
114 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Spreading the Adoption of Python in India: the
FOSSEE Python Project

Prabhu Ramachandran‡§∗

https://youtu.be/6UnuPhTPdnM

F

Abstract—The FOSSEE (Free Open Source Software for Science and Engi-
neering Education) project (http://fossee.in) is funded by the Ministry of Human
Resources and Development, MHRD, (http://mhrd.gov.in) of the Government of
India. The FOSSEE project is based out of IIT Bombay and the goal of the
project is to eliminate the use of proprietary tools in the college curriculum.
FOSSEE promotes various open source packages. Python is one of them.

In this paper, the Python-related activities and initiatives of FOSSEE are
discussed. The group focuses on promoting the use of Python in the college
curriculum. The important activities of this group include the creation of spoken-
tutorials on Python, the creation of 400+ IPython-based textbook companions,
an online testing tool for a variety of programming languages, a course akin to
software carpentry at IIT Bombay, the organization of the SciPy India confer-
ence, and finally spreading the adoption of Python in schools and colleges. The
paper discusses how these tools may be used to teach Python in the context of
collegiate education and computational science.

Introduction

The FOSSEE project (http://fossee.in) started in 2009 with the
goal of helping minimize the use of proprietary software in the
college curriculum in India. The project is funded by the Ministry
of Human Resources and Development, MHRD (http://mhrd.gov.
in) of the Government of India. FOSSEE is part of the MHRD’s
National Mission on Education through ICT (NMEICT). NMEICT
started in 2009 as an initiative to improve the quality of education
in India. As part of this mission there have been several initiatives.
One important example is the NPTEL project (http://nptel.ac.in)
which provides content for over 900 courses at the undergraduate
and graduate level (400 web-based and 500 video-based) online.
These are proving to be extremely useful all over the country.
Other projects include the Spoken Tutorial project (http://spoken-
tutorial.org) which has also been previously presented at SciPy
2014 [kmm14]. FOSSEE is one such project that is the outcome
of the NMEICT funding.

The FOSSEE project is based out of IIT Bombay and promotes
the use of various open source packages in order to help elimi-
nate the use of proprietary packages in the curriculum. A large
number of colleges tend to unnecessarily purchase commercial
licenses when they really do not need it. The difficulty with using

* Corresponding author: prabhu@aero.iitb.ac.in
‡ Department of Aerospace Engineering
§ IIT Bombay, Mumbai, India

Copyright © 2016 Prabhu Ramachandran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

commercial packages to teach basic concepts and computational
techniques is well known:

• The packages are typically expensive, the money could be
better spent on equipment. This is especially relevant in
India.

• Students cannot legally take the software with them home
or after they complete their course.

• Academic licenses are not enough as the students end
up becoming dependent on the packages after the leave
the institution. Furthermore, the packages are even more
expensive when used in a commercial setting.

In order to help reduce the dependence on commercial pack-
ages, the FOSSEE project’s efforts are focused towards training
students and teachers to use FOSS tools for their curricular
activities. This also requires development efforts in order to either
enhance existing projects or fill in any areas where FOSS tools
are lacking. There are around ten PIs actively involved in various
sub-projects. Some of the most active projects are Scilab, Python,
eSim (an Electronic Design Automation tool), OpenFOAM, and
Osdag (open source design of steel structures).

After the initial efforts in 2009 and 2010 it was found that
some of the initiatives worked and scaled up well whereas others
did not. As a result, all of the FOSSEE sub-projects follow a sim-
ilar structure. Typically each sub-project produces the following
output:

• Generates "spoken-tutorials" that new users can use to self-
learn a particular software package.

• Organize a crowd-sourced development of "textbook com-
panions" for popular textbooks used in the curriculum.
A textbook companion is created by coding every solved
example in a text using a particular open source software
package like Scilab or Python.

• Support user questions on a forum for the packages that
are promoted.

• Develop new software that is useful in a particular domain.
• Support hardware interfacing to encourage open experi-

mentation.
• Migrate labs that use proprietary packages and help them

switch to a FOSS equivalent.
• Conduct workshops and conferences to spread the word

and teach students and teachers.

