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Abstract—Combustion simulations require detailed chemical kinetic models to
predict fuel oxidation, heat release, and pollutant emissions. These models are
typically validated using qualitative rather than quantitative comparisons with
limited sets of experimental data. This work introduces PyTeCK, an open-source
Python-based package for automatic testing of chemical kinetic models. Given a
model of interest, PyTeCK automatically parses experimental datasets encoded
in a YAML format, validates the self-consistency of each dataset, and performs
simulations for each experimental data point. It then reports a quantitative metric
of the model’s performance, based on the discrepancy between experimental
and simulated values and weighted by experimental variance. The initial version
of PyTeCK supports shock tube and rapid compression machine experiments
that measure autoignition delay.

Index Terms—combustion, chemical kinetics, model validation

Introduction

Combustion simulations require chemical kinetic models to pre-
dict fuel oxidation, heat release, and pollutant emissions. These
models are typically validated using qualitative, rather than quan-
titative, comparisons with limited sets of experimental data. Fur-
thermore, while a plethora of published data exist for quantities of
interest such as autoignition delay and laminar flame speed, most
are not available in a standardized machine-readable format. Such
data is commonly offered in poorly documented, nonstandard CSV
files and Excel spreadsheets, or even contained in PDF tables or
figures.

This work aims to support quantitative validation of kinetic
models by:

1. Encouraging the use of a human- and machine-
readable format to encode experimental data for com-
bustion.

2. Offering an efficient, automated software package,
PyTeCK, that quantitatively evaluates the performance
of chemical kinetics models based on available experi-
mental data.

Fundamental combustion experiments typically study the be-
havior of fuels in idealized configurations at conditions relevant
to applications in transporation, aerospace, or power generation.
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These produce useful data for validating chemical kinetic mod-
els, which in turn can support simulations of more complex
applications such as internal combustion or gas turbine engines.
The autoignition delay of a fuel/oxidizer mixture represents the
time required for the mixture to ignite (i.e., experience a rapid
increase in temperature and corresponding consumption of fuel
and oxidizer) after arriving at a specified initial state. Autoignition
occurs in practical applications such as knock in spark-ignition en-
gines or ignition in compression-ignition and gas turbine engines,
and so ignition delay measurements provide useful validation
measures for models aimed at capturing such phenomena. Other
combustion experimental measurements—such as extinction in
perfectly stirred reactors, species profiles in jet-stirred reactors,
and laminar flame speeds—also provide useful information about
fuel combustion characteristics, but these are not considered in
this paper.

Ignition delay times are typically measured with two cate-
gories of experiments: shock tubes and rapid compression ma-
chines. In shock tubes, a diaphragm separates high-pressure gases
from a lower-pressure mixture of fuel and oxidizer. Rupturing
the diaphragm propagates a (compressive) shock wave into the
fuel/oxidizer mixture, quickly increasing the temperature and
pressure and leading to autoignition after a time delay. Chaos
and Dryer [Chaos2010], and more recently Hanson and Davidson
[Hanson2014], discuss shock tubes in more detail. In contrast,
rapid compression machines, reviewed by Sung and Curran
[Sung2014], emulate a single compression stroke in an internal
combustion engine; the compression of a piston raises the tem-
perature and pressure of a fuel/oxidizer mixture in a short period
of time, after which ignition occurs. Shock tubes and rapid com-
pression machines offer complementary approaches to measuring
ignition delay times. Shock tubes can investigate a wide range
of temperatures (600–2500 K) [Hanson2014], although problems
with pre-ignition pressure rise occur at higher pressures and
temperatures below around 1100 K [Petersen2009], [Chaos2010],
while rapid compression machines can reach low-to-intermediate
temperatures (600–1100 K) [Sung2014].

In this paper, I propose a data format for capturing results
from experimental measurements of autoignition delay times. This
paper also describes the components of PyTeCK (Python-based
testing of chemical kinetic models), a software package that
quantifies the performance of a chemical kinetic model in repro-
ducing experimental ignition delays. This includes discussion of
the experimental data parser, simulation framework, and solution
post-processing. The paper also explains the theoretical basis for
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the models of shock tubes and rapid compression machines.

Implementation of PyTeCK

PyTeCK is packaged as a standard Python package using setup-
tools, and consists of three primary modules:

1. parse_files contains functions to read
the YAML-encoded experimental data file using the
PyYAML module. Smaller functions comprise this pro-
cess to enable easier unit testing.

