
62 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

MONTE Python for Deep Space Navigation
Jonathon Smith, William Taber, Theodore Drain, Scott Evans, James Evans, Michelle Guevara, William Schulze,

Richard Sunseri, Hsi-Cheng Wu‡∗

https://youtu.be/E3RhKKpm4TM

F

Abstract—The Mission Analysis, Operations, and Navigation Toolkit Environ-
ment (MONTE) is the Jet Propulsion Laboratory’s (JPL) signature astrodynamic
computing platform. It was built to support JPL’s deep space exploration pro-
gram, and has been used to fly robotic spacecraft to Mars, Jupiter, Saturn,
Ceres, and many solar system small bodies. At its core, MONTE consists of low-
level astrodynamic libraries that are written in C++ and presented to the end user
as an importable Python language module. These libraries form the basis on
which Python-language applications are built for specific astrodynamic applica-
tions, such as trajectory design and optimization, orbit determination, flight path
control, and more. The first half of this paper gives context to the MONTE project
by outlining its history, the field of deep space navigation and where MONTE fits
into the current Python landscape. The second half gives an overview of the
main MONTE libraries and provides a narrative example of how it can be used
for astrodynamic analysis. For information on licensing MONTE and getting
a copy visit montepy.jpl.nasa.gov or email mdn_software@jpl.nasa.gov.

Index Terms—astrodynamics, aerospace, orbit, trajectory, JPL, NASA

History

The United States began its reconnaissance of the solar system in
the early 1960s. As NASA developed new technologies to build
and operate robotic probes in deep space, JPL was working out
how to guide those probes to their destinations. In order to fly
spacecraft to Mars or Jupiter, engineers needed a way to model
their trajectories through interplanetary space. This was partly a
problem of astrodynamics, a field of study that mathematically
describes how man-made objects move through space. It was also
a problem of computation because engineers needed a way to
solve these complex astrodynamic equations for real spacecraft.
Beyond modeling the motion of spacecraft, engineers needed a
way to measure the location of spacecraft over time so they could
make informed corrections to their models. They also needed a
way of designing engine burns, or maneuvers, that would nudge a
wayward probe back on course.

These efforts, collectively known as deep space navigation,
quickly became coupled with software and computing. The first
programs JPL wrote to navigate spacecraft were written on punch-
cards and processed through an IBM 7090 mainframe. [Eke05]
Advances in computing technology were eagerly consumed by
navigators, as more storage and faster processing meant the

* Corresponding author: jonathon.j.smith@jpl.nasa.gov
‡ Jet Propulsion Laboratory, California Institute of Technology / NASA

Copyright © 2016 California Institute of Technology. Government sponsorship
acknowledged. This is an open-access article distributed under the terms of
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author
and source are credited.

models used to fly spacecraft could be made increasingly detailed
and sophisticated.

Starting in 1964, a group of engineers, led by Ted Moyer,
began developing the astrodynamic algorithms and software
that would eventually become the Double Precision Trajectory
and Orbit Determination Program, or DPTRAJ/ODP ([Moy71],
[Moy03]). Over its forty-plus years of active life, JPL engineers
used the DPTRAJ/ODP to navigate the "Golden Age" of deep
space exploration. This included the later Mariner and Pioneer
missions, Viking, Voyager, Magellan, Galileo, Cassini and more.
Also over this time, its base language moved through Fortran IV,
Fortran V, Fortran 77 and Fortran 95 as the computational appetites
of navigators grew ever larger.

By 1998 it was clear that the aging DPTRAJ/ODP needed
to be updated once again. Rather than initiate another refactor,
JPL’s navigation section commissioned a new effort that would
depart from its predecessor in two important ways. First, the new
software would be an object-oriented library, written in C++ and
exposed to the user as a Python-language library. Second, it would
be a general-purpose astrodynamic computing platform, not a
dedicated navigation program like the DPTRAJ/ODP. The goal
was to create a single library that could be used for astrodynamic
research, space mission design, planetary science, etc., in addition
to deep space navigation. This new project was affectionately
named the Mission Analysis, Operations, and Navigation Toolkit
Environment, or MONTE-Python for short.