Some of these are project specific. For example, the Scilab
project is able to perform lab migrations as Scilab is a close

https://youtu.be/6UnuPhTPdnM
http://fossee.in
http://mhrd.gov.in
http://fossee.in
http://mhrd.gov.in
http://mhrd.gov.in
http://nptel.ac.in
http://spoken-tutorial.org
http://spoken-tutorial.org
mailto:prabhu@aero.iitb.ac.in


SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 115

equivalent to Matlab and this makes it easier for people to
switch to it from Matlab. Kannnan Moudgalya’s paper in 2014
[kmm14] discusses in detail the approach and design decisions
made by the FOSSEE and spoken-tutorials projects. In particular
the paper discusses spoken tutorials, textbook companions, and
lab migrations.

The focus of the present paper is to elucidate some the Python-
specific activities [FOSSEE-Python] that are of potential direct
interest to the SciPy community. The overarching goal of the
Python related activities is to help spread the use of Python in
the curriculum. In 2016, the scope has expanded to help spread
the use of Python in high-schools as well. The focus of this paper
is to discuss the approaches that have been taken by the FOSSEE-
Python group towards these goals. The lessons and approaches
taken by this project are potentially of benefit for similar projects
around the world.

The paper starts by discussing spoken tutorials, which are care-
fully created screencasts that are well suited for self learning. The
paper then discusses a variant of the software carpentry course that
has been offered at IIT Bombay. The subsequent section discusses
a convenient tool called Yaksh for assessing programming skills
of students. The approach taken to create a large amount of user-
created documentation in the form of "textbook companions" is
then discussed. The paper concludes with some brief information
about the SciPy India conference series which is organized by
FOSSEE and how that fits in with the overarching theme.

Spoken-tutorials

When the project started in 2009, many live workshops were
conducted to teach Python but this proved to be too time con-
suming and did not scale. There are more than 3000 colleges
in the country and live workshops cannot reach all of these
institutions. At this time it was felt that preparing self-learning
material that students can learn on their own would be much
more effective and scalable. A sister project, the spoken-tutorial
project (http://spoken-tutorial.org) pioneered the generation and
dissemination of spoken-tutorials. A spoken tutorial is basically a
carefully designed screencast for a roughly 10 minute duration or
less. Any screencast cannot qualify as a spoken-tutorial. A spoken
tutorial requires a carefully written script. Notably, a spoken
tutorial should be made such that a novice can understand it.
The spoken-tutorial project ensures that all new tutorials undergo
a novice check to make sure that this is indeed the case. This
involves asking a novice to go over the script and ensure that
they are able to reproduce the entire script and follow it. This
carefully written script allows a spoken tutorial to be dubbed into
multiple languages. A series of spoken tutorials can thus be used to
effectively teach a programming language or software package. As
such, a spoken tutorial is not a substitute for classroom instruction
of the traditional kind. It has been most effectively used to teach a
programming language or introduce a software package.

The major advantage of the spoken tutorial is that it retains a
high quality of instruction, can be used for self-learning, and scales
extremely well. In addition, these tutorials can be dubbed into
various local languages. The spoken tutorial project has trained
over a million students and teachers on a variety of software
packages. The project hosts over 700 individual spoken-tutorials.
Over 20 different Indian languages are supported.

As part of the Python initiative the FOSSEE Python group has
created about 40 spoken tutorials to teach non-CSE undergraduate

Fig. 1: An example of a Python spoken tutorial. The video can be
viewed, an outline of the material is available below the video. An
instruction sheet and installation sheet is also available. Prerequisite
videos are listed and users can also post questions on a forum.

students how to use Python for their curricular computational
tasks. A new set of around 50 tutorials is currently being recorded.
The spoken tutorials include tutorials on starting with IPython,
plotting with matplotlib, etc. Currently these are only available in
English.

Fig. 1 shows a typical Python spoken tutorial as hosted on the
spoken-tutorial website. It shows the main screencast video. Below
the video is an outline of the tutorial. Information on installation
and other instructions is also listed. Users can easily navigate to
prerequisite tutorials. In addition, users can post their questions on
the forum.

