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Abstract—MDAnalysis (http://mdanalysis.org) is a library for structural and tem-
poral analysis of molecular dynamics (MD) simulation trajectories and individual
protein structures. MD simulations of biological molecules have become an
important tool to elucidate the relationship between molecular structure and
physiological function. Simulations are performed with highly optimized software
packages on HPC resources but most codes generate output trajectories in their
own formats so that the development of new trajectory analysis algorithms is
confined to specific user communities and widespread adoption and further
development is delayed. MDAnalysis addresses this problem by abstracting
access to the raw simulation data and presenting a uniform object-oriented
Python interface to the user. It thus enables users to rapidly write code that
is portable and immediately usable in virtually all biomolecular simulation com-
munities. The user interface and modular design work equally well in complex
scripted work flows, as foundations for other packages, and for interactive
and rapid prototyping work in IPython / Jupyter notebooks, especially together
with molecular visualization provided by nglview and time series analysis with
pandas. MDAnalysis is written in Python and Cython and uses NumPy arrays for
easy interoperability with the wider scientific Python ecosystem. It is widely used
and forms the foundation for more specialized biomolecular simulation tools.
MDAnalysis is available under the GNU General Public License v2.

Index Terms—molecular dynamics simulations, science, chemistry, physics,
biology

Introduction

Molecular dynamics (MD) simulations of biological molecules
have become an important tool to elucidate the relationship be-
tween molecular structure and physiological function [DDG+12],
[Oro14]. Simulations are performed with highly optimized soft-
ware packages on HPC resources but most codes generate output
trajectories in their own formats so that the development of
new trajectory analysis algorithms is confined to specific user
communities and widespread adoption and further development is
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delayed. Typical trajectory sizes range from gigabytes to terabytes
so it is typically not feasible to convert trajectories into a range
of different formats just to use a tool that requires this specific
format. Instead, a framework is required that provides a common
interface to raw simulation data. Here we describe the MDAnalysis
library [MADWB11] that addresses this problem by abstracting
access to the raw simulation data. MDAnalysis presents a uniform
object-oriented Python interface to the user. Since its original
publication in 2011 [MADWB11], MDAnalysis has been widely
adopted and has undergone substantial changes. Here we provide
a short introduction to MDAnalysis and its capabilities and an
overview over recent improvements.

MDAnalysis was initially inspired by MDTools for Python
(J.C. Phillips, unpublished) and MMTK [Hin00]. MDTools pi-
oneered the key idea to use an extensible and object-oriented
language, namely, Python, to provide a high-level interface for
the construction and analysis of molecular systems for MD
simulations. MMTK became a tool kit to build MD simulation
applications on the basis of a concise object model of a molecular
system. MDAnalysis was built on an object model similar to that
of MMTK with a strong focus on providing universal high-level
building blocks for the analysis of MD trajectories, but for a much
wider range of formats than previously available. MDAnalysis
has been publicly available since January 2008 and is one of
the longest actively maintained Python packages for the analysis
of molecular simulations. Since then many other packages have
appeared that primarily function as libraries for providing access
to simulation data from within Python. Three popular examples
are PyLOOS [RLG14], mdtraj [MBH+15], and pytraj [NRSC16].
PyLOOS [RLG14] consists of Python bindings to the C++ LOOS
library [RG09]; in order to aid novice users, LOOS also provides
about 140 small stand-alone tools that each focus on a single task.
mdtraj [MBH+15] is similar to MDAnalysis in many aspects but
focuses even more on being a light-weight building block for other
packages; it also includes a number of innovative performance op-
timizations. pytraj [NRSC16] is a versatile Python frontend to the
popular and powerful cpptraj tool [RCI13] and is particularly
geared towards users of the Amber MD package [CCD+05]. These
three packages and MDAnalysis have in common that they are
built on an object model of the underlying data (such as groups of
particles or a trajectory), use compiled code in C, C++ or Cython
to accelerate time critical bottlenecks, and have a "Pythonic" user
interface. LOOS and MDAnalysis share a similar object-oriented
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philosophy in their user interface design. In contrast, mdtraj and
pytraj expose a functional user interface. Both approaches have
advantages and the existence of different "second generation"
Python packages for the analysis of MD simulations provides
many good choices for users and a fast moving and stimulating
environment for developers.

