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Abstract—The ignition delay of a fuel/air mixture is an important quantity in
designing combustion devices, and these data are also used to validate compu-
tational kinetic models for combustion. One of the typical experimental devices
used to measure the ignition delay is called a Rapid Compression Machine
(RCM). This paper presents UConnRCMPy, an open-source Python package to
process experimental data from the RCM at the University of Connecticut. Given
an experimental measurement, UConnRCMPy computes the thermodynamic
conditions in the reaction chamber of the RCM during an experiment along
with the ignition delay. UConnRCMPy relies on several packages from the SciPy
stack and the broader scientific Python community. UConnRCMPy implements
an extensible framework, so that alternative experimental data formats can be
incorporated easily. In this way, UConnRCMPy improves the consistency of
RCM data processing and enables reproducible analysis of the data.

Index Terms—rapid compression machine, engineering, kinetic models

Introduction

The world relies heavily on combustion to provide energy in
useful and clean forms for human consumption; in particular,
the transportation sector accounts for nearly 30% of the energy
use in the United States and of that, more than 90% is supplied
by combustion of fossil fuels [US 16]. Unfortunately, emissions
from the combustion of traditional fossil fuels have been impli-
cated in a host of deleterious effects on human health and the
environment [ADF+02]. Two methods are being considered to
reduce the impact of fossil fuel combustion in transportation on
the environment, namely: 1) development of new fuel sources and
2) development of new engine technologies.

The challenge for engineers is that it is not straightforward
to combine new fuels with newly designed engines. Employing
computer-aided design and modeling of new engines with new
fuels will be critical to develop advanced engines to be able to
utilize multiple conventional and alternative fuels. The key to this
process is the development of accurate and predictive combustion
models.

These models of combustion are typically descriptions of the
chemical kinetic pathways the hydrocarbon fuel and oxidizer
undergo as they break down into carbon dioxide and water. There
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may be as many as several tens of thousands of pathways in the
model for combustion of a particular fuel, with each pathway
requiring several parameters to describe its rate. Therefore, it is
important to thoroughly validate the operation of the model by
comparison to experimental data collected over a wide range of
conditions.

One type of data that is particularly relevant for transportation
applications is the ignition delay. The ignition delay is a global
combustion property depending on the interaction of many of
the pathways present in the model. There are several methods to
measure the ignition delay at engine-relevant conditions, including
shock tubes and rapid compression machines (RCMs).

An RCM is typically designed with one or two pistons that
rapidly compress a homogeneous fuel and oxidizer mixture inside
a reaction chamber. After the end of compression (EOC), the pis-
ton(s) is (are) locked in place, creating a constant volume reaction
chamber. The primary diagnostic in most RCM experiments is the
pressure measured as a function of time in the reaction chamber.
This pressure trace is then processed to extract the ignition delay.

In this paper, the design and operation of a software package to
process the pressure data collected from RCMs is described. Our
package, called UConnRCMPy [Web16], is designed to analyze
the data acquired from the RCM at the University of Connecticut
(UConn). Despite the initial focus on data from the UConn RCM,
the package is designed to be extensible so that it can be used for
data in different formats while providing a consistent interface to
the user.

Recognizing that reproducible research is an important goal
for the scientific community [Nat16], and that the code used to
process experimental data is an important part of reproducing
research, the primary goal of UConnRCMPy is to enable con-
sistent, reproducible analysis of RCM data. Thus, UConnRCMPy
offers all of the features required to process standard RCM data
including:

• Filtering and smoothing the raw voltage generated by the
pressure transducer

• Converting the voltage trace into a pressure trace using
settings recorded from the RCM

• Processing the pressure trace to determine parameters of
interest in reporting the experiments, including the ignition
delay and machine-specific effects on the experiment

• Conducting simulations utilizing the experimental infor-
mation to calculate the temperature during the experiment

Previous software used to analyze RCM data has generally
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been undocumented and untested code specific to the researcher
conducting the experiments. Moreover, the software typically used
to estimate the temperature in the experiments is difficult to
integrate with the data processing code. To the best of the authors’
knowledge, UConnRCMPy is the first package for analysis of
standard RCM data to be presented in detail in the literature, and
it tightly integrates the temperature estimation routine into the
workflow, reducing errors and inefficiencies.

