
130 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

An Ecological Approach to Software Supply Chain
Risk Management

Sebastian Benthall‡§∗, Travis Pinney‡¶, JC Herz∗∗‡, Kit Plummer‖‡

https://youtu.be/6UnuPhTPdnM

F

Abstract—We approach the problem of software assurance in a novel way
inspired by an analytic framework used in natural hazard risk mitigation. Exist-
ing approaches to software assurance focus on evaluating individual software
projects in isolation. We demonstrate a technique that evaluates an entire
ecosystem of software projects, taking into account the dependencey structure
between packages. Our model analytically separates vulnerability and exposure
as elements of software risk, then makes minimal assumptions about the prop-
agation of these values through a software supply chain. Combined with data
collected from package management systems, our model indicates "hot spots"
in the ecosystem of higher expected risk. We demonstrate this model using data
collected from the Python Package Index (PyPI). Our results suggest that Zope
and Plone related projects carry the highest risk of all PyPI packages because
they are widely used and their core libraries are no longer maintained.

Index Terms—risk management, software dependencies, complex networks,
software vulnerabilities, software security

Introduction

Systems that depend on complex software are open to many kinds
of risk. One typical approach to software security that mitigates
this risk is static analysis. We are developing novel methods to
manage software risk through supply chain intelligence, with a
focus on open source software ecosystems.

The Heartbleed bug in OpenSSL is an example of community
failure and of how vulnerabilities in open source software can be
a major security risk. [Wheeler2014] The recent failure of React,
Babel, and many other npm packages due to the removal of one
small dependency, left-pad, shows how dependencies can be
a risk factor for production software. [Haney2016] These high
profile examples, though quite different from each other, illustrate
how software risk traverses the supply chain. As dependencies
become more numerous and interlinked, the complexity of the
system increases, as does the scope of risk management. Open
source software projects make their source code and developer
activity data openly available for analysis. This data can be used
to mitigate software risk in ways that have not been explored.

* Corresponding author: sb@ischool.berkeley.edu
‡ Ion Channel, ionchannel.io
§ UC Berkeley School of Information
¶ travis.pinney@ionchannel.io
** jc.herz@ionchannel.io
|| kit.plummer@ionchannel.io

Copyright © 2016 Sebastian Benthall et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

With a small number of analytic assumptions about the
propagation of vulnerability and exposure through the software
dependency network, we have developed a model of ecosystem
risk that predicts "hot spots" in need of more investment. In this
paper, we demonstrate this model using real software dependency
data extracted from PyPI using Ion Channel [IonChannel].

Prior work

[Verdon2004] outline the diversity of methods used for risk
analysis in software design. Their emphasis is on architecture-
level analysis and its iterative role in software development.
Security is achieved through managing information flows through
architecturally distinct tiers of trust. They argue for a team-based
approach with diverse knowledge and experience because "risk
analysis is not a science". Contrary to this, our work develops a
scientific theory of risk analysis, building on work from computer
science and other fields.

There is a long history of security achieved through static anal-
ysis of source code. [Wagner2000] points out that the dependency
of modern Internet systems on legacy code and the sheer com-
plexity of source code involved makes manual source code level
auditing very difficult. While some complex projects are audited
by large and dedicated communities, not all software systems are
so gifted in human resources. Therefore, static analysis tools based
on firm mathematical foundations are significant for providing
computer security at scale.

[Wheeler2015] develops a risk index for determining which
open source software projects need security investments. This
work is part of the Linux Foundation (LF) Core Infrastructure
Initiative (CII) and published by the Institute for Defense Analysis.
This metric is based on their expertise in software development
analytics and an extensive literature review of scholarly and
commercial work on the subject. They then apply this metric to
Debian packages and have successfully identified projects needing
investment. This work is available on-line as the CII Census
project [CensusProject].

While software security studies general focus on the possibility
of technical failure of software systems, open source software
exposes an additional risk of community failure. Development of
a software project may cease before it reaches a state of usability
and maturity. [Schweik2012] is a comprehensive study of the
success and failure of open source projects based on large-scale
analysis of SourceForge data, as well as survey and interview
data. They define a successful project as one that performs a

https://youtu.be/6UnuPhTPdnM
mailto:sb@ischool.berkeley.edu

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 131

useful function and has had at least three releases. They identify
several key predictive factors to project success, including data
that indicates usefulness (such as number of downloads), number
of hours contributed to the project, and communicativeness of the
project leader.