Throughout the first half of the 2000s, MONTE was care-
fully constructed by reshaping the algorithms under-pinning the
DPTRAJ/ODP into a rigorously tested and well documented
object-oriented software package. In 2007, MONTE had its first
operational assignment navigating NASA’s Phoenix lander to a
successful encoutner with Mars. Since 2012, MONTE has pow-
ered all flight navigation services at JPL, including the Cassini
extended mission, Mars Science Laboratory, MAVEN, GRAIL,
Dawn, Mars Reconnaissance Orbiter, Juno, and more. [Eva16]

Deep Space Navigation

At JPL, the practice of navigating robotic probes in deep space
is broken down into three interrelated disciplines: (1) designing
a reference trajectory which describes the planned flight path of
the spacecraft (mission design), (2) keeping track of the spacecraft
position while the mission is in flight (orbit determination), and (3)
designing maneuvers to bring the spacecraft back to the reference
trajectory when it has strayed (flight path control, Figure 1).

The process of designing a spacecraft reference trajectory
begins at the earliest stages of mission planning. Navigators work

https://youtu.be/E3RhKKpm4TM
http://montepy.jpl.nasa.gov/
mailto:mdn_software@jpl.nasa.gov
mailto:jonathon.j.smith@jpl.nasa.gov

MONTE PYTHON FOR DEEP SPACE NAVIGATION 63

Fig. 1: Illustration of Cassini’s reference trajectory at Saturn. The
mission designers built this trajectory, and the orbit determination
and maneuver design teams keep the spacecraft flying on these orbits
during the mission.

closely with mission science teams to put together a reference
orbit that allows the spacecraft to take all the desired science
measurements. They also work with mission planners and space-
craft system engineers to make sure that the spacecraft is able to
withstand the rigors of its planned trajectory. Through a process
of increasingly detailed iterations, a process which often takes
years, the mission reference trajectory is produced. This reference
trajectory serves as the flight plan for the spacecraft. It will be up
to the orbit determination and flight path control teams to make
sure the spacecraft follows this flight plan when the spacecraft
finally launches.

The job of the orbit determination team is to keep track of
where the spacecraft has been (orbit reconstruction), where it is
currently (orbit determination), and where it will go in the future
(orbit prediction). The spacecraft is always drifting away from its
planned flight path because of small disturbances it encounters in
space. Even the slight pressure of sunlight on the spacecraft can
add up over time and push a mission off course. The trajectory
designers do their best to account for these disturbances when
creating the reference orbit, but there is no accounting for the
randomness and unpredictability of the real world. To further com-
plicate matters, once the spacecraft leaves the launch-pad, it can
no longer be directly observed. Orbit determination analysts must
process various forms of tracking data that are tied mathematically
to the evolution of the spacecraft orbit to determine its position at
any given time.

Once the orbit determination team has a good estimate for
the current location of the spacecraft, the flight path control team
is responsible for evaluating how far the spacecraft has drifted
from the reference trajectory and designing a maneuver to get the
spacecraft back on course. The result of this maneuver design
is a ∆V vector, which stands for delta-velocity or change in
velocity. This ∆V vector represents the direction and magnitude
of the required change in the spacecraft velocity which must be
accomplished to get the spacecraft back on course. Once in hand,
this ∆V vector will be sent to the spacecraft propulsion team, who
will decompose it into thruster firings on the spacecraft. These
will be uplinked to the spacecraft, which will then perform the
maneuver.

After a maneuver has been performed, the cycle repeats.
Perhaps the thrusters were slightly misaligned or the engine cutoff
was a second too late. The orbit determination team must examine
more tracking data to find out. This iterative relationship between

orbit determination and flight path control continues without
pause through the lifetime of a flight mission. The spacecraft is
constantly wandering off, and must be patiently brought back on
course.

MONTE as a Platform

As previously mentioned, MONTE was built to be a general pur-
pose astrodynamic computing platform, not a dedicated navigation
application. It supplies the models and computational algorithms
needed for trajectory design, orbit determination and flight path
control but doesn’t force the end-user into any specific workflow
or interface. As a result, before MONTE can be used on a flight
mission, it must be deployed for that mission. This entails using
MONTE in cooperation with other applications and libraries to
assemble a custom navigation framework.

The process of deploying MONTE for a flight mission can
be quite involved. The effort to build a navigation system for the
Cassini Extended Mission took over two years, and required the
use of many other Python libraries in addition to MONTE. The
resulting navigation framework can not be properly characterized
as MONTE itself. Rather, it is a custom application built using the
MONTE library to perform navigation for that specific mission.

