interface implemented using Re-
act [Gac15b] and Redux [Gac15a] to display results to
users.

• A custom WebSocket communication system (which we
informally call message flow) that notifies the front end
when back-end tasks complete.

While the deployment details of the web front end are beyond
the scope of this paper, it should be noted that it was designed
with scalability in mind. The overarching design principle is to
connect several small components, each performing only one,
simple task. An NGINX proxy exposes a pool of WebSocket
and Web Server Gateway Interface (WSGI) servers to the user.
This gives us the flexibility to choose the best implementation
of each. Communications between WSGI servers and WebSocket

1. Isolation is currently provided by limiting the user to non-privileged
access inside a Docker [Mer14] container.

2. Our current implementation of the front end includes the ability to track
all of a user’s actions in order to produce a notebook version, but the full
process of generating the notebook is still a work in progress.

servers happen through a ZeroMq XPub-XSub (multi-publisher
publisher-subscriber) pipeline [Hin13], but could be replaced with
any other broker, e.g., RabbitMQ [VW12]. The "message flow"
paradigm adds WebSocket support to any Python WSGI server
(Flask, Django3, Pylons, etc.), and allows scaling up as demand
increases. It also implement trivially modern data flow models
such as Flux/Redux, where information always flows in one di-
rection: from front end to back end via HTTP (Hypertext Transfer
Protocol) calls, and from back end to front end via WebSocket
communication.

Computational Scalability

In many fields, the volumes of available time series data can be
immense. cesium includes features to help parallelize and scale
an analysis from a single system to a large cluster.

Both the back-end library and web front end make use of Cel-
ery [Sol14] for distributing featurization tasks to multiple workers;
this could be used for anything from automatically utilizing all the
available cores of a single machine, to assigning jobs across a large
cluster. Similarly, both parts of the cesium framework include
support for various distributed filesystems, so that analyses can
be performed without copying the entire dataset into a centralized
location.

While the cesium library is written in pure Python, the
overhead of the featurization tasks is minimal; the majority of
the work is done by the feature code itself. Most of the built-in
features are based on high-performance numpy functions; others
are written in pure C with interfaces in Cython. The use of
dask graphs to eliminate redundant computations also serves to
minimize memory footprint and reduce computation times.

Automated testing and documentation

Because the back-end library and web front end are developed
in separate GitHub repositories, the connections between the two
somewhat complicate the continuous integration testing setup.
Both repositories are integrated with Travis CI for automatic
testing of all branches and pull requests; in addition, any new
pushes to cesium/master trigger a set of tests of the front
end using the new version of the back-end library, with any
failures being reported but not causing the cesium build to fail
(the reasoning being that the back-end library API should be the
"ground truth", so any updates represent a required change to the
front end, not a bug per se).

Documentation for the back-end API is automatically gen-
erated in ReStructured Text format via numpydoc; the result
is combined with the rest of our documentation and rendered
as HTML using sphinx. Code examples (without output) are
stored in the repository in Markdown format as opposed to Jupyter
notebooks since this format is better suited to version control.
During the doc-build process, the Markdown is converted to
Jupyter notebook format using notedown, then executed using
nbconvert and converted back to Markdown (with outputs
included), to be finally rendered by sphinx. This allows the code
examples to be saved in a human-readable and version control-
friendly format while still allowing the user to execute the code
themselves via a downloadable notebook.

3. At PyCon2016, Andrew Godwin presented a similar solution for Django
called "channels". The work described here happened before we became aware
of Andrew’s, and generalizes beyond Django to, e.g., Flask, the web framework
we use.

https://travis-ci.com/
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Example EEG dataset analysis

In this example we compare various techniques for epilepsy
detection using a classic EEG time series dataset from Andrzejak
et al. [ALM+01]. The raw data are separated into five classes: Z,
O, N, F, and S; we consider a three-class classification problem
of distinguishing normal (Z, O), interictal (N, F), and ictal (S)
signals. We show how to perform the same analysis using both the
back-end Python library and the web front end.

Python library

First, we load the data and inspect a representative time se-
ries from each class: Figure 2 shows one time series from
each of the three classes, after the time series are loaded from
cesium.datasets.andrzejak.

Once the data is loaded, we can generate features for
each time series using the cesium.featurize module. The
featurize module includes many built-in choices of features
which can be applied for any type of time series data; here
we’ve chosen a few generic features that do not have any special
biological significance.