2. simulation contains the Simulation class
and relevant functions for initiating, setting up, and
running cases, and then processing the results.

3. eval_model uses the previous two mod-
ules to set up simulations based on experimental
data, and then runs simulations in parallel using the
multiprocessing module.

The next three sections explain the implementation of
each primary module. PyTeCK also includes the module
detect_peaks, based on the work of Duarte [Duarte2015], for
detecting peaks in targeted quantities (e.g., pressure, temperature)
to determine the ignition delay time. Supporting modules in
PyTeCK include exceptions for raising exceptions while read-
ing YAML files, utils that initializes a single Pint-based unit
registry [Grecco2016], and validation that provides quantity
validation functions.

PyTeCK relies on well-established scientific Python soft-
ware tools. These include NumPy [vanderWalt2011] for large
array manipulation, SciPy [Jones2001] for interpolation, Pint
[Grecco2016] for interpreting and converting between units,
PyTables [Alted2002] for HDF5 file manipulation, Cantera
[Goodwin2016] for chemical kinetics, and pytest [Krekel2016]
for unit testing. Travis-CI [Travis2016] also provides continuous
integration testing.

PyTeCK is available under an open-source MIT license via
a GitHub repository [Niemeyer2016b]. It can be installed using
setuptools by downloading the source code files and execut-
ing python setup.py install. More mature versions of
PyTeCK will be distributed on PyPI (Python Package Index).

Parsing ChemKED files

The PyTeCK module parse_files parses experimental data
encoded in the ChemKED (chemical kinetics experimental data)
format proposed by this paper. ChemKED builds on XML-based
ReSpecTh of Varga et al. [Varga2015a], [Varga2015b]—which in
turn builds on the PrIMe data format [Frenklach2007], [You2012],
[PrIMe2016]—but is written in YAML instead of XML. While
XML is a powerful markup language, YAML offers a number
of advantages: parsers and libraries exist for most programming
langauges, it supports multiple data types and arrays. YAML files
are also intended for data and more readable by humans, which
allows easier composition and could encourage adoption.

The code block below shows a complete example of an
autoignition dataset for an hydrogen/oxygen/argon (H2/O2/Ar)
mixture, taken from Figure 12 (right) of Chaumeix et al.
[Chaumeix2007]:

---
file-author:

name: Kyle E Niemeyer
ORCID: 0000-0003-4425-7097

file-version: (1, 0)

reference:
doi: 10.1016/j.ijhydene.2007.04.008
authors:

- name: N. Chaumeix
ORCID:

- name: S. Pichon
ORCID:

- name: F. Lafosse
ORCID:

- name: C.-E. Paillard
ORCID:

journal: International Journal of Hydrogen Energy
year: 2007
volume: 32
pages: 2216-2226
detail: Fig. 12., right, open diamond

experiment-type: Ignition delay
apparatus:

kind: shock tube
institution: CNRS-ICARE
facility: stainless steel shock tube

common-properties:
pressure: &pres

value: 220
units: kilopascal

composition: &comp
- species: H2

InChI: 1S/H2/h1H
mole-fraction: 0.00444

- species: O2
InChI: 1S/O2/c1-2
mole-fraction: 0.00566

- species: Ar
InChI: 1S/Ar
mole-fraction: 0.9899

ignition-type: &ign
target: pressure
type: d/dt max

datapoints:
- temperature:

value: 1164.48
units: kelvin

ignition-delay:
value: 471.54
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1164.97
units: kelvin

ignition-delay:
value: 448.03
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1264.2
units: kelvin

ignition-delay:
value: 291.57
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1332.57
units: kelvin

ignition-delay:
value: 205.93
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1519.18

https://pypi.python.org/pypi
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units: kelvin
ignition-delay:

value: 88.11
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

This example contains all the information needed to evaluate the
performance of a chemical kinetic model with five data points. The
file also includes metadata about the file itself, as well as reference
information. While these elements, including file-author,
file-version, and the entries in reference, are not re-
quired by PyTeCK, a valid ChemKED file should include this in-
formation for completeness. The elements necessary for PyTeCK
include the type of experiment given by experiment-type
(currently limited to Ignition delay), the kind of appa-
ratus used to measure ignition delay (shock tube or rapid
compression machine), and then a list of experimental
datapoints given as associative arrays with necessary in-
formation. Mandatory elements of each entry in“datapoints“
include the initial temperature, pressure, and mixture
composition, as well as the experimental ignition-delay
and ignition-type (means by which PyTeCk detects ignition,
discussed in more detail later). All quantities provided include a
magnitude and units, which Pint [Grecco2016] interprets. Since
many experimental datasets hold certain properties constant (e.g.,
composition, pressure) while varying a single quantity (e.g.,
temperature), a common-properties element can describe
properties common to all datapoints, using an arbitrary an-
chor label (e.g., &pres above for the constant pressure). Each
data point then refers to the common property with a reference
(*pres). However, every data point should still contain the
complete information needed to reproduce its conditions; the
common-properties element is used for convenience.

Modeling ignition in shock tubes or RCMs may require more
elements to capture effects not accounted for by the simplest
models. Under certain conditions that lead to longer ignition delay
times, shock tubes can exhibit pressure rise before ignition. This
is typically expressed in the literature with a constant pressure rise
rate at a fraction of the initial pressure (with units of inverse time),
and ChemKED files encode this as an item in the associative array
describing an experimental data point:

pressure-rise:
value: 0.10
units: 1/ms

Later versions of PyTeCK will support specifying a pressure-time
history directly, although these are not commonly published in the
shock tube literature.

Simulations of RCM experiments commonly provide a
volume-time history to capture nonideal pre- and post-ignition
heat losses, as well as effects due to the compression stroke.
This data can be provided with experimental datapoints in
ChemKED as a list of lists, with the column index and units
identified:

volume-history:
time:

units: s
column: 0

volume:
units: cm3
column: 1

values:
- [0.00E+000, 5.47669375000E+002]
- [1.00E-003, 5.46608789894E+002]

The PyTeCK tests directory [Niemeyer2016b] contains more
examples of ChemKED files for shock tube and RCM experi-
ments.

The function parse_files.read_experiment() takes
a ChemKED-format file as input, and returns a dictionary with the
necessary information to perform simulations of the experimental
data points. The parse_files.get_experiment_kind()
and parse_files.get_datapoints() functions perform
important checking of input information for consistency and valid-
ity of quantities via the validation module. For example, after
detecting the specified initial temperature, get_datapoints()
checks the correct dimensionality of units and range of magnitude
(in this case, that the units are consistent with Kelvin and that the
magnitude is greater than zero),

validation.validate_gt('temperature',
case['temperature'],
0. * units.kelvin
)

where the validation.validate_gt() func-
tion—borrowed heavily from Huff and Wang’s PyRK [Huff2015],
[Huff2015b]—is

def validate_gt(value_name, value, low_lim):
"""Raise error if value not greater than lower
limit or wrong type.

Parameters
----------
value_name : str

Name of value being tested
value : int, float, numpy.ndarray, pint.Quantity

Value to be tested
low_lim : type(value)

``value`` must be greater than this limit

Returns
-------
value : type(value)

The original value

"""
try:

if not validate_num(value_name, value) > low_lim:
msg = (value_name + ' must be greater than ' +

str(low_lim) + '.\n'
'Value provided was: ' + str(value)
)

# RuntimeError used to avoid being caught by
# Pint comparison error. Pint should really
# raise TypeError (or something) rather than
# ValueError.
raise RuntimeError(msg)

else:
return value

except ValueError:
if isinstance(value, units.Quantity):

msg = ('\n' + value_name +
' given with units, when variable '
'should be dimensionless.'
)

raise pint.DimensionalityError(value.units,
None,
extra_msg=msg
)

else:
msg = ('\n' + value_name +

' not given in units. Correct '
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'units share dimensionality with: ' +
str(low_lim.units)
)

raise pint.DimensionalityError(None,
low_lim.units,
extra_msg=msg
)

except pint.DimensionalityError:
msg = ('\n' + value_name +

' given in incompatible units. Correct '
'units share dimensionality with: ' +
str(low_lim.units)
)

raise pint.DimensionalityError(value.units,
low_lim.units,
extra_msg=msg
)

except:
raise

The read_experiment() function also checks that neces-
sary parameters are present, and also for consistency between
input parameters based on the particular experiment type being
modeled. For example, an input ChemKED file describing a
shock tube experiment cannot include compression-time or
volume-history elements.