This is important to note because it illustrates the way in which
MONTE is likely to be useful to those outside JPL. Deep space
navigation is (not yet at least) a high-demand field. The majority
of astrodynamic computing occurs in other contexts such as
Earth-centered navigation (weather and communication satellites,
etc), collision avoidance analysis (making sure two spacecraft
don’t collide), cooperative rendezvous (docking a cargo-ship to
the International Space Station) and non-cooperative rendezvous
(capturing a malfunctioning satellite), etc. Much the same way
that MONTE can be configured and deployed for deep space
navigation, it can also be brought to bear on these and other
problems across the aerospace industry.

MONTE provides a solid foundation of core systems that
make it attractive as a general purpose astrodynamic platform.
These include models for trajectories and trajectory queries, co-
ordinate frames and rotations, high-precision time, astrodynamic
event searches, numerical integrators, configurable optimizers,
and many more. By starting with MONTE, a user can focus
on solving the problem at hand, and leave the important-but-
incidental infrastructure to MONTE.

MONTE and the Python Ecosystem

MONTE has a decidedly friendly stance when it comes to working
with other libraries in the Python scientific computing stack. It
makes heavy use of many open-source Python libraries such as
matplotlib and IPython (Jupyter), and reciprocally tries to make
it easy for users of these systems to interface with MONTE.
Many of MONTE’s classes can transform themselves into NumPy
data types --- a common pattern is for MONTE classes to
have a .toArray method which returns a numpy.ndarray.
Additionally, the MONTE team has a history of collaboration
with matplotlib dating all the way back to the early 2000s. They
have contributed code that makes matplotlib able to natively plot
MONTE’s unit and time systems, and have also open-sourced
a custom matplotlib styling-system (github.com/nasa/mplStyle)
developed in house.

The MONTE project started in 1998 at a time when the Python
language was still relatively new. As a result, MONTE has several

https://github.com/nasa/mplStyle

64 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

custom systems that are redundant in the current Python landscape.
For instance, MONTE developed an interactive shell similar to
IPython and has several numerical computing classes that would
generally be dispatched to NumPy in a brand new project.

Historical quirks aside, MONTE considers itself a member
of the Python scientific programming community and aims to
integrate as seamlessly as possible with other Python libraries.
It can be embedded in custom GUI applications, run on a back-
end server, executed in parallel across a cluster of nodes, and
pretty much anything else you would expect of a dynamic, well
constructed Python library.

Library Overview

Most of the functionality of MONTE is encapsulated in the
Monte and mpy libraries. Monte is written in C++ and wrapped
in Python. It is presented to the end user as a normal, importable
Python-language module. The mpy module is written entirely in
Python and contains higher level applications built using Monte
and other Python libraries.

Convention is to import the main Monte library as M.
Throughout this paper, if a class is referred to with the prefix
M., it means this class belongs to the main MONTE library (e.g.
M.TrajLeg, M.Gm, etc). The following example shows a simple
script using the Monte and mpy libraries to get the state of the
Cassini spacecraft with respect to Saturn at the time of its Saturn
Orbit Insertion (SOI) burn.12

import Monte as M
import mpy.io.data as defaultData

Set up a project BOA database, and populate it
with astrodynamic data from default data
boa = defaultData.load(["time", "body", "frame",
"ephem/planet/de405"])

Load the Saturn satellite ephemeris and Cassini
trajectory into our BOA database
boa.load("saturn_satellites.boa")
boa.load("cassini_trajectory.boa")

Define time of SOI
soiTime = M.Epoch("01-JUL-2004 02:48:00 UTC")

Get the trajectory manager from the BOA database
traj = M.TrajSetBoa.read(boa)

Request the state of Cassini at SOI from the
trajectory manager in a Saturn-centered Earth
Mean Orbit of 2000 coordinate frame
casAtSoi = traj.state(soiTime, "Cassini", "Saturn",
"EMO2000")

Several of MONTE’s core systems --- the basic astrodynamic
scaffolding that supports its more advanced functionality --- are
used in the above example. These are explained in a short tour of
MONTE below.

BOA

The Binary Object Archive (BOA) is MONTE’s primary data
management system. Most MONTE classes that define concrete
objects (for instance, M.Gm which defines the standard gravita-
tional parameter for a natural body or M.FiniteBurn which

1. All MONTE code in this paper is current as of the v121 delivery.
2. Saturn Orbit Insertion was a spacecraft maneuver that occurred as Cassini

approached Saturn. It changed the course of the spacecraft so that instead of
flying past Saturn, it captured into orbit around the planet.

defines a spacecraft burn) are stored in BOA, and accessed by
MONTE’s astrodynamic functions from BOA.