These precedents focus on individual software projects
and their susceptiblity to technical and community failure.
[Nagappan2005] and [Nagappan2007] look at dependency rela-
tionships between packages and specifically relative code churn
(changes in lines of code) between dependent packages as a cause
of system defects in Windows Server 2003.

We build on these approaches by considering security as a
function of the entire software supply chain. This supply chain
resembles a complex ecosystem more than a simple ’chain’ or
stack. We draw inspiration from a risk management strategy
approaches used in another kind of complex system, namely
disaster risk reduction and climate change adaptation research
developed by Cardona [Cardona2012] and widely used by the
World Bank’s Global Facility for Disaster Risk Reduction among
others [Yamin2013].

This framework evaluates the expected cost of low-probability
events by distinguishing three factors of risk: hazards, exposure,
and vulnerabilities. Hazards are potentially damaging factors from
the environment. Exposure refers to the inventory of elements
in places where hazards occur. Vulnerabilities are defined as the
propensity of exposed elements to suffer adverse effects when
impacted by a hazard. Expected risk is then straightforwardly
calculated using the formula:

risk = hazard ∗ vulnerability∗ exposure

We adapting this framework to cybersecurity in the software
ecosystem. There are significant differences between modeling
risk from natural hazards and modeling cybersecurity risk. Most
notably, cybersecurity threats can be deliberately adversarial, de-
tecting and exploiting specific weaknesses rather than presenting
a general hazard. In this work we focus on the interplay between
exposure and vulnerability in the software ecosystem and abstract
away the specificity of a threat model. We see an analytic treatment
of that interplay as a valuable step in tractable security analysis of
the software supply chain.

Modeling Ecological Risk in Software

Software dependency and project risk

Some previous studies of software risk [Wheeler2015] have suf-
fered from the ambiguity of how ’risk’ is used in a software devel-
opment context. Security research often contextualizes problems
within a specific threat model. But for some applications, such as
identifying software projects in need of additional investment in
order to mitigate risk from generalized and potentially unknown
threats, this kind of threat modeling is inappropriate. A general
concern with supply chain security motivates a different approach.

If we break down the sources of risk and how these affect
the need for security investments analytically, we can distinguish
between several different factors:

• Vulnerability. A software project’s vulnerability is its in-
trinsic susceptibility to attack. Common Vulnerability and
Exposure (CVE) records are good examples of specific
software vulnerabilities. But software’s vulnerability can
also be predicted from a general property, such as the

language it’s written in. (Some languages, such as C++,
are harder to write in securely and therefore generally more
vulnerable [Wheeler2015])

• Exposure. A software project’s exposure is its extrinsic
availability to attack. A direct network connection is a
source of exposure.

Vulnerability and exposure are distinct elements of a software
project’s risk. Analyzing them separately and then combining
them in a principled way gives us a better understanding of a
project’s risk.

Dependencies complicate the way we think about vulnerability
and exposure. A software project doesn’t just include the code
in its own repository; it also includes the code of all of its
dependencies, often tied to a specific version. Furthermore, a
package does not need to be installed directly to be exposed--it can
be installed as a dependency of another project, or as a transitive
dependency. Based on these observations, we can articulate two
heuristics for use of dependency topology in assessing project risk:

• If A depends on B, then a vulnerability in B implies a
corresponding vulnerability in A.

• If A depends on B, then an exposure to A implies an
exposure to B.

For example, if a web application (A) uses a generic web
application framework (B), and that web application is installed
and recieving web traffic, then there is an instance of the web
framework installed and recieving web traffic. The framework is
exposed through the web application. If there is a vulnerability
in the web application framework (such as a susceptibility to
SQL injection attacks), then the web application will inherit that
vulnerability. There are exceptions to these rules. Developers
of the web application (A) might recognize the vulnerability to
SQL injection and fix the problem without pushing the change
upstream (to B). Nevertheless, this is a principled analytic way of
relating vulnerability, exposure, and software dependency that can
be implemented as a heuristic and tested as a hypothesis.