Overview

MDAnalysis is specifically tailored to the domain of molecular
simulations, in particularly in biophysics, chemistry, and biotech-
nology as well as materials science. The user interface provides
physics-based abstractions (e.g., atoms, bonds, molecules) of the
data that can be easily manipulated by the user. It hides the
complexity of accessing data and frees the user from having to
implement the details of different trajectory and topology file for-
mats (which by themselves are often only poorly documented and
just adhere to certain community expectations that can be difficult
to understand for outsiders). MDAnalysis currently supports more
than 25 different file formats and covers the vast majority of
data formats that are used in the biomolecular simulation com-
munity, including the formats required and produced by the most
popular packages such as NAMD [PBW+05], Amber [CCD+05],
Gromacs [AMS+15], CHARMM [BBIM+09], LAMMPS [Pli95],
DL_POLY [TSTD06], HOOMD [GNA+15] as well as the Protein
Data Bank PDB format [BWF+00] and various other specialized
formats.

Since the original publication [MADWB11], improvements
in speed and data structures make it now possible to work with
terabyte-sized trajectories containing up to ~10 million particles.
MDAnalysis also comes with specialized analysis classes in the
MDAnalysis.analysis module that are unique to MDAnal-
ysis such as LeafletFinder (in the leaflet module), a graph-
based algorithm for the analysis of lipid bilayers [MADWB11], or
Path Similarity Analysis (psa) for the quantitative comparison of
macromolecular conformational changes [SKTB15].

Code base

MDAnalysis is written in Python and Cython with about 42k lines
of code and 24k lines of comments and documentation. It uses
NumPy arrays [VCV11] for easy interoperability with the wider
scientific Python ecosystem. Although the primary dependency is
NumPy, other Python packages such as netcdf4 and BioPython
[HM03] also provide specialized functionality to the core of the
library (Figure 1).

Availability

MDAnalysis is available in source form under the GNU General
Public License v2 from GitHub as MDAnalysis/mdanalysis, and
as PyPi and conda packages. The documentation is extensive and
includes an introductory tutorial.

Development process

The development community is very active with more than five
active core developers and many community contributions in
every release. We use modern software development practices
[WAB+14], [SM14] with continuous integration (provided by
Travis CI) and an extensive automated test suite (containing
over 3500 tests with >92% coverage for our core modules).
Development occurs on GitHub through pull requests that are
reviewed by core developers and other contributors, supported by
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Fig. 1: Structure of the MDAnalysis package. MDAnalysis consists of
the core with the Universe class as the primary entry point for users.
The MDAnalysis.analysis package contains independent mod-
ules that make use of the core to implement a wide range of algorithms
to analyze MD simulations. The MDAnalysis.visualization
package contains a growing number of tools that are specifically
geared towards calculating visual representations such as, for in-
stance, streamlines of molecules.

the results from the automated tests, test coverage reports provided
by Coveralls, and QuantifiedCode code quality reports. Users and
developers communicate extensively on the community mailing
list (Google groups) and the GitHub issue tracker; new users
and developers are very welcome and most user contributions
are eventually integrated into the code base. The development
and release process is transparent to users through open discus-
sions and announcements and a full published commit history
and changes. Releases are numbered according to the semantic
versioning convention so that users can immediately judge the
impact of a new release on their existing code base, even without
having to consult the CHANGELOG documentation. Old code is
slowly deprecated so that users have ample opportunity to update
the code although we generally attempt to break as little code as
possible. When backwards-incompatible changes are inevitable,
we provide tools (based on the Python standard library’s lib2to3)
to automatically refactor code or warn users of possible problems
with their existing code.