BOA is based on the binary XDR data format, which allows
data to be written-to and read-from binary on different operating
systems and using different transport layers (e.g. you can read and
write locally to your hard disk, or over a network connection).

The role that BOA plays in MONTE can perhaps be best
understood as "defining the universe" on which MONTE’s astro-
dynamic tools operate. In our example, we populated our "model
universe" (e.g. our BOA database) with time systems, natural body
data, a planetary ephemeris, the Cassini spacecraft trajectory, etc.
We then asked MONTE’s trajectory manager (an astrodynamic
tool) to examine this particular universe and return the state of
Cassini with respect to Saturn.

Default Data

A standard MONTE installation comes with a collection of prede-
fined, publicly available astrodynamic datasets (the "default data
depot"). These can be accessed and loaded into a BOA database
via MONTE’s default data loader (mpy.io.data) and serve to
help an analyst get a "model universe" up and running quickly.

Time and Units

In the astrodynamic community there are multiple time systems
used to describe the dynamics of a spacecraft and to specify
the time of an observation. While necessary, multiple systems
for specifying time can add considerable complexity to software.
In MONTE, time is encapsulated in the M.Epoch class, which
supports time definition in the TDB, TT, TAI, GPS, UTC, and UT1
systems. This class handles the problem of transforming times
between different frames thereby allowing the user to specify
times in the most convenient form for their application.

MONTE’s unit system supports the notions of time, length,
mass, and angle. It has implemented operator overloading to allow
unit arithmetic, e.g. dividing a unit length by a unit time results in
unit velocity. Most functions that accept unit-quantities also check
their inputs for correctness, so supplying a unit length to a function
that expects unit time will raise an exception.

Trajectories

MONTE models spacecraft and natural body trajectories in a
number of underlying formats; most of the differences involve
how many data points along the trajectory are stored, and how to
interpolate between these points. In addition, MONTE provides
conversion routines which allow some external trajectory formats
to be read and written (including NAIF "bsp" files and interna-
tional "oem" files).

The M.TrajSet class is MONTE’s trajectory manager, and
is responsible for coordinating state requests between all of the
trajectories loaded into a given BOA database. It has access to the
coordinate frame system (described in the next section) allowing
it to make coordinate frame rotations when doing state queries. In
fact, most coordinate frame rotations in MONTE are accomplished
by simply requesting a state from M.TrajSet in the desired
frame.

The general steps for building and using trajectories in
MONTE are illustrated in Figure 2.

Coordinate Frames

The MONTE trajectory and coordinate frame systems are very
analogous and have a tight integration that enables powerful state

http://www.rfc-base.org/rfc-4506.html

MONTE PYTHON FOR DEEP SPACE NAVIGATION 65

Fig. 2: Dataflow through MONTE’s trajectory system

Fig. 3: Cooperation between MONTE’s trajectory and coordinate
frame systems

requests. Figure 3 illustrates these similarities and how the two
systems are integrated.

MONTE models coordinate frames in a number of underlying
formats and provides conversion routines which allow some ex-
ternal coordinate frame formats to be read and written (including
NAIF "ck" files).

Event Finding

MONTE allows a user to search through astrodynamic relation-
ships in a given BOA database in pursuit of particular events.
For instance, the M.AltitudeEvent class allows a user to
search for when a spacecraft is within a certain altitude range
from another body.

Numerical Integration

MONTE provides a framework for numerically integrating space-
craft and natural body trajectories, subject to a set of force models
such as gravity, solar radiation pressure, atmospheric drag, etc.
The resulting trajectory has the Cartesian position and velocity of
the body over time, and optionally the partial derivatives of state
parameters with respect to parameters in the force models. A walk-
through of setting up MONTE’s numerical integration system for
a simple gravitational propagation is shown in Figure 4.

In addition to trajectories, MONTE also allows numerical
integration of mass (for instance due to burning of propellant),
coordinate frames (rigid body dynamics), time (relativistic time
transformations) and user-defined ordinary differential equations.

Fig. 4: Overview of MONTE’s numerical integration system.