These spoken tutorials can be accessed by anyone and can
also be downloaded into a self-contained CD by users. Around
40000 users have gone over this material. Detailed statistics for
the various tutorials are available here: http://spoken-tutorial.org/
statistics/training/

The FOSSEE team generates the spoken tutorials and the
spoken tutorial team coordinates the conduct of workshops where
students use this material to teach themselves Python. FOSSEE
staff members support these workshops by attending to user
questions that may arise.

Spoken tutorials have thus become an effective way to scale
up training on open source packages. For a motivated and skilled
user, spoken-tutorials and documentation alone are often enough
to self-learn. However, this is not enough for the average user.
There are many software packages, tools, web sites and books
related to computational science. It is never easy for a student
(undergraduate or graduate) to choose the right set of packages or
practices they should follow. The next section discusses a course
that is designed and run by the FOSSEE group at IIT Bombay that
helps address this.

The SDES course

SDES is an acronym that stands for Software Development
Techniques for Engineers and Scientists. As discussed earlier,
the Python group initially focused on teaching Python at various
colleges. It was soon felt that students needed to learn how to
use Unix shells effectively, use version control, basic knowledge
of LaTeX, good software development practices in addition to
Python. Students are often unaware of the right set of tools

http://spoken-tutorial.org
http://spoken-tutorial.org/tutorial-search/?search_language=English&search_foss=Python&page=1
http://spoken-tutorial.org/statistics/training/
http://spoken-tutorial.org/statistics/training/


116 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

to learn. Most students undergo a basic computer programming
course in their first year but this is rarely enough for them to
perform their curricular tasks.

In order to fill this need, a course was designed in late 2009.
The course is titled Software Development techniques for Engi-
neers and Scientists (SDES). This course takes inspiration from the
Software Carpentry Course material [SWC]. However, the course
is tailored for undergraduate students. The course is offered at IIT
Bombay so students at the undergraduate and graduate levels could
take this as part of their course-work. Students can certainly learn
this material from several online resources, however, the existence
of this course allows students to credit this as part of their course
requirements.

The course starts with teaching students on how to use
Unix command line tools to carry out common (mostly text
processing) tasks. The course then goes on to teach students
how to automate typical tasks using basic shell-scripting. The
students are then taught version control. The course originally
used mercurial, however, this has changed to git. The students
are then taught basic and advanced Python. The emphasis is on
typical engineering/numerical computations such as those that
involve (basic) manipulation of large arrays in an efficient manner.
Good programming style is discussed along with debugging and
test driven development. They also learn LaTeX and document
creation with reStructuredText. The course material is available
from github, at http://github.com/FOSSEE/sees.

As part of the evaluation, students pick a software project and
attempt to apply all that they have learned. Students are also given
many programming assignments to test their ability to program.
We have built a convenient online testing tool called Yaksh that
is discussed in a subsequent section for this task. This makes the
examinations interesting for students and is helpful for instructors
to assess student’s understanding.

The course has been offered twice thus far and will be offered
again in the fall of 2016. The course has been well received by
students and is quite popular. The number of students is restricted
to about 60 each time. During the last delivery it was felt that the
student projects were not done well enough. A more aggressive
and systematic approach is needed to push students to work
consistently over the duration of the course, rather than in the
last minute. It was also found that it is difficult for students and
instructors to pick meaningful projects that are neither too trivial
or too difficult. For the next delivery, the plan is to encourage
students to work systematically on their projects. Studying the git
logs of the student project repositories to assess team contribution
and systematic work is one approach that is being considered.
Instead of always picking new projects, one possibility is to give
them an existing project and ask them to improve it.

The SDES course was offered as part of a 1000 teacher
training course offered in 2011 at IIT Bombay. This course had
over 600 participants who took the course and was well received.
Unfortunately, it is not clear how well this course eventually
helped teachers and if the teachers went on to teach this material
in their colleges.

Teaching the course has generally been enjoyable and re-
warding. Students seem to find the course useful and generally
continue to use the tools that they have learned. The course is
rather demanding from the perspective of assessment and a good
team of TAs is necessary. Fortunately, the FOSSEE Python team
helps in this regard.