After parsing and checking the simulation parameters, the
parse_files.create_simulations() function creates a
list of Simulation objects.

Autoignition simulation procedure

Once parse_files.create_simulations() initializes
a list of Simulation objects, the member function
setup_case() prepares each object to perform a simulation
by initiating the governing equations that model shock tubes and
rapid compression machines. These equations are briefly described
next.

A composition state vector Φ defines the thermochemical state
of a general chemical kinetic system:

Φ =
{

T,Y1,Y2, . . . ,YNsp

}
,

where T is the temperature, Yi is the mass fraction of the ith
species, and Nsp is the number of species represented by the
chemical kinetic model. A system of ordinary differential equa-
tions advances this thermochemical state when modeling both
experimental types, derived from conservation of mass and energy:

dΦ

dt
=

{
dT
dt

,
dY1

dt
,

dY2

dt
, . . . ,

dYNsp

dt

}
. (1)

The derivative terms in Equation (1) come from the conservation
of energy

dT
dt

=
−1
cv

(
Nsp

∑
i=1

ei
dYi

dt
+ p

dv
dt

)
(2)

and conservation of mass
dYi

dt
=

1
ρ

Wiω̇i i = 1, . . . ,Nsp , (3)

where cv is the mass-averaged constant-volume specific heat of
the mixture, ei is the internal energy of the jth species in mass
units, v is the specific volume of the mixture, and ω̇i is the overall
molar production rate of the ith species.

PyTeCK relies on Cantera [Goodwin2016] for handling most
chemical kinetics calculations. Cantera is an open-source software
library that provides tools for solving problems related to chemical

kinetics, thermodynamics, and transport processes. The core of
Cantera is written in C++, but it provides interfaces for Python and
Matlab. PyTeCK uses a Cantera [Goodwin2016] ReactorNet
object to solve the system given by Equation (1), by connecting
IdealGasReactor and Reservoir objects separated by a
Wall. The Wall may or may not be moving, depending on
whether the modeled system has varying or constant volume,
respectively.

The simplest way to model both shock tubes and RCM
experiments is by assuming an adiabatic, constant-volume process.
In this case, I simplify Equation (2) by assuming dv

dt = 0, and the
Wall is initialized with velocity=0:

self.wall = ct.Wall(self.reac, env, A=1.0, velocity=0)

This approach does not account for either preignition pressure
rise observed in some shock tube experiments [Chaos2010],
[Hanson2014] or heat loss in RCMs [Sung2014]. RCM volume
histories are typically provided directly, but publications describ-
ing shock tube experiments with observed preignition pressure
rise usually instead give a constant pressure-rise rate dP

dt . This
is incorporated into Equation (2) by determining an associated
preignition pressure history p(t):

p(t) = p0 +
∫ tend

0

d p
dt

dt , (4)

where p0 is the initial pressure and tend the time interval
of interest (typically the ignition delay time). The function
simulation.sample_rising_pressure() actually con-
structs this pressure history, which is then used to construct a
volume history v(t) assuming isentropic compression:

v(t) = v0
ρ0

ρ(t)

∣∣∣∣
s0

, (5)

where v0 is the initial volume, ρ is the density, ρ0 is the initial
density, and s0 is the specific entropy of the initial mixture.

The varying volume of the system is handled by assigning the
velocity attribute of the ReactorNet’s ’Wall to one of two
classes: VolumeProfile when volume history is provided

self.wall = ct.Wall(
self.reac, env, A=1.0,
velocity=VolumeProfile(self.properties)
)

and PressureRiseProfile when pressure-rise value is spec-
ified

self.wall = ct.Wall(
self.reac, env, A=1.0,
velocity=PressureRiseProfile(

mechanism_filename, initial_temp,
initial_pres, reactants,
self.properties['pressure-rise'].magnitude,
self.time_end
)

)

PyTeCK needs more details about the chemical kinetic model
and initial conditions to initialize the PressureRiseProfile
object, and specifically to construct the discrete volume-
time history via Equations (4) and (5) using the
simulation.create_volume_history() function.
Objects of both classes contain the derivative of volume dv/dt,
which PyTeCK obtains by numerically differentiating the volume
history via simulation.first_derivative(). This
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function uses numpy.gradient() to calculate second-order
central differences at interior points and second-order one-sided
differences (either forward or backward) at the edge points. When
called, the VolumeProfile or PressureRiseProfile
object returns the derivative of volume at the specified time
(i.e., the velocity of the Wall), using numpy.interp() to
interpolate as needed.