Basic usage

The core object in MDAnalysis is the Universe which acts as a
nexus for accessing all data contained within a simulation. It is
initialized by passing the file names of the topology and trajectory
files, with a multitude of different formats supported in these roles.
The topology acts as a description of all the particles in the system
while the trajectory describes their behavior over time.
import MDAnalysis as mda

# Create a Universe based on simulation results
u = mda.Universe('topol.tpr', 'traj.trr')

http://cython.org/
http://www.numpy.org
http://www.numpy.org
http://unidata.github.io/netcdf4-python/
http://biopython.org/wiki/Biopython
https://github.com/MDAnalysis/mdanalysis
https://pypi.python.org/pypi/MDAnalysis
https://anaconda.org/mdanalysis/dashboard
http://docs.mdanalysis.org
http://www.mdanalysis.org/MDAnalysisTutorial/
http://travis-ci.org/
http://github.com
https://coveralls.io/
https://www.quantifiedcode.com
https://groups.google.com/forum/#!forum/mdnalysis-discussion
https://groups.google.com/forum/#!forum/mdnalysis-discussion
http://semver.org
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# Create a selection of atoms to work with
ag = u.atoms.select_atoms('backbone')

The select_atoms method allows for AtomGroups to be created
using a human readable syntax which allows queries according to
properties, logical statements and geometric criteria.
# Select all solvent within a set distance from protein atoms
ag = u.select_atoms('resname SOL and around 5.0 protein')

# Select all heavy atoms in the first 20 residues
ag = u.select_atoms('resid 1:20 and not prop mass < 10.0')

# Use a preexisting AtomGroup as part of another selection
sel1 = u.select_atoms('name N and not resname MET')
sel2 = u.select_atoms('around 2.5 group Nsel', Nsel=sel1)

# Perform a selection on another AtomGroup
sel1 = u.select_atoms('around 5.0 protein')
sel2 = sel1.select_atoms('type O')

The AtomGroup acts as a representation of a group of particles,
with the properties of these particles made available as NumPy
arrays.
ag.names
ag.charges
ag.positions
ag.velocities
ag.forces

The data from MD simulations comes in the form of a trajectory
which is a frame by frame description of the motion of particles
in the simulation. Today trajectory data can often reach sizes of
hundreds of GB. Reading all these data into memory is slow and
impractical. To allow the analysis of such large simulations on an
average workstation (or even laptop) MDAnalysis will only load a
single frame of a trajectory into memory at any time.

The trajectory data can be accessed through the trajectory
attribute of a Universe. Changing the frame of the trajectory object
updates the underlying arrays that AtomGroups point to. In this
way the positions attribute of an AtomGroup within the iteration
over a trajectory will give access to the positions at each frame.
Through this approach only a single frame of data is present in
memory at any time, allowing for large data sets, from half a
million particles to tens of millions (see also section Analysis of
large systems), to be dissected with minimal resources.
# the trajectory is an iterable object
len(u.trajectory)

# seek to a given frame
u.trajectory[72]
# iterate through every 10th frame
for ts in u.trajectory[::10]:

ag.positions

In some cases it is necessary to access frames of trajectories in
a random access pattern or at least be able to rapidly access
a starting frame anywhere in the trajectory. Examples for such
usage are the calculation of time correlation functions, skipping
of frames (as in the iterator u.trajectory[5000::1000]),
or parallelization over trajectory blocks in a map/reduce pattern
[TRB+08]. If the underlying trajectory reader only implements
linear sequential reading from the beginning, searching for spe-
cific frames becomes extremely inefficient, effectively prohibiting
random access to time frames on disk. Many trajectory formats
suffer from this shortcoming, including the popular Gromacs XTC
and TRR formats, but also commonly used multi-frame PDB
files and other text-based formats such as XYZ. LOOS [RG09]

implemented a mechanism by which the trajectory was read once
on loading and frame offsets on disk were computed that could
be used to directly seek to individual frames. Based on this idea,
MDAnalysis implements a fast frame scanning algorithm for TRR
and XTC files and also saves the offsets to disk (as a compressed
NumPy array). When a trajectory is loaded again then instead of
reading the whole trajectory, only the persistent offsets are read
(provided they have not become stale as checked by conservative
criteria such as changes in file name, modification time, and size
of the original file, which are all saved with the offsets). In cases
of terabyte-sized trajectories, the persistent offset approach can
save hundreds of seconds for the initial loading of the Universe
(after an initial one-time cost of scanning the trajectory). Current
development work is extending the persistent offset scheme to
all trajectory readers, which will provide random access for all
trajectories in a completely automatic and transparent manner to
the user.