Online test tool: Yaksh

Assessing the programming skills of students is a very important
task during training. This is necessary both from the perspective
of effective teaching as well as learning. For an instructor, testing
early and often is helpful because it provides immediate feedback
on which students need help and which of them are doing well.
For students, doing well in a test gives them confidence and doing
poorly teaches them where they should concentrate harder or get
help. Unfortunately, assessment is not usually a pleasant task.
Assessment is doubly important when learning a programming
language as in India there are students who learn how to program
but never write more than a few lines of code. Programming
requires practice and encouraging students to program is very
important.

For FOSSEE this is also important from the perspective of
being able to certify students. The Spoken Tutorial team conducts
a large number of workshops all over the country and it would
be good if the tests required that students be able to write simple
programs at least.

In 2011, the author saw Chris Boesch run a programming
contest at PyCon APAC 2011. The contest was entirely online,
and users could submit their code and obtained instant feedback.
The system was built on top of Google App Engine. This made
testing programming lively and enjoyable. The author along with
the FOSSEE team have built a Django application to do something
similar. The package is called Yaksh, is Open Source, and the
sources are available at http://github.com/FOSSEE/online_test.
The initial version of Yaksh was used to administer programming
quizzes for the online teacher training course based on the SDES
course in late 2011. More than 600 simultaneous users took their
tests on this interface. This work was presented at SciPy India
2011 [PR11].

Yaksh provides a simple interface for an instructor to create
a question paper with mutiple-choice questions (MCQ) as well
as full-fledged programming questions. A programming question
consists of a problem statement and the user writes the code on
the interface. This code is immediately checked against several test
cases and any failures are reported directly to the user by providing
a suitable traceback. By design, a programming question can be
answered many times until the user gets it completely correct. This
encourages students to try and submit their answers. An MCQ can
only be answered once for obvious reasons.

It was found that the approach of allowing multiple submis-
sions and providing instant feedback instead of the traditional
approach where a student would upload the answers on an in-
terface and obtain the grades later to be much more effective.
Instant feedback makes the process lively and entertaining for the
student. The ability to submit multiple times gives them comfort
in that they know that they can gradually fix their code. This
makes students less anxious. They also immediately know that
their answer is correct if they get it right. This makes a significant
difference. Clearly this is not enough to teach all aspects of
programming, however, this is a very useful aid.

Yaksh provides a convenient monitoring interface for the
instructor which provides, at a glance, information on the students’
performance. Each submission of a student is logged and can be
seen by the moderator. This is useful for an instructor.

Yaksh works best with Python since it has been used mostly
for Python tests but does support multiple other programming
languages like C, C++, Java, Bash, and Scilab.

https://www.mercurial-scm.org
https://git-scm.com/
http://docutils.sourceforge.net/rst.html
http://github.com/FOSSEE/sees
http://singpath.com
http://singpath.com
https://www.djangoproject.com/
https://github.com/FOSSEE/online_test
http://github.com/FOSSEE/online_test


SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 117

Fig. 2: The Yaksh application login screen with a video on how one
can use it.

Fig. 3: The interface for a multiple-choice question on yaksh.

Yaksh sandboxes the user code and runs the code as "nobody"
when configured to do so. The code execution can also be
performed in a docker container. This minimizes any damage a
student can do. Since all answers are logged before execution, it
is easy to find out if a student has been malicious -- this has never
happened in the current usage Yaksh.

Fig. 2 shows the login screen for Yaksh, which features a small
video that demonstrates how the interface can be used. Fig. 3
shows the interface for an MCQ and Fig. 4 shows the interface for
a programming question. The top bar shows the time remaining to
take the question. A question navigator is provided for students to
quickly move between questions.

Fig. 5 shows a typical moderator interface while monitoring a
running quiz. The interface shows the number of questions each
student has completed. On clicking on a user, all the answers they
have submitted are visible.

Installation and running a demo

Yaksh is a Python package and is distributed on PyPI. Yaksh can
be installed with pip. When installed, an executable script yaksh
is created. To setup a demo instance on can run

$ yaksh create_demo

Fig. 4: The interface for a programming question on yaksh.

Fig. 5: The moderator interface for monitoring student progress
during an exam on yaksh.