After each setup_case() prepares a Simulation object,
the run_case() member function actually runs each simulation.
PyTeCK prepares and runs each simulation independently to allow
the use of multiprocessing workers to perform these steps
in parallel (if desired), as described in the next section. When
running a simulation, PyTeCK creates an HDF5 file and opens
it as a PyTables [Alted2002] table, then performs integration
steps until it reaches the desired end time (set as 100 times the
experimental ignition delay). At every timestep, run_case()
saves the time and information about the current thermochemical
state (temperature, pressure, volume, and species mass fractions)
to the HDF5 table. The Cantera ReactorNet.step() function
performs a single integration step, selecting an appropriate time-
step size based on estimated integration error. Internally, step()
uses the CVODE implicit integrator [Cohen1996], part of the
SUNDIALS suite [Hindmarsh2005], to advance the state of the
IdealGasReactor contained by the ReactorNet.

Finally, a call to the process_results() member func-
tion determines the autoignition delay by opening the saved simu-
lation results. The method by which it detects ignition depends on
the target and type specified in the input ChemKED file. Target
quantities include pressure, temperature, and mass fractions of
commonly used species such as the OH and CH radicals (as well as
their excited equivalents OH* and CH*). process_results()
detects ignition by finding the location of either the maximum
value of the target quantity (e.g., type: max) or the maximum
value of the derivative of the quantity (e.g., type: d/dt max):

# Analysis for ignition depends on type specified
if self.ignition_type == 'd/dt max':
# Evaluate derivative
target = first_derivative(time, target)

# Get indices of peaks
ind = detect_peaks(target)

# Fall back on derivative if max value doesn't work.
if len(ind) == 0 and self.ignition_type == 'max':

target = first_derivative(time, target)
ind = detect_peaks(target)

# Get index of largest peak
# (overall ignition delay)
max_ind = ind[np.argmax(target[ind])]

# add units to time
time *= units.second

# Will need to subtract compression time for RCM
time_comp = 0.0
if 'compression-time' in self.properties:

time_comp = self.properties['compression-time']

ign_delays = time[
ind[np.where((time[ind[ind <= max_ind]] -
time_comp) > 0)]
] - time_comp

# Overall ignition delay

if len(ign_delays) > 0:

ign_delay = ign_delays[-1]
else:

ign_delay = 0.0 * units.second
self.properties[

'simulated ignition delay'
] = ign_delay

using the detect_peaks.detect_peaks() function
[Duarte2015].

Evaluation of model performance

The approach used by PyTeCK to report performance of a
chemical kinetic model is adapted from the work of Olm et
al. [Olm2014], [Olm2015], and briefly discussed by Niemeyer
[Niemeyer2016].

The function eval_model.evaluate_model() controls
the overall evaluation procedure, given the required and optional
parameters:

• model_name: a string with the name of the Cantera-
format chemical kinetic model file (e.g., CTI file)

• spec_keys_file: a string with the name of a YAML
file identifying important species

• dataset_file: a string with the name of a file listing
the ChemKED files to be used, which gives the filenames
in a newline delimited list

• model_path: a string with the directory containing
model_name. This is optional; the default is 'models'

• results_path: a string with the directory for placing
results files. This is optional; the default is 'results'

• model_variant_file: a string with the name of a
YAML file identifying ranges of conditions for variants of
the kinetic model. This is optional; the default is None

• num_threads: an integer with the number of CPU
threads to use to perform simulations in parallel. This is
optional; the default is the maximum number of available
threads minus one

A few of these parameters require greater explanation. The
chemical kinetic model, also referred to as "chemical reaction
mechanism", needs to be provided in Cantera’s CTI file (CanTera
Input file) format [Goodwin2016]. This file contains a description
of the elements, species (including names, molecular composi-
tion, and thermodynamic property data), and reactions (including
reversibility, stoichiometry, Arrhenius rate parameters, third-body
species efficiencies, and pressure dependence). Although the use
of the CTI format in the literature has increased recently, of-
ten models are instead available in the older Chemkin format
[Kee1996]. Such files can be converted using the Cantera-provided
utility ck2cti.