If Celery is running, the time series will automatically be split
among the available workers and featurized in parallel; setting
use_celery=False will cause the time series to be featurized
serially.

from cesium import featurize

features_to_use = ['amplitude', 'maximum',
'max_slope', 'median',
'median_absolute_deviation',
'percent_beyond_1_std',
'percent_close_to_median',
'minimum', 'skew', 'std',
'weighted_average']

fset_cesium = featurize.featurize_time_series(
times=eeg["times"],
values=eeg["measurements"],
errors=None,
features_to_use=features_to_use,
targets=eeg["classes"])

<xarray.Dataset>
Dimensions: (channel: 1, name: 500)
Coordinates:
* channel (channel) int64 0
* name (name) int64 0 1 ...
target (name) object 'Normal' 'Normal' ...

Data variables:
minimum (name, channel) float64 -146.0 -254.0 ...
amplitude (name, channel) float64 143.5 211.5 ...
...

The resulting Dataset contains all the feature information
needed to train a machine learning model: feature values are stored
as data variables, and the time series index/class label are stored
as coordinates (a channel coordinate will also be used later for
multi-channel data).

Custom feature functions not built into cesium may
be passed in using the custom_functions keyword, ei-
ther as a dictionary {feature_name: function}, or as
a dask graph. Functions should take three arrays times,
measurements, errors as inputs; details can be found in
the cesium.featurize documentation. Here we compute
five standard features for EEG analysis suggested by Guo et al.
[GRD+11]:

import numpy as np, scipy.stats

def mean_signal(t, m, e):
return np.mean(m)

def std_signal(t, m, e):
return np.std(m)

def mean_square_signal(t, m, e):
return np.mean(m ** 2)

def abs_diffs_signal(t, m, e):
return np.sum(np.abs(np.diff(m)))

def skew_signal(t, m, e):
return scipy.stats.skew(m)

Now we pass the desired feature functions as a dictionary via the
custom_functions keyword argument (functions can also be
passed in as a list or a dask graph).

guo_features = {
'mean': mean_signal,
'std': std_signal,
'mean2': mean_square_signal,
'abs_diffs': abs_diffs_signal,
'skew': skew_signal

}
fset_guo = featurize.featurize_time_series(

times=eeg["times"],
values=eeg["measurements"],
errors=None, targets=eeg["classes"],
features_to_use=guo_features.keys(),
custom_functions=guo_features)

<xarray.Dataset>
Dimensions: (channel: 1, name: 500)
Coordinates:
* channel (channel) int64 0
* name (name) int64 0 1 ...

target (name) object 'Normal' 'Normal' ...
Data variables:

abs_diffs (name, channel) float64 4695.2 6112.6 ...
mean (name, channel) float64 -4.132 -52.44 ...
...

The EEG time series considered here consist of univari-
ate signal measurements along a uniform time grid. But
featurize_time_series also accepts multi-channel data.
To demonstrate this, we will decompose each signal into five
frequency bands using a discrete wavelet transform as suggested
by Subasi [Sub07], and then featurize each band separately using
the five functions from above.

import pywt

eeg["dwts"] = [pywt.wavedec(m, pywt.Wavelet('db1'),
level=4)

for m in eeg["measurements"]]
fset_dwt = featurize.featurize_time_series(

times=None, values=eeg["dwts"], errors=None,
features_to_use=guo_features.keys(),
targets=eeg["classes"],
custom_functions=guo_features)

<xarray.Dataset>
Dimensions: (channel: 5, name: 500)
Coordinates:
* channel (channel) int64 0 1 ...
* name (name) int64 0 1 ...

target (name) object 'Normal' 'Normal' ...
Data variables:

abs_diffs (name, channel) float64 25131 18069 ...
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skew (name, channel) float64 -0.0433 0.06578 ...
...

The output feature set has the same form as before, ex-
cept now the channel coordinate is used to index the fea-
tures by the corresponding frequency band. The functions in
cesium.build_model and cesium.predict all accept
feature sets from single- or multi-channel data, so no additional
steps are required to train models or make predictions for multi-
channel feature sets using the cesium library.