This creates a new demo Django project called yaksh_demo
with a demo database and a couple of users added. One is a
moderator and other is an examinee. It also loads a few simple
demo questions and a quiz. One can then simply run:

$ yaksh run_demo
$ sudo yaksh run_code_server

This starts up a server on the localhost and also runs the code
evaluator as nobody. The server is tested to work on Linux and
OS X but not on Windows although technically it should not be
difficult to do this. Note that a malicious user could fork bomb the
machine in this case as the service is still running on the machine.
Resource limiting is possible but not currently implemented.

The above instructions are only for a demo and are not suitable
for a production installation as a sqlite database is used in the demo
case. More detailed instructions for a production installation are
available in the repository.

http://pypi.python.org


118 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Design overview

In order to create a quiz the teacher/instructor (also called the
moderator) must first create a course. Users can login and register
for the course with the instructor’s approval. The moderator can
add any number of questions to yaksh through the online interface.
These can be either MCQ questions or programming questions.
The programming questions will require a set of test cases. In the
case of a Python programming question, a simple question could
be of the form:

Write a function called factorial(n) which takes
a single integer argument and returns the
factorial of the number given.

The question will also be accompanied with a few test cases of the
form:

assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(5) == 120

As many questions as desired may be created. For other languages
assertions are not easily possible but standard input/output based
questions are easily handled. More sophisticated test support is
also possible (for example one could easily support some form of
assertions for C/C++ if a template were used to generate the files).
The architecture of yaksh supports this fairly easily.

Questions could also be imported from a Python script. The
interface lets users export and import questions. The moderator
then creates a quiz and an associated question paper. A quiz
may have a pre-requisite quiz and can have a passing criterion.
Quizzes have active durations and each question paper will have
a particular time within which it must be completed. For example
one could conduct a 15 minute quiz with a 30 minute activity
window. The students can be allowed to attempt the quiz either
once or multiple times as desired. This is often useful when
teaching new users. Questions are automatically graded. A user
either gets the full marks or zero if the tests fail. In the future
yaksh will also support partial grading depending on the number
of test cases the code passes.

In terms of the internal design, yaksh is fairly simple.

• The Django app manages the questions, quizzes, users etc.
• A separate code-server process runs as "nobody" to limit

the amount of damage malicious code could have. This
process runs an XML/RPC server. The Django app creates
an XML/RPC ServerProxy instance and invokes the
code server with the user code and any additional data
(like the test cases etc.). This is executed by the server
process.

• Unfortunately, XML/RPC can only handle 2 simultaneous
connections. Therefore, a pool of these servers is created
and managed. The Django app then connects to any
available server and executes the code.

• In order to prevent issues with infinite loops, we use the
signal module to send SIGALRM in a finite amount
of time. The default is 2 seconds but this can be easily
configured.

The code server can be easily run within a docker container
and this is also supported by Yaksh. Some documentation for this
is also provided in the production README.

In addition to these features yaksh also has an experimental
web-API that allows an instructor to utilize yaksh from their
own web sites or HTML documents. An instructor could create

questions and a question paper from the yaksh interface but have
users take the test on say an Jupyter notebook interface. This is
still being developed but a proof of concept is available. In order
to do this, a user could simply add yaksh.js to their HTML and
call a few API methods to fetch as well as submit user answers.

Some experiences using yaksh

Yaksh has been used while delivering the SDES course at IIT
Bombay. This has worked quite well and is well received by
students. As mentioned before, Yaksh has also been used for the
online course with over 600 participants and worked quite well.
This was however done in 2011 and thereafter has only been used
for smaller classes.

Recently, Yaksh was used by the author to teach first year
undergraduate students Python as part of a data analysis and
interpretation course. Many students were new to programming
and a lot was learned about how well this could work.