PyTeCK needs the species key YAML file
spec_keys_file because different chemical kinetic models
internally use different names for species. PyTeCK interprets
these names to set the initial mixture composition, and potentially
identify a species target to detect ignition. This file contains
entries (for multiple model files, if desired) of the form:

---
model_name:

H2: "H2"
O2: "O2"
Ar: "AR"

where the key indicates the internal PyTeCK species name and
the value is the name used by the model. In this case, the

http://cantera.github.io/docs/sphinx/html/cti/input-files.html
http://cantera.github.io/docs/sphinx/html/cti/input-files.html
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necessary species names are consistent with the names used
internally by PyTeCK, other than the capitalization of argon
(AR). Names will likely differ for other kinetic models; for
example, internally nC7H16 represents the species n-heptane,
while other models may use C7H16, C7H16-1, or NXC7H16, for
example. PyTeCK’s internal naming convention for key species
is given by the SPEC_KEY and SPEC_KEY_REV dictionar-
ies in the utils module, and can be obtained by calling
utils.print_species_names(). For correct results the
species name keys given in the spec_keys_file file only need
to match names of species in the ChemKED files.

The model_variant_file YAML file is needed in cer-
tain (uncommon) cases where the chemical kinetic model needs
manual changes to apply to different ranges of conditions (such as
pressure or bath gas). In other words, different versions of the CTI
file need to be created for accurate performance under different
conditions. This file may contain entries of the form:

---
model_name:

bath gases:
N2: "_N2"
Ar: "_Ar"

pressures:
1: "_1atm.cti"
9: "_9atm.cti"
15: "_15atm.cti"
50: "_50atm.cti"
100: "_100atm.cti"

where the keys are extensions added to model_name, in order
of bath gases and then pressures, and the values represent
the extensions to the base filename given by model_name. For
models that need such variants, all combinations need to be present
in the model_path directory. As an example, the kinetic model
of Haas et al. [Haas2009] for mixtures of n-heptane, isooctane, and
toluene, which I term Princeton-2009, has certain reactions
that require rate parameters to be changed manually for different
bath gases and pressure ranges. For a case with nitrogen as the
bath gas and at pressures around 9 atm, the resulting file name
would be Princeton-2009_N2_9atm.cti.

To determine the performance of a given model,
evaluate_model() parses the ChemKED file(s),
then sets up and runs simulations as described. A
multiprocessing.Pool can perform simulations in
parallel if multiple CPU threads are available, creating
simulation_worker objects for each case. Then,
process_results() calculates the simulated ignition
delays.

PyTeCK reports the overall performance of a model by the
average error function over all the experimental datasets:

E =
1
N

N

∑
i=1

Ei (6)

where N is the number of datasets and Ei is the error function for a
particular dataset. A lower E value indicates that the model better
matches the experimental data. The error function for a dataset
Ei is the average squared difference of the ignition delay times
divided by the variance of the experimental data:

Ei =
1
Ni

Ni

∑
j=1

(
logτ

exp
i j − logτsim

i j

σ(logτ
exp
i j )

)2

, (7)

where Ni is the number of data points in dataset i, τi j is the
jth ignition delay value in the ith dataset, σ is the experimental

variance, log indicates the natural logarithm (rather than base-10),
and the superscripts "exp" and "sim" represent experimental and
simulated results, respectively.

The experimental variance σ serves as a weighting factor for
datasets based on the estimated uncertainty of results. This term
reduces the contribution to E of a dataset with high variance, from
discrepancies between model predictions and experimental data,
compared to datasets with lower variance. Ideally, publications
describing experimental results would provide uncertainty values
for ignition delay results, but these are difficult to estimate for
shock tube and rapid compression machines and thus not com-
monly reported. Thus, for now, PyTeCK estimates all variance
values.

PyTeCK estimates the variance with the
eval_model.estimate_std_dev() function, by first
fitting a scipy.interpolate.UnivariateSpline() of
order three (or less, if the fit fails) to the natural logarithm of
ignition delay values for a given dataset (where results mainly
vary with a single variable, such as temperature), and then
calculating the standard deviation of the differences between the
fit and experimental data via numpy.std(). PyTeCK sets 0.1
as a lower bound for the uncertainty in ignition delay time, based
on the precedent set by Olm et al. [Olm2014], [Olm2015].