This paper serves to describe some of the important aspects
of RCM data processing, particularly the choices that the operator
must make that are rarely documented. In addition, as a comple-
ment to the in-source documentation, this paper documents the
design choices, interface, and flexibility of UConnRCMPy.

Background

The RCMs at the University of Connecticut have been described
extensively elsewhere [DSZM12], [MS07], and will be summa-
rized here for reference. The RCMs use a single pneumatically
accelerated and hydraulically decelerated piston. In a typical
experiment, the reaction chamber is evacuated to an absolute
pressure near 1 Torr, measured by a high-accuracy static pressure
transducer. Next, the reactants are filled in to the desired initial
pressure (P0), and a valve on the reaction chamber is closed.
Compression is triggered by a digital control circuit. After com-
pression, the piston is held in place to create a constant volume
chamber in which reactions proceed. For appropriate combina-
tions of pressure, temperature, and mixture composition, ignition
will occur after some delay period. A single compression-delay-
ignition sequence is referred to as an experiment or a run. Each
experiment is repeated approximately 5 times at the same nominal
initial conditions to ensure repeatability of the data, and this set of
experiments is referred to in the following as a condition.

The primary diagnostic on the RCM is the reaction chamber
pressure, measured by a dynamic pressure transducer (separate
from the static transducer used to measure P0). The pressure trace
is processed to determine the quantities of interest, including the
pressure and temperature at the EOC, PC and TC respectively, and
the ignition delay, τ . The ignition delay is typically measured
at several values of TC for a given value of PC and mixture
composition; this is referred to in the following as a data set.

RCM Signal Processing Procedure

Signal measurement

The dynamic pressure transducer outputs a charge signal that is
converted to a voltage signal by a charge amplifier with a nominal
output of 0 V prior to the start of compression. In addition, the
output range of 0 V to 10 V is set by the operator to correspond
to a particular pressure range by setting a "scale factor". Typical
values for the scale factor range between 10 bar/V and 100 bar/V.

The voltage output from the charge amplifier is digitized by a
hardware data acquisition system (DAQ) and recorded into a plain
text file by a LabView Virtual Instrument. The voltage is sampled
at a rate chosen by the operator, typically between 50 kHz and 100
kHz. This provides sufficient resolution for events on the order of
milliseconds; the typical ignition delay measured with this RCM
approximately ranges from 5 ms to 100 ms.

Figure 1 shows a typical voltage trace measured from the RCM
at UConn. Several features are apparent from this figure. First,
the compression stroke takes approximately 30 ms to 40 ms and
approximately 50% of the pressure rise occurs in the last 5 ms

of compression. Second, there is a slow pressure decrease after
the EOC due to heat transfer from the reactants to the relatively
colder chamber walls. Third, after some delay period there is a
spike in the pressure corresponding to rapid heat release due to
combustion. Finally, the signal can be somewhat noisy, requiring
filtering and/or smoothing to produce a useful pressure trace.

Filtering and Smoothing

In the current version of UConnRCMPy [Web16], the voltage
is filtered using a low-pass filter with a cutoff frequency of 10
kHz. The filter is constructed using the firwin() function from
the signals module of SciPy [JOPosh] with the Blackman
window [BT58], [OSB99] and a filter order of 214 −1. The cutoff
frequency, window type, and filter order were determined empir-
ically, based on Fig. 2. Methods to select a cutoff frequency that
optimizes the signal-to-noise ratio are currently being investigated.

After filtering, the signal is smoothed by a moving average
filter with a width of 21 points. This width was selected empiri-
cally based on Fig. 1 to minimize the deviation of the smoothed
voltage from the raw voltage during the ignition, and methods
to automatically choose an optimal width are being investigated.
It is desired that the signal remain the same length through this
operation, but the convolution operation used to apply the moving
average zero-pads the first and last 10 points. To avoid a bias in the
initial voltage, the first 10 points are set equal to the value of the
11th point; the final 10 points are not important in the rest of the
analysis and are ignored. The result of the filtering and smoothing
operations is shown on Fig. 1.