Parameters and Partial Derivatives

MONTE’s parameter system supports the calculation of partial
derivatives for astrodynamic variables, which can then be used
in optimization and estimation. Every variable that belongs to
the parameter system is responsible for not only calculating its
value, but also its partial derivative with respect to any other
parameters. These partial derivatives are contained in a special set
of classes that employ operator overloading to correctly combine
partial derivatives under various mathematical operations. [Smi16]

Example: Exploring bodies in motion

Generally, MONTE is scripted or assembled into custom appli-
cations that solve complex end-user problems. However, it is also
useful as an off-the-cuff tool to explore astrodynamic relationships
as we will see in the narrated example below.

For this example, we will explore the Voyager 2 trajectory.
We will identify the time and distance of the Uranus planetary
encounter, and also find the time periods where Voyager 2 was in
line with the sun. Along the way we will highlight various aspects
of MONTE’s core systems. Also, if our exploration happens to
turn up anything interesting (it will), we will take some time to
investigate what we find.

Voyager 2 Trajectory

We begin by specifying the model of the solar system during
Voyager’s mission. This is done by creating a BOA database
and loading the default data sets for planetary ephemerides (the
trajectories of all the planets in the solar system), coordinate
frames, and body parameters like mass and shape. We will also
load in our Voyager 2 trajectory.3

3. JPL hosts two excellent websites for accessing trajectory data for natural
solar system bodies and deep-space probes. The Horizons website (http:
//ssd.jpl.nasa.gov/horizons.cgi) is maintained by JPL’s Solar System Dynamics
group and has an expansive and powerful webapp for getting ephemerides
in a variety of formats. The Navigation and Ancillary Data Facility (NAIF)
at JPL hosts the navigation section of NASA’s Planetary Database System.
At its website (http://naif.jpl.nasa.gov/naif/data.html), you will find a host
of downloadable binary navigation files, which can be used with the SPICE
toolkit, and of course, with MONTE.

For the following examples, we will be using the Voyager 2 space-
craft trajectory, which can be downloaded at http://naif.jpl.nasa.gov/pub/
naif/VOYAGER/kernels/spk/. The file name at the time of this writing is
"voyager_2.ST+1992_m05208u.merged.bsp", which we will shorten to just
"voyager2.bsp" for ease of use.

http://ssd.jpl.nasa.gov/horizons.cgi
http://ssd.jpl.nasa.gov/horizons.cgi
http://naif.jpl.nasa.gov/naif/data.html
http://naif.jpl.nasa.gov/pub/naif/VOYAGER/kernels/spk/
http://naif.jpl.nasa.gov/pub/naif/VOYAGER/kernels/spk/

66 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

In [1]: import Monte as M
In [2]: import mpy.io.data as defaultData
In [3]: boa = M.BoaLoad()
In [4]: defaultData.loadInto(boa,

...: ["ephem/planet/de405", "frame", "body"])
In [5]: boa.load("voyager2.bsp")

The trajectories of Voyager and the natural bodies of the solar
system are coordinated by the trajectory manager (M.TrajSet)
that is supplied by BOA we just created. We can retrieve the
trajectory manager using its BOA accessor M.TrajSetBoa.
Every object that resides in BOA has an accessor (often named
M.ClassNameBoa) that allows it to be read to and from the
database. Once in hand, we can list all the trajectories that are on
the BOA using the M.TrajSet.getAll method.
In [6]: traj = M.TrajSetBoa.read(boa)
In [7]: traj.getAll()
Out[7]: ['Mercury', 'Mercury Barycenter',

'Venus', 'Venus Barycenter',
'Earth', 'Earth Barycenter', 'Moon',
'Mars', 'Mars Barycenter',
'Jupiter Barycenter', 'Saturn Barycenter',
'Uranus Barycenter', 'Neptune Barycenter',
'Pluto Barycenter', 'Sun'
'Solar System Barycenter', 'Voyager 2']

The list of bodies returned by M.TrajSet.getAll confirms
that we have successfully loaded our solar system and spacecraft.
We continue our analysis by checking the span of the Voyager
2 trajectory, e.g. the interval over which we have data, using
the M.TrajSet.totalInterval method. Note that if the
trajectory has been updated at the NAIF PDS website, the exact
span you get may be different than what is listed below.
In [8]: traj.totalInterval("Voyager 2")
Out[8]:
TimeInterval(

['20-AUG-1977 15:32:32.1830 ET',
'05-JAN-2021 00:00:00.0000 ET'],

)