Example: Per-residue RMSF

As a complete example consider the calculation of the Cα root
mean square fluctuation (RMSF) ρi that characterizes the mobility
of a residue i in a protein:

ρi =

√〈
(xi(t)−〈xi〉)2

〉
(1)

The code in Figure 2 A shows how MDAnalysis in combination
with NumPy can be used to implement Eq. 1. The topology
information and the trajectory are loaded into a Universe
instance; Cα atoms are selected with the MDAnalysis selection
syntax and stored as the AtomGroup instance ca. The main loop
iterates through the trajectory using the MDAnalysis trajectory
iterator. The coordinates of all selected atoms become available in
a NumPy array ca.positions that updates for each new time
step in the trajectory. Fast operations on this array are then used
to calculate variance over the whole trajectory. The final result
is plotted with matplotlib [Hun07] as the RMSF over the residue
numbers, which are conveniently provided as an attribute of the
AtomGroup (Figure 2 B).

The example demonstrates how the abstractions that MDAnal-
ysis provides enable users to write concise code where the compu-
tations on data are cleanly separated from the task of extracting the
data from the simulation trajectories. These characteristics make
it easy to rapidly prototype new algorithms. In our experience,
most new analysis algorithms are developed by first prototyping
a simple script (like the one in Figure 2), often inside a Jupyter
notebook (see section Interactive Use and Visualization). Then the
code is cleaned up, tested and packaged into a module. In section
Analysis Module, we describe the analysis code that is included
as modules with MDAnalysis.

Interactive use and visualization

The high level of abstraction and the pythonic API, together with
comprehensive Python doc strings, make MDAnalysis well suited
for interactive and rapid prototyping work in IPython [PG07] and
Jupyter notebooks. It works equally well as an interactive analysis
tool, especially with Jupyter notebooks, which then contain an
executable and well-documented analysis protocol that can be
easily shared and even accessed remotely. Universes and Atom-
Groups can be visualized in Jupyter notebooks using nglview,
which interacts natively with the MDAnalysis API (Figure 3).

http://matplotlib.org
http://jupyter.org/
http://ipython.org/
http://jupyter.org/
https://github.com/arose/nglview
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import numpy as np
import MDAnalysis as mda

u = mda.Universe("topol.tpr", "trj.xtc")
ca = u.select_atoms("name CA")
means = np.zeros((len(ca), 3))
sumsq = np.zeros_like(means)
for k, ts in enumerate(u.trajectory):
    sumsq += (k/(k+1.0)) * 
             (ca.positions - means)**2
    means[:] = (k*means + ca.positions)/(k+1.0)
rmsf = np.sqrt(sumsq.sum(axis=1)/(k+1.0))

matplotlib.pyplot.plot(ca.residues.resids, rmsf)

A

B

Fig. 2: Example for how to calculate the root mean square fluctuation
(RMSF) for each residue in a protein with MDAnalysis and NumPy.
A: Based on the input simulation data (topology and trajectory in
the Gromacs format (TPR and XTC), MDAnalysis makes coordinates
of the selected Cα atoms available as NumPy arrays. From these
coordinates, the RMSF is calculated by averaging over all frames
in the trajectory. The RMSF is then plotted with matplotlib. The
algorithm to calculate the variance in a single pass is due to Welford
[Wel62]. B: Cα RMSF for each residue.

Fig. 3: MDAnalysis can be used with nglview to directly visualize
molecules and trajectories in Jupyter notebooks. The adenylate kinase
(AdK) protein from one of the included test trajectories is shown. .