Offset Correction and Pressure Calculation

In general, the voltage trace can be converted to a pressure trace
by

P(t) = F ·V (t)+P0 (1)

where V (t) is the filtered and smoothed voltage trace and F is the
scale factor from the charge amplifier. However, as can be seen in
Fig. 1b there is a small offset in the initial voltage relative to the
nominal value of 0 V. To correct for this offset, it can be subtracted
from the voltage trace

P(t) = F ·
[
V (t)−V (0)

]
+P0 (2)

where V (0) is the initial voltage of the filtered and smoothed
signal. Assuming the noise in the signal has an equal probability of
being above or below the mean voltage, choosing the initial point
(i.e., V (0)) to set the voltage offset is equivalent to choosing any
other point prior to the start of compression. The result is a vector
of pressure values that must be further processed to determine the
time of the EOC and the ignition delay.

Finding the EOC

In the current version of UConnRCMPy [Web16], the EOC is
determined by finding the local maximum of the pressure prior
to ignition. This is done by searching backwards in time from
the global maximum pressure in the pressure trace (typically,
the global maximum of the pressure is due to ignition) until a
minimum in the pressure is reached. Since the precise time of the
minimum is not important for this method, the search is done by
comparing the pressure at a given index i to the pressure at point
i− 50, starting with the index of the global maximum pressure.
The comparison is not made to the adjacent point to avoid the
influence of noise. If P(i) ≥ P(i− 50), the index is decremented
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Fig. 1: Raw voltage trace and the voltage trace after filtering and smoothing from a typical RCM experiment. Note that the voltage in the
figure varies from 0 V to 1 V because the scale factor is 100 bar/V and the maximum pressure for this case is near 100 bar. (a): Close up of the
time around the EOC, demonstrating the fidelity of the smoothed and filtered signal with the original signal. (b): Close up of the time before
the start of compression, demonstrating the offset of the initial voltage slightly below 0 V.

Fig. 2: Power spectral density profiles of the original, filtered, and
filtered and smoothed signals, showing the peaks of noise above 10
kHz.

and the process is repeated until P(i)< P(i−50). This value of i
is approximately at the minimum of pressure prior to ignition, so
the maximum of the pressure in points to the left of the minimum
will be the EOC.

This method is generally robust, but it fails when there is no
minimum in the pressure between the EOC and ignition, or the
minimum pressure is very close to the EOC pressure. This may
be the case for short ignition delays, on the order of 5 ms or
less. In these cases, the comparison offset (which is set to 50

points by default) can be reduced to improve the granularity of the
search; if the method still fails, manual intervention is necessary
to determine the EOC. In either case, the value of the pressure at
the EOC, PC, is recorded and the time at the EOC is taken to be
t = 0.

Calculating Ignition Delay

The ignition delay is determined as the time difference between the
EOC and the point of ignition. There are several definitions of the
point of ignition; the most commonly used in RCM experiments is
the inflection point in the pressure trace due to ignition. As before,
finding zero crossings of the second time derivative of the pressure
to define the inflection point is difficult due to noise; however,
finding the maximum of the first derivative is trivial, particularly
since the time before and shortly after the EOC can be excluded
to avoid the peak in the derivative around the EOC.

In the current version of UConnRCMPy [Web16], the first
derivative of the experimental pressure trace is computed by a
second-order forward differencing method. The derivative is then
smoothed by the moving average algorithm with a width of 151
points. This value for the moving average window was chosen
empirically.

For some conditions, the reactants may undergo two distinct
stages of ignition. These cases can be distinguished by a pair of
peaks in the first time derivative of the pressure. For some two-
stage ignition cases, the first-stage pressure rise, and consequently
the peak in the derivative, are relatively weak, making it hard to
distinguish the peak due to ignition from the background noise.
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Fig. 3: Illustration of the definition of the ignition delay in a two-stage
ignition case.

This is currently the area requiring the most manual intervention,
and one area where significant improvements can be made by
refining the differentiation and filtering/smoothing algorithms. An
experiment that shows two clear peaks in the derivative is shown
in Fig. 3 to demonstrate the definition of the ignition delays.

Calculating the EOC Temperature

The final parameter of interest presently is the EOC temperature,
TC. This temperature is often used as the reference temperature
when reporting ignition delays. In general, it is difficult to measure
the temperature as a function of time in the reaction chamber of the
RCM, so methods to estimate the temperature from the pressure
trace are generally used.