The Voyager 2 trajectory starts just after launch in 1977, extends
through the present, and has predictions out into the future. We
can use the trajectory manager to request states at any time in this
window. For instance, we can find the distance of Voyager 2 from
Earth right now. The M.Epoch.now static method returns the
current time and this can be passed to the trajectory manager to
request the state of Voyager 2 with respect to Earth.
In [11]: currentTime = M.Epoch.now()
In [12]: vygrTwoNow = traj.state(currentTime,

...: "Voyager 2", "Earth", "EME2000")
In [13]: vygrTwoNow
Out[13]:
State (km, km/sec)
'Earth' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.358633010242671e+09 -7.411125552099214e+09

-1.302731854689579e+10
Vel: -2.415141211951430e+01 2.640692963340520e+00

-1.128801136174438e+01

We used the M.TrajSet.state method to perform our query,
which required us to specify the time, target body, reference body,
and coordinate frame for the return state. Because M.TrajSet
has a global view of all the trajectories in our BOA, we can request
states with respect to any body for which we have a trajectory, for
instance Venus or Neptune.
In [14]: vygrTwoNowVenus = traj.state(currentTime,

...: "Voyager 2", "Venus", "EME2000")
In [15]: vygrTwoNowVenus
Out[15]:

State (km, km/sec)
'Venus' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.216416788778397e+09 -7.523453172910529e+09

-1.306899257275581e+10
Vel: -4.457126033807687e+00 -3.509301445530399e+01

-2.760459587874612e+01

In [17]: vygrTwoNowNeptune = traj.state(currentTime,
...: "Voyager 2", "Neptune Barycenter", "EME2000")

In [18]: vygrTwoNowNeptune
Out[18]:
State (km, km/sec)
'Neptune Barycenter' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 2.423407540346480e+08 -5.860459060720786e+09

-1.229435420991246e+10
Vel: 2.036299646730726e+00 -8.760646249684767e+00

-1.606470435709401e+01

The M.TrajSet.state method returns an M.State object.
M.State captures the relative position, velocity and acceleration
(or some subset) of one body with respect to another at a given
time. It has a number of methods that help with extracting and
transforming the information it contains. For instance, we can find
the distance from Earth to Voyager 2 like this.

In [26]: vygrTwoPoskm = vygrTwoNow.posMag()
In [27]: vygrTwoPoskm
Out[27]: 1.560876331389678e+10 * km

In [28]: vygrTwoPoskm.convert('AU')
Out[28]: 104.33813824888766

When reading states from a trajectory you are often interested
in making repeated calls for the same body and center but at
different times. M.TrajSet works fine for this application, but
if the target and center bodies don’t change on repeated calls,
some optimizations can be made for better performance. The
M.TrajQuery class is provided for this use case, and can be
thought of as simply a special case of M.TrajSet where the
body and center are fixed for every call.

In [29]: vygrTwoQuery = M.TrajQuery(boa,
...: "Voyager 2", "Earth", "EME2000")

In [31]: vygrTwoQuery.state(currentTime)
Out[31]:
State (km, km/sec)
'Earth' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.358633010242671e+09 -7.411125552099214e+09

-1.302731854689579e+10
Vel: -2.415141211951430e+01 2.640692963340520e+00

-1.128801136174438e+01

This can be useful when you are sampling states from a trajectory,
for instance, to create a plot of an orbit.

Uranus Encounter

We said earlier that M.TrajSet and M.CoordSet, in their
roles as manager classes, have a global view of the trajectory and
coordinate systems. This high-level perspective allows them to
work with the relationships between different bodies and frames,
a capability we have so far used to get relative states between
bodies. However, there are certain specific relationships between
bodies and frames that can be of particular interest to an analyst.
For instance, identifying the time at which two bodies achieve
their closest approach (periapse) and the magnitude of that mini-
mum distance can be an important astrodynamic metric. MONTE
provides tools for searching through various relationship-spaces
and identifying some of these key events. The M.EventSpec

MONTE PYTHON FOR DEEP SPACE NAVIGATION 67

set of classes allow us to define a particular event type then search
through the requisite relationships to identify specific occurrences.
The M.Event class is used to report the relevant data associated
with an occurrence.