Other Python packages that have become extremely useful in
notebook-based analysis work flows are pandas [McK10] for rapid
analysis of time series analysis, distributed [Roc15] for simple
parallelization, FireWorks [JOC+15] for complex work flows, and
MDSynthesis [DGS+16] for organizing, bundling and querying
many simulations.

Analysis module

In the MDAnalysis.analysis module we provide a large
variety of standard analysis algorithms, like RMSD (root mean
square distance) and RMSF (root mean square fluctuation) cal-
culations, RMSD-optimized structural superposition [LAT10],
native contacts [BHE13], [FKDD07], or analysis of hydrogen
bonds as well as unique algorithms, such as the LeafletFinder
in MDAnalysis.analysis.leaflet [MADWB11] and
Path Similarity Analysis (MDAnalysis.analysis.psa)
[SKTB15]. Historically these algorithms were contributed by var-
ious researchers as individual modules to satisfy their own needs
but this lead to some fragmentation in the user interface. We have
recently started to unify the interface to the different algorithms
with an AnalysisBase class. Currently PersistenceLength,
InterRDF, LinearDensity and Contacts analysis have
been ported. PersistenceLength calculates the persistence
length of a polymer, InterRDF calculates the pairwise radial
distribution function inside of a molecule, LinearDensity
generates a density along a given axis and Contacts analysis
native contacts, as described in more detail below. The API
to these different algorithms is being unified with a common
AnalysisBase class, with an emphasis on keeping it as generic
and universal as possible so that it becomes easy to, for instance,
parallelize analysis. Most other tools hand the user analysis
algorithms as black boxes. We want to avoid that and allow the
user to adapt an analysis to their needs.

The new Contacts class is a good example of a generic
API that allows straightforward implementation of algorithms
while still offering an easy setup for standard analysis types. The
Contacts class is calculating a contact map for atoms in a frame
and compares it with a reference map using different metrics. The
used metric then decides which quantity is measured. A common
quantity is the fraction of native contacts, where native contacts are
all atom pairs that are close to each other in a reference structure.
The fraction of native contacts is often used in protein folding
to determine when a protein is folded. For native contacts two
major types of metrics are considered: ones based on differentiable
functions [BHE13] and ones based on hard cut-offs [FKDD07]
(which we set as the default implementation). We have designed
the API to choose between the two metrics and pass user defined
functions to develop new metrics or measure other quantities.
This generic interface allowed us to implement a "q1q2" analysis
[FKDD07] on top of the Contacts class; q1 and q2 refer to the
fractions of native contacts that are present in a protein structure
relative to two reference states 1 and 2. Below is an incomplete
code example that shows how to implement a q1q2 analysis, the
default value for the method keyword argument is overwritten with
a user defined method radius_cut_q. A more detailed explanation
can be found in the documentation.
def radius_cut_q(r, r0, radius):

y = r <= radius
return y.sum() / r.size

contacts = Contacts(u, selection,

http://matplotlib.org
https://github.com/arose/nglview
http://jupyter.org/
http://pandas.pydata.org/
https://github.com/dask/distributed
https://github.com/materialsproject/fireworks
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Fig. 4: Visualization of the flow of lipids in a large
bilayer membrane patch. A: 2D stream plot (produced
with MDAnalysis.visualization.streamlines
and plotted with matplotlib [Hun07]). B: 3D stream plot,
viewed down the z axis onto the membrane (produced with
MDAnalysis.visualization.streamlines_3D and
plotted with MayaVi [RV11]).

(first_frame, last_frame),
radius=radius,
method=radius_cut_q,
start=start, stop=stop,
step=step,
kwargs={'radius': radius})

This type of flexible analysis algorithm paired with a collection of
base classes enables rapid and easy analysis of simulations as well
as development of new ones.