The law of conservation of energy written for the ideal gases
in the reaction chamber is:

cv
dT
dt

=−P
dv
dt

−∑
k

uk
dYk

dt
(3)

where cv is the specific heat at constant volume of the mixture, v
is the specific volume, uk and Yk are the specific internal energy
and mass fraction of the species k, and t is time. For a constant-
area piston, the rate of change of the volume is equal to the
piston velocity. In UConnRCMPy, Eq. 3 is integrated by Cantera
[GMS16].

In Cantera, intensive thermodynamic information about the
system is stored in an instance of the Solution class. The
Solution classes used in this study model simple, compressible
systems and require two independent properties, plus the com-
position, to fix the state. The two properties must be intensive
(i.e., not dependent on system size), and are typically chosen
from the pressure, temperature, and density. The thermodynamic
information for each species is read from a file in the CTI
format, described in the Cantera documentation [GMS16], when a
Solution instance is created.

In addition to evaluating thermodynamic data, Cantera
[GMS16] contains several objects used to model homoge-
neous reacting systems; the two used in UConnRCMPy are the
Reservoir and the IdealGasReactor, which are subclasses
of the generic Reactor class. A Solution object is installed in
each Reactor subclass instance to manage the state information
and evaluate thermodynamic properties. The difference between
the Reservoir and the IdealGasReactor is simply that the

state (i.e., the pressure, temperature, and chemical composition)
of the Solution in a Reservoir is fixed.

Integrating Eq. 3 requires knowledge of the volume of the
reaction chamber as a function of time. To calculate the volume
as a function of time, it is assumed that there is a core of gas
in the reaction chamber that undergoes an isentropic compression
[LH98]. Furthermore, it is assumed that there is negligible reactant
consumption during the compression stroke.

Constructing the volume trace is triggered by the user by
running the create_volume_trace() method that imple-
ments the following procedure. A Cantera Solution object is
initialized at the initial temperature, pressure, and composition of
the reaction chamber. After initialization, UConnRCMPy stores
the initial mass-specific entropy (s0) and density (ρ0). The initial
volume is arbitrarily taken to be V0 = 1.0m3. The initial volume
used in constructing the volume trace is arbitrary provided that
the same value is used for the initial volume in the simulations
described below. However, extensive quantities such as the total
heat release during ignition cannot be compared to experimental
values.

The measured pressure at each point in the pressure trace (Pi)
is used with the previously recorded initial entropy (s0) to set the
state of the Solution object sequentially. At each point, the
volume is computed by applying the ideal gas law:

Vi =V0
ρ0

ρi
(4)

where ρi is the density at each point computed by the Cantera
Solution. This procedure effects a constant composition isen-
tropic compression process.

Once the volume trace has been generated, it can be utilized
in the IdealGasReactor and the solution of Eq. 3 by in-
stalling an instance of the Wall class. Walls must be installed
between instances of Reactors, so in UConnRCMPy a Wall
is installed between the IdealGasReactor that represents the
reaction chamber and an instance of the Reservoir class. By
specifying the velocity of the Wall using the volume trace, the
IdealGasReactor will proceed through the same states as the
reaction chamber in the experiment. The velocity of the Wall
is specified by using an instance of the VolumeProfile class
from the CanSen software [Web15], which computes the first
forward difference of the volume as a function of time.

Finally, the IdealGasReactor is installed into an instance
of ReactorNet from Cantera [GMS16]. The ReactorNet
implements the interface to the solver CVODES. CVODES is an
adaptive-time-stepping solver, distributed as part of the SUNDI-
ALS suite [HBG+05].

Two simulations can be triggered by the user that utilize this
procedure. In the first, the multiplier for all the reaction rates is set
to zero, to simulate a constant composition (non-reactive) process.
In the second, the reactions are allowed to proceed as normal. Only
the non-reactive simulation is necessary to determine TC, which is
defined as the simulated temperature at the EOC time.