Continuing the example, we will use M.ApsisEvent (which
is a specific type of M.EventSpec) to find the precise time and
distance of Voyager 2’s closest approach with Uranus.
In [6]: vygrTwoUranusQuery = M.TrajQuery(boa,

...: "Voyager 2", "Uranus Barycenter", "EME2000")
In [7]: apsisSearch = M.ApsisEvent(vygrTwoUranusQuery,

...: "PERIAPSIS")

M.ApsisEvent takes as its first argument an M.TrajQuery
object that is configured to return the state of our target body
with respect to the desired center (in this case, Voyager 2 with
respect to Uranus). The second argument specifies what type of
apsis we are looking for; this can be "PERIAPSIS", "APOAPSIS",
or the catch-all "ANY". Once the event type is defined, the
M.ApsisEvent.search method can be called to perform the
search and locate the apses. To call this method we need to provide
a time interval to search over and a search step size.
In [14]: searchInterval = M.TimeInterval(

...: "01-JAN-1986 ET", "01-JAN-1987 ET")
In [15]: stepSize = 60 * sec
In [16]: foundEvents = apsisSearch.search(

...: searchInterval, stepSize)

The result of the search, which we have saved in the variable
foundEvents, is an M.EventSet container class. This con-
tainer has all the events found matching our specification in the
search window. M.EventSet has a number of useful methods
for sorting, filtering and returning events. In this case there should
only be one event returned since there was only one closest
approach of Voyager 2 to Uranus. We can read out this event
by indexing into the M.EventSet.
In [17]: foundEvents.size()
Out[17]: 1

In [18]: uranusPeriapse = foundEvents[0]
In [19]: uranusPeriapse
Out[19]:
Event:
Spec : Periapsis Uranus Barycenter to Voyager 2
Type : Periapsis
Epoch: 24-JAN-1986 17:59:45.6473 ET
Value: 1.071300446056250e+05 * km

Another relationship which can play a significant role in deep
space missions is the angular offset between the Earth-Sun line
and Earth-Spacecraft line (often referred to as the Sun-Earth-Probe
(SEP) angle). At low SEP values, the spacecraft appears very close
to the Sun from the vantage of Earth, requiring radio transmissions
from Earth to pass through the near-solar environment before
reaching the spacecraft. Flight projects avoid critical mission
operations during these times because the highly-charged solar
atmosphere can interfere with radio signals.

We can set up an event search to find periods of low-SEP for
Voyager 2, from mission start through the end of our trajectory
data, using the M.AngleEvent event specification class.
In [20]: sepSearch = M.AngleEvent(boa, "Sun", "Earth"

...: "Voyager 2", 12 *deg, "BELOW")
In [23]: searchWindow = traj.totalInterval("Voyager 2")
In [25]: foundEvents = sepSearch.search(searchWindow,

...: 1 *hour)

We constructed our M.AngleEvent by defining the Sun-Earth-
Probe angle using the Sun for body one, the Earth as the vertex,

and Voyager 2 as body two. Twelve degrees was set as the
threshhold defining conjunction, and the "BELOW" qualifier was
used to instruct the search to return times when the SEP angle was
below this threshold.

The search again returned an M.EventSet, which we can
use to get information about the number of events found and the
maximum / minumum times Voyager 2 spent in conjunction.

In [26]: foundEvents.size()
Out[26]: 15

In [52]: foundEvents.maxInterval()
Out[52]:
Event:
. . .
Type : Angle below 1.200000000000000e+01 * deg
Begin: 28-JUN-1978 07:34:09.7021 ET
End : 03-AUG-1978 05:22:28.3997 ET
Value: 1.199999999999977e+01 * deg

In [53]: foundEvents.minInterval()
Out[53]:
Event:
. . .
Type : Angle below 1.200000000000000e+01 * deg
Begin: 31-DEC-1992 09:35:21.3322 ET
End : 07-JAN-1993 21:30:07.6066 ET
Value: 1.199999999999999e+01 * deg

We can loop through all the events found in our search using
Python iterator syntax, and print out the time periods of each found
low-SEP region.

In [56]: for event in foundEvents:
...: print event.interval()
...:

TimeInterval(
['28-JUN-1978 07:34:09.7021 ET',

'03-AUG-1978 05:22:28.3997 ET'],
)
TimeInterval(

['29-JUL-1979 03:25:57.3664 ET',
'31-AUG-1979 14:35:53.2033 ET'],

)

. . .