Visualization module

The new MDAnalysis.visualization name space con-
tains modules that primarily produce visualizations of molec-
ular systems. Currently it contains functions that gen-
erate specialized streamline visualizations of lipid diffu-
sion in membrane bilayers [CRG+14]. In short, the algo-
rithm decomposes any given membrane into a grid and
tracks the displacement of lipids between different grid
elements, emphasizing collective lipid motions. Both 2D
(MDAnalysis.visualization.streamlines) and 3D
(MDAnalysis.visualization.streamlines_3D) im-
plementations are available in MDAnalysis, with output shown
in Figure 4. Sample input data files are available online from the
Flows website along with the expected output visualizations.

Improvements in the internal topology data structures

Originally MDAnalysis followed a strict object-oriented approach
with a separate instance of an Atom object for each particle
in the simulation data. The AtomGroup then simply stored its
contents as a list of these Atom instances. With simulation data
now commonly exceeding 106 particles this solution did not scale
well and so recently this design was overhauled to improve the
scalability of MDAnalysis.

Because all Atoms have the same property fields (i.e. mass,
position) it is possible to store this information as a single NumPy
array for each property. Now an AtomGroup can keep track of its
contents as a simple integer array, which can be used to slice these
property arrays to yield the relevant data.

Overall this approach means that the same number of Python
objects are created for each Universe, with the number of particles

# atoms v0.15.0 v0.16.0 speed up

1.75 M 19 ms 0.45 ms 42
3.50 M 18 ms 0.54 ms 33
10.1 M 17 ms 0.45 ms 38

TABLE 1: Performance comparison of subselecting an AtomGroup
from an existing one using the new system (upcoming release v0.16.0)
against the old (v0.15.0). Subselections were slices of the same size
(82,056 atoms). Shorter processing times are better. The benchmarks
systems were taken from the vesicle library [KB15] and are listed
with their approximate number of particles ("# atoms"). Benchmarks
were performed on a laptop with an Intel Core i5 2540M 2.6 GHz
processor, 8 GB of RAM and a SSD drive.

# atoms v0.15.0 v0.16.0 speed up

1.75 M 250 ms 35 ms 7.1
3.50 M 490 ms 72 ms 6.8
10.1 M 1500 ms 300 ms 5.0

TABLE 2: Performance comparison of accessing attributes with new
AtomGroup data structures (upcoming release v0.16.0) compared with
the old Atom classes (v0.15.0). Shorter access times are better. The
same benchmark systems as in Table 1 were used.

only changing the size of the arrays. This translates into a much
smaller memory footprint (1.3 GB vs. 3.6 GB for a 10.1 M
atom system), highlighting the memory cost of millions of simple
Python objects.

This transformation of the data structures from an Array of
Structs to a Struct of Arrays also better suits the typical access
patterns within MDAnalysis. It is quite common to compare
a single property across many Atoms, but rarely are different
properties within a single Atom compared. Additionally, it is
possible to utilize NumPy’s faster indexing capabilities rather than
using a list comprehension. This new data structure has lead to
performance improvements in our whole code base. The largest
improvement is in accessing subsets of Atoms which is now over
40 times faster (Table 1), an operation that is used everywhere
in MDAnalysis. Speed-ups of a factor of around five to seven
were realized for accessing Atom attributes for whole AtomGroup
instances (Table 2). The improved topology data structures are also
much faster to initialize, which translates into speed-ups of about
three for the task of loading a system from a file (for instance, in
the Gromacs GRO format or the Protein Databank PDB format)
into a Universe instance (Table 3). Given that for systems with 10
M atoms this process used to take over 100 s, the reduction in load
time down to a third is a substantial improvement — and it came
essentially "for free" as a by-product of improving the underlying
topology data structures.