After calculating the error associated with a dataset us-
ing Equation (7) and the overall error metric for a model
using Equation (6), evaluate_model() saves the perfor-
mance results to a YAML file and returns the associated
dictionary if evaluate_model() was called programmat-
ically. If the --print command line option was given,
or the print_results option set to True when calling
evaluate_model(), then the results are also printed to screen.

Example Usage

This section provides an example of using PyTeCK to compare
the performance of 12 chemical kinetic models for hydrogen oxi-
dation [Niemeyer2016c] using a collection of experimental shock
tube ignition delay data [Niemeyer2016d]. 54 data sets from 14
publications comprise this collection, with a total of 786 ignition
data points. Both the set of models and ChemKED experimental
data set are available openly via the respective references.

After installing PyTeCK [Niemeyer2016b], and placing
the model and experimental data files in appropriate locations
(h2-models and h2-files, in this example), each model can
be evaluated by executing a command similar to PyTeCK -m
GRI30-1999.cti -k h2-model-species-keys.yaml
-d h2-data-list.txt -dp h2-files -mp
h2-models, with the appropriate model name inserted in
place of GRI30-1999.cti.

Figure 1 compares the performances of the 12 hydrogen
models, showing both the average error function E as well as
the standard deviation of Ei values across data sets. Lower error
function values indicate better agreement with experimental data.
While the actual values are not important for the current example,
generally both the average and variation of error function decrease
with publication year of the models---indicating an overall im-
provment of model fidelity with time. Although this example only
considers subsets of both the models and experimental data of Olm
et al.’s study [Olm2014], the results generally agree.
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Fig. 1: Average error functions, with standard deviations, for the
12 models of hydrogen oxidation. Models are arranged in order of
publication, going from the oldest to the newest.

Conclusions and Future Work

PyTeCK provides an open, Python-based framework for rigor-
ously quantifying the performance of chemical kinetic models
using experimental autoignition data generated from shock tube
and rapid compression machine experiments. It can be used to
compare models for describing the combustion of a given fuel
and identify areas for improvement. Along with the software
framework, this paper describes a new YAML-based data standard,
ChemKED, that encodes experimental results in a human- and
machine-readable manner.

Immediate plans for PyTeCK include better documentation
generated by Sphinx [Brandl2016] and hosted on Read The Docs.
Longer term plans for PyTeCK include extending support for other
experimental types, including laminar flames and flow reactors,
building in visualization of results, and creating an open database
of ChemKED files for experimental data.
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Appendix

The following code snippet can be used to reproduce Fig. 1 using
the produced by PyTeCK following the instructions given in the
Example Usage section.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
from matplotlib.backends.backend_pdf import PdfPages
import brewer2mpl
import yaml

names = ['GRI30-1999', 'OConaire-2004', 'Zsely-2005',
'Konnov-2008', 'Rasmussen-2008', 'Hong-2011',
'Burke-2012', 'Keromnes-2013', 'CRECK-2014',
'UCSD-2014', 'ELTE-2015', 'Li-2015'
]

ind = np.arange(len(names))

error_funcs = []
error_stds = []
for name in names:
with open(name + '-results.yaml', 'r') as f:

results = yaml.load(f)
error_func = results['average error function']
std_dev = results['error function '

'standard deviation']
error_funcs.append(error_func)
error_stds.append(std_dev)

# colors for boxes
box_colors = brewer2mpl.get_map('Set3',

'qualitative',
len(names)
).mpl_colors

fig, ax = plt.subplots()
yerr = [np.zeros(len(names)), error_stds]
ax.bar(ind, error_funcs, align='center',

color=box_colors, linewidth=0,
yerr=yerr, error_kw=dict(ecolor='g',
lw=2, capsize=0)
)

fmt = ScalarFormatter(useOffset=False)
ax.xaxis.set_major_formatter(fmt)

ax.set_ylabel('Error functions')
ax.set_xticks(ind)
ax.set_xticklabels(names, rotation='vertical')
ax.set_xlim([-0.5, ind[-1] + 0.5])
plt.subplots_adjust(bottom=0.25)

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.grid(axis = 'y', color ='white', linestyle='-')

plt.show()
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