When a reactive simulation is conducted, the user must com-
pare the temperature traces from the two simulations to verify
that the inclusion of the reactions does not change TC, validating
the assumption of adiabatic, constant composition compression.
Although including reactions during the compression stroke does
not affect the value of TC, it does allow for the buildup of a
small pool of radicals that can affect processes after the EOC
[MCSD08]. Thus, it is critical to include reactions during the
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compression stroke when conducting simulations to compare a
kinetic model to experimental results.

Simulating Post-EOC Processes

As can be seen in Fig. 3, the pressure decreases after the EOC
due to heat transfer from the higher temperature reactants to the
reaction chamber walls. This process is specific to the machine that
carried out the experiments, and to the conditions under which
the experiment was conducted. Therefore, the rate of pressure
decrease should be modeled and included in simulations that
compare predicted ignition delays to the experimental values.

To conduct this modeling, a non-reactive experiment is con-
ducted, where O2 in the oxidizer is replaced with N2 to maintain
a similar specific heat ratio but suppress the oxidation reactions
that lead to ignition. The pressure trace from this non-reactive
experiment should closely match that from the reactive experiment
during the compression stroke, further validating the assumption
of adiabatic, constant composition compression. Furthermore, the
non-reactive pressure trace should closely match the reactive
pressure trace after the EOC until exothermic reactions cause the
pressure in the reactive experiment to begin to increase.

To apply the effect of the post-compression heat loss into
the simulations, the reaction chamber is modeled as undergoing
an adiabatic volume expansion. Since the post-compression time
is modeled as an isentropic expansion, the same procedure is
used as in the computation of TC to compute a volume trace for
the post-EOC time. The only difference is that the non-reactive
pressure trace is used after the EOC instead of the reactive pressure
trace. Once the volume trace is generated, it can be applied to a
simulation by concatenating the volume trace of the compression
stroke and the post-EOC volume trace together and following
the procedure outlined in Calculating the EOC Temperature. For
consistency, the ignition delay in a reactive simulation is defined
in the same manner as in the reactive experiments, as the maxima
of the time derivative of the pressure trace. This procedure has
been validated experimentally by measuring the temperature in
the reaction chamber during and after the compression stroke. The
temperature of the reactants was found to be within ±5 K of the
simulated temperature [DUS12], [UDS12].

Implementation of UConnRCMPy

UConnRCMPy is constructed in a hierarchical manner. The main
user interface to UConnRCMPy is through the Condition class,
the highest level of data representation. The Condition class
contains all of the information pertaining to the experiments at a
given condition. The intended use of this class is in an interactive
Python interpreter (the author prefers the Jupyter Notebook with
an IPython kernel [PG07]). Condition also contains all the
methods that make up the user interface:

• add_experiment()
• create_volume_trace()
• compare_to_sim()

The usage of these methods will be described in detail in the
Usage Example section. In general, the user will conduct several
experiments and, using the add_experiment() method, will
trigger UConnRCMPy to create instances of the Experiment
class and extract the ignition delay.

All of the information about a particular experimental run
is stored in the Experiment class. When initialized, the

Experiment expects an instance of the pathlib.Path class;
if none is provided, it prompts the user to enter a file name that
is expected to be in the current working directory. The file name
should point to a tab-delimited plain text file that contains the
voltage trace recorded by LabView from one experimental run.
Then UConnRCMPy creates an instance of VoltageTrace,
followed by an instance of ExperimentalPressureTrace.
The pressure trace from the latter is processed to extract the
ignition delay(s).

The lowest level representation of data in UConnRCMPy is the
VoltageTrace that contains the raw voltage signal and timing
recorded from the DAQ, as well as the filtered and smoothed
voltage traces. The filtering and smoothing algorithms are im-
plemented as separate methods so they can be reused in other
situations and are run automatically when the VoltageTrace is
initialized.

One step up from the VoltageTrace is the
ExperimentalPressureTrace class. This class consumes
a VoltageTrace and processes it into a pressure trace, given
the multiplication factor from the charge amplifier and the
initial pressure. This class also contains methods to compute
the derivative of the experimental pressure trace, as discussed in
Calculating Ignition Delay.