Analysis of large systems

MDAnalysis has been used extensively to study extremely large
simulation systems for long simulation times. Marrink and co-
workers [IME+14] used MDAnalysis to analyze a realistic model
of the membrane of a mammalian cell with 63 different lipid
species and over half a million particles for 40 µs. They discovered
that transient domains with liquid-ordered character formed and
disappeared on the microsecond time scale, with different lipid

http://matplotlib.org
http://code.enthought.com/projects/mayavi/
http://sbcb.bioch.ox.ac.uk/flows/MDAnalysis.html
https://github.com/Becksteinlab/vesicle_library
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# atoms v0.15.0 v0.16.0 speed up

1.75 M 18 s 5 s 3.6
3.50 M 36 s 11 s 3.3
10.1 M 105 s 31 s 3.4

TABLE 3: Performance comparison of loading a topology file with
1.75 to 10 million atoms with new AtomGroup data structures (upcom-
ing release v0.16.0) compared with the old Atom classes (v0.15.0).
Shorter loading times are better. The same benchmark systems as in
Table 1 were used.

zA

B

Fig. 5: Simulation of a coarse-grained model of the influenza A
virion membrane (purple/red) close to a model of the human plasma
membrane (brown). A: Left: initial frame. Right: system after 40 ns .
A horizontal black guide line is used to emphasize the rising plasma
membrane position. The images were produced with VMD [HDS96].
B Maximum Z (vertical) coordinate values for the influenza A virus
envelope and the plasma membrane are tracked over the course of the
simulation, indicating that the membrane rises to rapidly.

species clustering in a lipid-specific manner. A coarse-grained
model of the influenza A virion outer lipid envelope (5 M parti-
cles) was simulated for 5 microseconds and the resulting trajectory
was analyzed using MDAnalysis [RSP+15] and the open source
MDAnalysis-based lipid diffusion analysis code, which calculates
the diffusion constants of lipids for spherical structures and planar
bilayers [Red14]. The construction of the CG dengue virion
envelope (1 M particles) was largely dependent on MDAnalysis
[RS16]. The symmetry operators in the deposited dengue protein
shell PDB file were applied to a simulated asymmetric unit
in a bilayer, effectively tiling both proteins and lipids into the
appropriate positions on the virion surface.

More recently, a 12.7 M CG particle system combining the
influenza A envelope and a model of a plasma membrane [KS15]
were simulated together (Figure 5 A). MDAnalysis was used
to assess the stability of this enormous system by tracking, for
example, the changes in Z coordinate values for different system
components (Figure 5 B). In this case, the membrane appeared to
rise too rapidly over the course of 50 ns, which suggests that the
simulation system will likely have to be redesigned. Such large

systems are challenging to work with, including their visualiza-
tion, and analysis of quantities based on particle coordinates is
essential to assess the correct behavior of the simulations.

Other packages that use MDAnalysis

The user interface and modular design work well in complex
scripted work flows and for interactive work, as discussed in sec-
tion Interactive Use and Visualization. MDAnalysis also serves as
foundation for other packages. For example, ProtoMD [SMO16]
is a toolkit that facilitates the development of algorithms for
multiscale (MD) simulations and uses MDAnalysis for on-the-
fly calculations of the collective variables that drive the coarse-
grained degrees of freedom. The ENCORE package [TPB+15]
enables users to compare conformational ensembles generated
either from simulations alone or synergistically with experiments.
MDAnalysis is also the back end for ST-analyzer [JJW+14], a
standalone graphical user interface tool set to perform various
trajectory analyses. MDSynthesis [DGS+16] (which is based on
datreant (Dotson et al, this issue)) gives a Pythonic interface to
molecular dynamics trajectories using MDAnalysis, giving the
ability to work with the data from many simulations scattered
throughout the file system with ease. It makes it possible to write
analysis code that can work across many varieties of simulation,
but even more importantly, MDSynthesis allows interactive work
with the results from hundreds of simulations at once without
much effort.

Conclusions

MDAnalysis provides a uniform interface to simulation data,
which comes in a bewildering array of formats. It enables users
to rapidly write code that is portable and immediately usable
in virtually all biomolecular simulation communities. It has an
active international developer community with researchers that are
expert developers and users of a wide range of simulation codes.
MDAnalysis is widely used (the original paper [MADWB11]
has been cited more than 195 times) and forms the foundation
for more specialized biomolecular simulation tools. Ongoing and
future developments will improve performance further, introduce
transparent parallelization schemes to utilize multi-core and GPU
systems efficiently, and interface with the SPIDAL library for high
performance data analytics algorithms [QJLF14].
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