Yaksh definitely made it much easier to assess the understand-
ing of students. Initially the students were not given tests but were
given Jupyter notebooks as well as exercises to solve at home.
The assumption was that the students would follow the material
since it was done slowly in class. This was not the case. A take-
home assignment was given using Yaksh where students would
solve simple problems (many taken from the exercise problems
that were already given). Surprisingly, many of the students were
struggled badly. Even the best students were not able to finish all
problems. This showed that a lot more practice was needed. As
a result, 7 different quizzes with a few problems each were con-
ducted. After about 5 such quizzes it was found that some students
were still having difficulties understanding basic concepts. These
were students who were completely new to programming. Around
20 poorly performing students were identified. These students
came to a special class and solved 10 problems using yaksh over
the course of 2 hours. The monitoring facility was immensely
useful as one could walk over to a struggling student and provide
assistance or point a TA in their direction. The students all
seemed to like the experience and understood the importance of
actually programming versus learning the language syntax. Their
performance in the subsequent quizzes and assignments improved
significantly.

One major lesson learned was that one should ensure that
students are tested from the get-go rather than towards the end.
This would result in a much smoother experience. Based on the
overall experience, it is clear that Yaksh is an effective tool for
students and teachers alike.

Plans

Yaksh will continue to be improved based on the needs of the
FOSSEE team and that of others. It is hoped that this is also of
use to the community. The future goals for the yaksh project are
to:

• Clean up and come up with a stable web-API.
• Support the use of Jupyter notebooks for tests.
• Support more programming languages.
• Integrate Yaksh into the spoken-tutorial website in order

to help them test students.

Textbook companions

Spoken-tutorials allow FOSSEE to reach out to a larger audience
and train students and teachers on the use of FOSS tools and

https://github.com/FOSSEE/online_test/blob/master/README_production.md


SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 119

packages. The SDES course is similar to the Software Carpentry
effort and offers a full-fledged course that readies students for
computational science. Yaksh facilitates both of these by making
it easier to test students on their programming skills.

While Python in general and the SciPy project in particular
have plenty of good online documentation, this may not always
be adequate from the perspective of a beginner. Good quality
documentation is not easy to write and requires both expertise
as well as the ability to explain things at the level of the user. This
is often difficult for a developer who knows almost everything
about the package. On the other hand it is not always easy for an
inexperienced user to write documentation either.

Students are often interested in taking internships and desire
to participate in software projects that are relevant to their area
of interest. Is it possible to engage these students in a way where
they are able to contribute meaningful documentation in an area
of their interest?

Textbook companions offer an interesting approach in this
context. As discussed in detail in [kmm14], textbook companions
are created by writing Python code for every solved example in
a textbook. Students create these textbook companions which are
then reviewed by either teachers or reviewers at FOSSEE. This
task scales very well as students are eager to take up the task.
They already know the subject matter as the textbook is part of
their curriculum. The examples are already solved, so they have to
convert the solved example into appropriate Python code. Students
are given an honorarium and a certificate after their textbooks pass
a review. Currently, there are over 530 Scilab textbook companions
[STC] created. The Python project has 416 completed books with
over 200 textbooks in progress. The Python textbook companions
are hosted online at http://tbc-python.fossee.in

The Python Textbook Companions (PTC’s) are submitted in
the form of IPython notebooks. This is important for several
reasons:

• IPython notebooks allow one to put together formatted
HTML, code, and the results in one self-contained file.

• IPython notebooks are easy to render and a HTML listing
can be generated.

• The file can also be hosted online and interactively used.
• The huge popularity of the notebook makes this a very

useful resource.

The FOSSEE group has also customized the generated HTML
such that users can leave comments on the IPython notebooks.
This is done by linking disqus comments to each rendered note-
book. The disqus API is then queried for any new comments
each day and contributors are sent a consolidated email about any
potential comments for them to address. This feature is relatively
new and needs more user testing.

The submission process and hosting of the IPython notebooks
is done using a Django web application that can be seen at
http://tbc-python.fossee.in. The code for the interface is also
available from github (https://github.com/FOSSEE/Python-TBC-
Interface). Once a textbook is reviewed it is also committed to
a git repository on github: https://github.com/FOSSEE/Python-
Textbook-Companions.

The process works as follows:

1) The student picks a few possible textbooks that have
not been completed and informs the textbook companion
coordinator.

Fig. 6: The Django application which hosts the Python textbook
companions.

2) Once a particular book is assigned to the contributor, the
student submits one sample chapter which is reviewed by
the coordinator.

3) The student then completes the entire book. Each chapter
is submitted as a separate IPython notebook.