When all the experiments are conducted and processed,
create_volume_trace() further processes the experiments
to create the volume trace necessary to run the simulations to
determine TC. The actual computation of the volume trace is done
by the VolumeFromPressure class. First, the volume trace
of the pre-EOC portion is generated using the pre-EOC pressure
trace, the experimental initial temperature, and an initial volume
of V0 = 1.0m3, as discussed in Calculating the EOC Temperature.
A temperature trace is also constructed for the pre-EOC pressure
trace using the TemperatureFromPressure class.

For the post-EOC volume trace, the initial temperature is
estimated as the final value of the temperature trace constructed for
the pre-EOC period. Furthermore, the initial volume of the post-
EOC volume trace is taken to be the final value of the pre-EOC
volume trace, so that although there may be small mismatches in
PC, the volume trace will be consistent.

After generation, create_volume_trace() writes the
volume trace out to a CSV file so that the volume trace can
be used in other software. The reactive pressure trace is also
written to a tab-separated file. Before writing, the volume and
pressure traces are both downsampled by a factor of 5. This
reduces the computational time of a simulation and does not have
any effect on the simulated results. create_volume_trace()
also generates a figure that plots the complete reactive pressure
trace, a non-reactive pressure trace generated from the volume
trace using the PressureFromVolume class, and a linear fit to
the constant pressure period prior to the start of compression. This
linear fit aids in determining a suitable compression time. Finally,
the value of the pressure at the beginning of compression is put on
the system clipboard to be pasted into a spreadsheet to record the
P0 used for simulations. This may differ slightly from the P0 read
from the static transducer due to noise in the signal.

The final step is to use the volume trace in a
simulation to determine TC. To begin the simulations,
the user calls the compare_to_sim() method of the
Condition. The compare_to_sim() method relies on the
run_simulation() method, which in turn adds instances of
the class Simulation to the Condition instance. Instances
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Fig. 4: Flowchart of information in UConnRCMPy.

of Simulation can represent a reactive or a non-reactive exper-
iment; if either type of simulation has already been added to the
Condition instance, the user is asked whether they would like
to overwrite the existing simulation.

The Simulation class sets up the simulation in Cantera and
importantly, sets the maximum time step to be the time step used
in the volume trace, so that the solver does not take steps larger
than the resolution of the velocity. Larger time steps may result
in incorrect calculation of the state if the velocity is not prop-
erly applied to the reactor. The time, temperature, pressure, and
simulated volume are stored in NumPy arrays [vCV11] and the
derivative is computed using second order Lagrange polynomials,
as suggested by Chapra and Canale [CC10] because the time step
is not constant in the simulation. Finally, the calculated value of
TC is placed into the system clipboard. If the reactive simulation is
conducted, the overall ignition delay is also copied into the system
clipboard. The first stage ignition delay must be found manually
because determining peaks in the derivative is currently unreliable,
as mentioned in Calculating Ignition Delay for experiments.

The compare_to_sim() method also plots the experimen-
tal pressure trace and any of the simulated pressure traces that
have been generated. If the simulated reactive pressure trace is
generated, the time derivative of the pressure is also plotted, where
the derivative is scaled by the maximum pressure in the reactive
simulation.

The general flow of the user interaction with UConnRCMPy
is shown in Fig. 4. The Inputs are required input from the user,
while the User Interface are classes and functions called by the
user during processing.

UConnRCMPy is documented using standard Python doc-
strings for functions and classes. The documentation is converted
to HTML files by the Sphinx documentation generator [Bra16].
The format of the docstrings conforms to the NumPy docstring
format so that the autodoc module of Sphinx can be used. The
documentation is available on the web at https://bryanwweber.
github.io/UConnRCMPy/.

Usage Example

In the following, two examples of using UConnRCMPy are given,
first with the standard interface and second utilizing a slightly
modified interface corresponding to a different data format. Both
examples assume the user is running in a Jupyter Notebook with
an IPython kernel.