TimeInterval(
['26-DEC-1991 13:45:23.6951 ET',

'12-JAN-1992 23:46:40.4029 ET'],
)
TimeInterval(

['31-DEC-1992 09:35:21.3322 ET',
'07-JAN-1993 21:30:07.6066 ET'],

)

As we can see, low-SEP periods occur on a near-yearly basis. This
makes sense because as the Earth makes a complete revolution
around the Sun, there is bound to be a period of time when the
Sun falls in the line-of-sight of Voyager 2. Curiously though, the
last low-SEP region found was in the winter of 1992. After this
time, the Sun no longer obscures the Earth’s view of Voyager
2 at all! Evidently, Voyager 2s trajectory changed in a way that
disrupted this the annual low-SEP viewing geometry dynamic.

If Voyager 2 were to somehow leave the plane of the solar-
system, the Earth would have a constant unobstructed view of the
spacecraft permanently. We can investigate this theory by looking
at the distance of Voyager 2 from the solar system ecliptic plane.
We do this by setting up a trajectory query to return the state of
Voyager 2 with respect to the Sun in EMO2000 coordinates (the
EMO2000 coordinate frame measures Z with respect to the solar
system plane). The Z-component of the position vector will then

68 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 5: Distance in kilometers of Voyager 2 from the solar system
ecliptic plane.

yield the offset from the ecliptic plane. We will plot this distance
over the course of the Voyager 2 mission to see how this distance
evolves.
In [63]: eclipticQuery = M.TrajQuery(boa,

...: "Voyager 2", "Sun", "EMO2000")
In [64]: searchWindow
Out[64]:
TimeInterval(

['20-AUG-1977 15:32:32.1830 ET',
'05-JAN-2021 00:00:00.0000 ET'],

)

In [65]: sampleTimes = M.Epoch.range(
...: '21-AUG-1977 ET', '04-JAN-2021 ET', 1 *day)

In [66]: z = []
In [67]: for time in sampleTimes:

...: state = eclipticQuery.state(time)

...: z.append(state.pos()[2])

...:
In [68]: import mpylab
In [69]: fig, ax = mpylab.subplots()
In [70]: ax.plot(sampleTimes, z)
In [71]: ax.set_xlabel("Date")
In [72]: ax.set_ylabel(

...: "Distance from Ecliptic Plane (Km)")

The generated plot is shown in Figure 5.
It appears that something happened in 1989 to cause Voyager 2

to depart from the ecliptic plane. A quick glance at the Wikipedia
page for Voyager 2 confirms this, and reveals the cause of this
departure.

Voyager 2’s closest approach to Neptune occurred
on August 25, 1989 ... Since the plane of the orbit of
Triton is tilted significantly with respect to the plane of
the ecliptic, through mid-course corrections, Voyager 2
was directed into a path several thousand miles over the
north pole of Neptune ... The net and final effect on the
trajectory of Voyager 2 was to bend its trajectory south
below the plane of the ecliptic by about 30 degrees.

Conclusion

MONTE is one of the most powerful astrodynamic computing
libraries in the world. It has been extensively tested and verified
by flying actual spacecraft to destinations in the solar system.
It is a compelling platform for anyone doing aerospace related

computation, especially for those who love working with the
Python language.

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

REFERENCES

[Moy71] T. Moyer, Mathematical Formulation of the Double-Precision Or-
bit Determination Program (DPODP), TR 32-1527 Jet Propulsion
Laboratory, Pasadena 1971.

[Moy03] T. Moyer, Formulation for Observed and Computed Values of Deep
Space Network Data Types for Navigation, John-Wiley & Sons, Inc.
Hoboken, Jew Jersey, 2003.

[Eke05] J. Ekelund, History of the ODP at JPL, Internal Document, Jet
Propulsion Laboratory, Pasadena 2005.

[Smi16] J. Smith, Distributed Parameter System for Optimization and Fil-
tering in Astrodynamic Software, 26th AAS/AIAA Spaceflight Me-
chanics Meeting 2016 proceedings, Napa, CA.

[Eva16] S. Evans, MONTE: The Next Generation of Mission Design & Nav-
igation Software, The 6th International Conference on Astrodynam-
ics Tools and Techniques (ICATT) proceedings 2016, Darmstadt,
Germany.

	History
	Deep Space Navigation
	MONTE as a Platform
	MONTE and the Python Ecosystem
	Library Overview
	BOA
	Default Data
	Time and Units
	Trajectories
	Coordinate Frames
	Event Finding
	Numerical Integration
	Parameters and Partial Derivatives

	Example: Exploring bodies in motion
	Voyager 2 Trajectory
	Uranus Encounter

	Conclusion
	Acknowledgements
	References