4) The student also uploads a few screenshots of their
favorite notebooks that are displayed on the interface.

5) The submitted code is reviewed and any corrections are
made by the contributor.

6) The notebooks are then committed to the git repository.
7) The completed notebooks are hosted by the TBC web

application.

After the textbook is reviewed and accepted the student is sent
an honorarium for their work. Fig. 6 shows the main Python TBC
interface with information about the project and the editor’s picks.

Approximately 3 proposals for new textbooks are submitted
each week. Of these, around one is rejected if the book is either
a programming language book or it is already completed. Initially
many proposals were C or C++ programming books which were
being converted to Python. This has since been discontinued and
such books are no longer accepted. Of the submissions, around
70% of the submissions are from males, 40% of the submissions
are by students, another 40% from teachers, and the remaining
20% from working professionals.

Fig. 7 shows a typical textbook. The IPython notebooks for
each chapter can be viewed or downloaded. More information on
the book itself can be seen including an ISBN search link for the
student to learn more about a book, a link to the actual IPython
notebook on github and other details are also available. The entire
book can be downloaded as a ZIP file.

Upon clicking a chapter, a typical rendered HTML file is seen.
This is seen in Fig. 8. A button to edit the chapter is seen, this
will fire up a tmpnb instance which allows users to easily modify
and run the code. This makes it convenient to view, modify, and
learn the created content. In the figure, one can see an icon for
entering comments. This links to a disqus comment field at the
bottom of the page. This lists all current comments and allows
users to submit new comments on the particular chapter.

A large number of solved examples are indeed quite simple
but there are several that are fairly involved. Some of the nicer
textbooks are highlighted in the editor’s pick section.

http://tbc-python.fossee.in
https://www.djangoproject.com/
http://tbc-python.fossee.in
https://github.com/FOSSEE/Python-TBC-Interface
https://github.com/FOSSEE/Python-TBC-Interface
https://github.com/FOSSEE/Python-Textbook-Companions
https://github.com/FOSSEE/Python-Textbook-Companions
https://github.com/jupyter/tmpnb


120 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 7: A typical textbook is shown. The figure shows some screenshots
to pique the interest of the casual reader. The Jupyter notebook corre-
sponding to each chapter is listed and can be viewed or downloaded.

Fig. 8: A typical textbook chapter being rendered. The button to edit
examples of the chapter fires up a tmpnb instance so users can edit
the code and try their changes.

The Python textbook companion effort of FOSSEE has not
been formally announced and advertised in the wider SciPy
community. Once announced, the plan is to start to analyze the
usage and popularity of this resource. It is still unclear as to how
different people are using the notebooks. Some good feedback has
been received from the contributors [testimonials] to the project.
Many of them have enjoyed creating these notebooks and have
benefited by this effort. Some contributor comments are quoted in
[kmm14].

In summary, the textbook companions are of interest because:

1) They provide ready-to-use examples of how to apply a
given software package or set of tools to a particular
problem.

2) They scale well and can be easily crowd-sourced.
3) The scale of the current effort allows one to ask interest-

ing questions, for example "what are the different uses of
the FFT in science and engineering?".

4) It provides an interesting alternative to internships and
projects for undergraduate students looking to learn and
contribute something meaningful.

The texbook companions thus complement the other initiatives
of the FOSSEE-Python group.

Scipy India

The SciPy India conference provides an opportunity for those
interested in Python to learn of new developments, talk about how
they have used Python, meet other interested users/developers and
participate in the community.

The Python FOSSEE group has been organizing the SciPy
India conference since 2009. Seven conferences have been orga-
nized thus far. The conferences have traditionally been held in
December. They are largely funded by the FOSSEE project. The
project staff manage the local organization almost completely. The
conference website is at http://scipy.in

There is an attendance of about 200 people each year. A large
number of these are new users. The conference is typically well
received and many people are aware of the SciPy community
through these efforts. Each year a leading expert in the community
is invited to keynote at the conference. The first conference had
Travis Oliphant keynote and the conference in 2015 had Andreas
Kloeckner as the keynote. Several other important members of the
extended SciPy community from India and abroad have spoken at
the conference.