Standard Interface

These experiments were conducted with mixtures of propane,
oxygen, and nitrogen [DRW+16]. The CTI file necessary to run
this example can be found in the Supplementary Material of the
work by Dames et al. [DRW+16]. It must be named exactly
species.cti and placed in the current working directory.
Then, the composition of the mixture under consideration must be
added to the initial_state parameter of the ideal_gas()
method:

ideal_gas(
name='gas',
elements=...,
species=...,
reactions='all',
initial_state=state(

temperature=300.0, pressure=OneAtm,
mole_fractions=(

'C3H8:0.0403,O2:0.1008,N2:0.8589')))

Ellipses indicate input that was truncated to save space; the
truncated input is present in the file available with the work of
Dames et al. The initial temperature and pressure are arbitrary,
since those are set based on information stored in the filename
of the experiment, but the mole_fractions must be set to
the appropriate values. The condition in this example is for a
fuel rich mixture, with a target PC of 30 bar. The user creates
the Condition, then conducts a reactive experiment with the
RCM and adds the experiment to the Condition using the
add_experiment() method. This method creates an instance
of class Experiment for each experiment passed in. As each
experiment is processed by UConnRCMPy, the information from
that run is added to the system clipboard for pasting into some
spreadsheet software. In the current version, the information
copied is the time of day of the experiment, the initial pressure, the
initial temperature, the pressure at the EOC, the overall and first
stage ignition delays, an estimate of the EOC temperature, and
some information about the compression ratio of the reactor. This
process is repeated 5 times to ensure repeatable data is obtained.

from uconnrcmpy import Condition
from pathlib import Path
%matplotlib

cond_00_in_02_mm = Condition()
# Conduct reactive experiment #1 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1285t-100x-19-Jul-15-1620.txt'))
# Conduct reactive experiment #2 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1626.txt'))
# Conduct reactive experiment #3 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt'))
# Conduct reactive experiment #4 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1640.txt'))
# Conduct reactive experiment #5 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1646.txt'))

This sequence generates one figure showing all of the experiments
together and one figure per experiment comparing the pressure and
the time derivative of the pressure. Matplotlib is used for plotting
[Hun07]. The plots are optional, and are controlled by passing a
boolean keyword argument plotting when the Condition is
initialized. The figures showing each experiment look similar to
Fig. 3, but the non-reactive trace is not plotted and the EOC and
ignition delays are not labeled.

https://bryanwweber.github.io/UConnRCMPy/
https://bryanwweber.github.io/UConnRCMPy/
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Fig. 5: Comparison of the reactive pressure trace, the pressure trace
output to the text file, the pressure trace computed from the volume
trace, and the linear fit to the initial pressure demonstrating the choice
of compression time. The dark blue, green, and red lines follow each
other nearly exactly after the start of compression, so only the red line
is visible. This is the desired result, indicating that the pressure traces
agree.

In general, for a given condition, the user will conduct and
process all of the reactive experiments before conducting any non-
reactive experiments. Then, the user chooses one of the reactive
experiments as the reference experiment for the condition (i.e., the
one whose ignition delay(s) and TC are reported) by inspection of
the data in the spreadsheet. The reference experiment is defined
as the experimental run whose overall ignition delay is closest to
the mean overall ignition delay among the experiments at a given
condition. To select the reference experiment, the user puts the file
name of the reference experiment into a YAML format file called
volume-trace.yaml with the key reacfile. For this case,
the reference experiment is the run that took place at 16:33:
reacfile: >
00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt

Note that the file must be named exactly volume-trace.yaml
and it must be located in the current working directory. Once
the reference reactive experiment is selected, the user runs non-
reactive experiments at the same initial conditions as the refer-
ence experiment. The user adds non-reactive experiments to the
Condition by the same add_experiment() method and
UConnRCMPy automatically determines whether the experiment
is reactive or non-reactive.
# Conduct non-reactive experiment #1 on the RCM
cond_00_in_02_mm.add_experiment(Path(
'NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt'))

UConnRCMPy determines that this is a non-reactive experiment
and generates a new figure that compares the current non-
reactive case with the reference reactive case as specified in
volume-trace.yaml. If the user adds a non-reactive exper-
iment before creating the volume-trace.yaml file, or if the
file referenced in the reacfile key is not present in the current
working directory, UConnRCMPy throws a FileNotFound
exception. For this particular example, the pressure traces are
shown in Fig. 3. In this case, the non-reactive pressure agrees very
well with the reactive pressure and no further experiments are
necessary; in principle, any number of non-reactive experiments
can be conducted and added to the figure for comparison. Since

there is good agreement between the non-reactive and reactive
pressure traces, the user adds the non-reactive reference file name
to volume-trace.yaml.
reacfile: >