Model building in cesium is handled by
the model_from_featureset function in the
cesium.build_model module. The feature set output
by featurize_time_series contains both the
feature and target information needed to train a model;
model_from_featureset is simply a wrapper that calls
the fit method of a given scikit-learn model with the
appropriate inputs. In the case of multichannel features, it also
handles reshaping the feature set into a (rectangular) form that is
compatible with scikit-learn.

For this example, we test a random forest classifier for the
built-in cesium features, and a 3-nearest neighbors classifier for
the others, as in [GRD+11].

from cesium.build_model import model_from_featureset
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import train_test_split

train, test = train_test_split(500)

rfc_param_grid = {'n_estimators': [8, 32, 128, 512]}
model_cesium = model_from_featureset(

fset_cesium.isel(name=train),
RandomForestClassifier(),
params_to_optimize=rfc_param_grid)

knn_param_grid = {'n_neighbors': [1, 2, 3, 4]}
model_guo = model_from_featureset(

fset_guo.isel(name=train),
KNeighborsClassifier(),
params_to_optimize=knn_param_grid)

model_dwt = model_from_featureset(
fset_dwt.isel(name=train),
KNeighborsClassifier(),
params_to_optimize=knn_param_grid)

Making predictions for new time series based on these
models follows the same pattern: first the time se-
ries are featurized using featurize_timeseries and
then predictions are made based on these features using
predict.model_predictions,

from cesium.predict import model_predictions
preds_cesium = model_predictions(

fset_cesium, model_cesium,
return_probs=False)

preds_guo = model_predictions(fset_guo, model_guo,
return_probs=False)

preds_dwt = model_predictions(fset_dwt, model_dwt,
return_probs=False)

And finally, checking the accuracy of our various models, we find:

Builtin: train acc=100.00%, test acc=83.20%
Guo et al.: train acc=90.93%, test acc=84.80%
Wavelets: train acc=100.00%, test acc=95.20%

The workflow presented here is intentionally simplistic and
omits many important steps such as feature selection, model

Fig. 5: "Data" tab

Fig. 6: "Featurize" tab

parameter selection, etc., which may all be incorporated just as
they would for any other scikit-learn analysis. But with
essentially three function calls (featurize_time_series,
model_from_featureset, and model_predictions),
we are able to build a model from a set of time series and
make predictions on new, unlabeled data. In the next section we
introduce the web front end for cesium and describe how the
same analysis can be performed in a browser with no setup or
coding required.

Web front end

Here we briefly demonstrate how the above analysis could be con-
ducted using only the web front end. Note that the user interface
presented here is a preliminary version and is undergoing frequent
updates and additions. The basic workflow follows the same
featurize—build model—predict pattern. First, data is uploaded as
in Figure 5. Features are selected from available built-in functions
as in Figure 6, or may be computed from user-uploaded Python
code which is securely executed within a Docker container. Once
features have been extracted, models can be created as in Figure
7, and finally predictions can be made as in Figure 8. Currently
the options for exploring feature importance and model accuracy
are limited, but this is again an area of active development.

Future work

The cesium project is under active development. Some of our
upcoming goals include:
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Fig. 7: "Build Model" tab

Fig. 8: "Predict" tab

• Full support for exporting Jupyter notebooks from any
workflow created within the web front end.

• Additional features from other scientific disciplines (cur-
rently the majority of available features are taken from
applications in astronomy).

• Improved web front end user interface with more tools for
visualizing and exploring a user’s raw data, feature values,
and model outputs.

• More tools to streamline the process of iteratively explor-
ing new models based on results of previous experiments.

• Better support for sharing data and results among teams.
• Extension to unsupervised problems.

Conclusion

The cesium framework provides tools that allow anyone from
machine learning specialists to domain experts without any ma-
chine learning experience to rapidly prototype explanatory models
for their time series data and generate predictions for new, un-
labeled data. Aside from the applications to time domain infor-
matics, our project has several aspects which are relevant to the
broader scientific Python community.

First, the dual nature of the project (Python back end vs.
web front end) presents both unique challenges and interesting
opportunities in striking a balance between accessibility and
flexibility of the two components. Second, the cesium project
places a strong emphasis on reproducible workflows: all actions

performed within the web front end are logged and can be easily
exported to a Jupyter notebook that exactly reproduces the steps
of the analysis. Finally, the scope of our project is simultaneously
both narrow (time series analysis) and broad (numerous distinct
scientific disciplines), so determining how much domain-specific
functionality to include is an ongoing challenge.
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