Originally, sprints were conducted but this did not prove very
effective. The conference now focuses on high-quality tutorials for
two days and a single day for the conference itself. Many college
professors attend the conference and many go back and encourage
their students to use the tools and participate in the future.

Plans for the future

The Python group plans to build on the existing work. The team
will continue to generate textbook companions, provide support
for the workshops conducted by the spoken-tutorial team, and
continue to work on the Yaksh interface. The existing Python
spoken tutorials will be updated and new ones will be created
as required. These spoken tutorials will also be dubbed to other
Indian languages.

In addition the Python group plans to promote the use of
Python in the CBSE (Central Board of Secondary Education)
school curriculum. The CBSE board has already included Python
as an alternative to C++ in the 11th and 12th grade exams.
Unfortunately, there is quite a bit of resistance towards this as
many teachers are unfamiliar with Python. The plan is to support
schools in this initiative over the next year. Textbook companions
will be prepared for the school initiative. Spoken-tutorials tailor-
made to the school curriculum will also be generated. This is an
exciting new development but a significant amount of work is still
necessary.

Conclusions

As discussed in this paper, the FOSSEE project has used several
interesting approaches to spread Python in India. Spoken tutorials
help deliver good-quality self-learning training material to a large
audience. The SDES course allows students to learn effective
computational skills as part of their curriculum. Yaksh is an open
source tool that can be used to effectively test the programming
skills of a student. Together, these tools and materials maybe
be effectively used by instructors to teach computational tools
and programming to a large number of students. The author’s
experience with using Yaksh while teaching students at different
levels has also been shared. It seems that testing students often on
their programming is an effective way to have them practice their
programming skills and provide quick feedback to the instructor.

https://github.com/jupyter/tmpnb
http://scipy.in


SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 121

Textbook companions offer an interesting alternative to doc-
umentation and scales well. The very fact that FOSSEE has
helped facilitate around 500+ textbook companions shows that
this activity scales and has potential to make a difference.

The FOSSEE Python group has helped spread the use of
Python in India. The group has also helped the other sister
FOSSEE groups with respect to any Python related support when
possible. It is hoped that the code and other material that has been
generated is of use to the wider community across the world.

Acknowledgments

FOSSEE would not exist but for the continued support of MHRD
and we are grateful to them for this. The project would not be
a success without the efforts of the many PIs of the FOSSEE
project especially Prof. Kannan Moudgalya of IIT Bombay who
also leads the spoken-tutorial project. The author wishes to thank
Asokan Pichai who helped shape the FOSSEE project over the first
few years. This work would not be possible without the efforts of
the many FOSSEE staff members. The past and present members
of the project are listed here: http://python.fossee.in/about/ the
author wishes to thank them all. The author wishes to thank the
reviewers of this manuscript for their suggestions that have made
this manuscript better.

REFERENCES

[kmm14] Kannan Moudgalya, Campaign for IT literacy through
FOSS and Spoken Tutorials, Proceedings of the 13th
Python in Science Conference, SciPy, July 2014.

[FOSSEE-Python] FOSSEE Python group website. http://python.fossee.in,
last seen on June 2nd 2016.

[STC] Scilab Team at FOSSEE, Scilab textbook companions,
http://scilab.in/Textbook_Companion_Project, May 2016.

[SWC] Greg Wilson. Software Carpentry, http://software-
carpentry.org, Seen on May 2016.

[PR11] Prabhu Ramachandran. FOSSEE: Python and Education,
Python for science and education, Scipy India 2011, 4th-
11th December 2011, Mumbai India.

[testimonials] Python texbook companion testimonials. http://python.
fossee.in/testimonials/1/ Seen on Jun 1, 2016

http://python.fossee.in/about/
http://python.fossee.in
http://scilab.in/Textbook_Companion_Project
http://software-carpentry.org
http://software-carpentry.org
http://python.fossee.in/testimonials/1/
http://python.fossee.in/testimonials/1/

	Introduction
	Spoken-tutorials
	The SDES course
	Online test tool: Yaksh
	Installation and running a demo
	Design overview
	Some experiences using yaksh
	Plans

	Textbook companions
	Scipy India
	Plans for the future
	Conclusions
	Acknowledgments
	References