00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt
nonrfile: >

NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt

Then, the user specifies the rest of the parameters in
volume-trace.yaml, including the compression time and the
end times for the reactive and non-reactive experiments. The reac-
tive end time (reacend) determines the length of the output pres-
sure trace, while the non-reactive end time (nonrend) determines
the length of the volume trace. The length of the volume trace is
also determined by the compression time (comptime), which
should be set to a time such that the starting point is before the
beginning of the compression. All three times should be specified
in milliseconds. comptime is determined by comparison with
the fit to the initial pressure, as shown in Fig. 5. In this case, the
compression has started at approximately t > −28ms. The time
prior to that where the pressure appears to stabilize around the
initial pressure is approximately t =−33ms, giving a compression
time of 33 ms. reacend is typically chosen to be shortly after
the main pressure peak due to ignition, about 80 ms in this case,
and nonrend is typically chosen to be 400 ms.
reacfile: >

00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt
nonrfile: >

NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt
comptime: 33
nonrend: 400
reacend: 80

This sample represents a complete, minimal example of the
necessary information in the volume-trace.yaml file. In
addition, two optional parameters can also be specified in
volume-trace.yaml. These are offset parameters used to
control the precise point where the switch from the reactive pres-
sure trace to the non-reactive pressure trace occurs in the volume
trace. These parameters may be necessary if the determination of
the EOC does not result in aligned compression strokes for the
reactive and non-reactive experiments, but they are not generally
necessary.

Once the volume-trace.yaml file is completed, the
create_volume_trace() method can be run. Then, the
final step is to conduct the simulations to calculate TC and the
simulated ignition delay. This is done by the user by running the
compare_to_sim() function. This function takes two optional
arguments, run_reactive() and run_nonreactive(),
both of which are booleans. These determine which type of
simulation should be conducted; by default, run_reactive()
is False and run_nonreactive() is True because the
reactive simulations may take substantial time (~5 min). There is
no restriction on combinations of values for the arguments; either
or both may be True or False.
cond_00_in_02_mm.create_volume_trace()
cond_00_in_02_mm.compare_to_sim(

run_reactive=True,
run_nonreactive=True,

)

At this point, the user has completed one experimental condition.
Now, further conditions should be studied, either by changing T0
or the compression ratio of the RCM to reach a different value of
TC for a given PC.
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Modified Interface

It is also possible to replace parts of the processing interface by
using the features of Python to overload class methods. Due to
the modular nature of UConnRCMPy, small parts of the interface
can be replaced without sacrificing consistent analysis for the
critical parts of the code, such as computing the ignition delay. For
instance, ongoing work involves processing RCM data collected
by several operators of the RCM. Each user has their own file
naming strategy that must be parsed for information about the ex-
periment. To process this "alternate" data format, two new classes
called AltCondition and AltExperiment are created that
inherit from the Condition and Experiment classes, respec-
tively. The AltCondition class only needs to overload the
add_experiment() method, to create an AltExperiment,
instead of a regular Experiment.
class AltCondition(Condition):

def add_experiment(self, file_name=None):
exp = AltExperiment(file_name)
# Omit the plotting code...

Then, the AltExperiment overloads the
parse_file_name() method of the Experiment class to
parse the alternate format. The user must make sure the new
parse_file_name() method returns the expected values as
defined in the docstring for the original parse_file_name()
method, or else overload other methods that consume the file
name information.
class AltExperiment(Experiment):

def parse_file_name(self, file_path):
# Parse the file name for information...
return file_name_information

In this way, consistent definitions for important research quantities
can be used, while providing flexibility in the data format and
naming conventions.

Conclusions and Future Work

UConnRCMPy provides a framework to enable consistent analysis
of RCM data. Because it is open source and extensible, UCon-
nRCMPy can help to ensure that RCM data in the community
can be analyzed in a reproducible manner; in addition, it can be
easily modified and used for data in any format. In this sense,
UConnRCMPy can be used more generally to process any RCM
experiments where the ignition delay is the primary output.

Future plans for UConnRCMPy include the development of
a robust test suite to prevent regressions and document correct
usage of the framework, as well as the development of a method to
determine the optimal cutoff frequency in the filtering algorithm.
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