The risk analysis framework described above is very general.
Due to this generality, the framework suffers from the ambiguity
of its terms. Depending on the application of this framework,
"vulnerability" refers to literal software vulnerabilities such as
would be reported in a CVE. When we analyze the software
ecosystem as a supply chain, we are often concerned about higher
level properties that serve as general proxies for whole classes of
error or failure.

Robustness and resilience

We find the distinction between system robustness and system
resilience helpful. We define the robustness of a system as its
invulnerability to threats and hazards, as a function of its current
state. We define the resilience of a system as its capacity to recover
quickly from injury or failure. A mature, well-tested system will
be robust. A system with an active community ready to respond to
the discovered of a new exploit will be resilient.

A system can be robust, or resilient, both, or neither. Ro-
bustness and resilience can be in tension with each other. For
example, the more churn a software project is, measured as a
function of the activity of the community and frequency of new
commits, the more likely that it will be resilient, responding to new
threat information. But it is also likely to be less robust, as new
code might introduce new software flaws. [Nagappan2005] and

132 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[Nagappan2007] find that relative code churn between dependent
packages is a significant predictor of system defects.

We refer to a system that is not robust as fragile, and a system
that is not resilient as brittle. Fragility and brittleness are two
distinct and general ways in which a component of a software
ecosystem might be vulnerable.

Computing fragility and exposure

Our risk analysis framework defines exposure and vulnerability
as abstract components of risk that can be defined depending on
the hazards and threats under consideration. In the example of
this study, we will define these variables with an interest in the
general prediction of robustness in widely used software. This
sort of analysis would be useful in determining which software
packages are in need of further investment in order to reduce risk
globally.

In the following analysis, we will define exposure to be the
number of times a package has been downloaded. We assume for
the sake of this analysis that more widely downloaded software
is more widely used and exposed to threats. This metadata is
provided by PyPI for each package directly.

We will define vulnerability specifically in terms of software
fragility, and make the assumption that frequently released soft-
ware is less fragile. While it is true that sometimes a new software
release can introduce new flaws into software, we assume that,
on average, more releases mean a more active community, more
robust development processes, and greater maturity in the project
lifecycle. Specifically for the purpose of this study we will define

f ragility(p) =
1

number_o f _releases(p)

In future work, we will revise and validate these metrics.

Implementation of risk computation

The risk analysis framework presented in the above section
Software dependency and project risk is designed to be widely
applicable, factoring risk into abstract exposure and vulnerability
factors and then making minimal assumptions about how these
factors propagate through the dependency graph.

In practice, the application of this framework will depend
on the selection of package metadata used to measure exposure
and vulnerability. Below is a Python implementation of efficient
risk computation using a directed graph representation of package
dependencies and NetworkX. [Hagberg2008] It imports data as a
graph, where packages are nodes, directed edges indicate package
dependencies, and relevant metadata are precomputed properties
of the nodes. In this code, we use a precomputed ’fragility’ metric
as the vulnerability variable, and the number of unique downloads
of each package as the exposure variable. Running this code
imports the data from a Graph Exchange XML Format (GEXF)
file, computes the ecosystem risk of each package, and exports the
data to a different file.
import networkx as nx

G = nx.read_gexf('pkg.gexf')

select proxy empirical variables for
vulnerability and exposure

vulnerability_metric = 'fragility'
exposure_metric = 'downloads'

efficiently compute ecosystem vulnerability

and assign as attribute

ecosystem_vulnerability = {}

for i in nx.topological_sort(G,reverse=True):

ecosystem_vulnerability[i] =
G.node[i][vulnerability_metric]
+ sum([ecosystem_vulnerability[j]

for j in G.neighbors(i)])

nx.set_node_attributes(G,
'ecosystem_vulnerability',
ecosystem_vulnerability)

efficiently compute ecosystem exposure
and assign as attribute

ecosystem_exposure = {}

for i in nx.topological_sort(G):

ecosystem_exposure[i] =
G.node[i][exposure_metric]
+ sum([ecosystem_exposure[j]

for j in G.predecessors(i)])

nx.set_node_attributes(G,
'ecosystem_exposure',
ecosystem_exposure)

efficiently compute ecosystem risk
and assign as attribute

ecosystem_risk= {}

for i in nx.topological_sort(G):
ecosystem_risk[i] =

G.node[i]['ecosystem_vulnerability']
* G.node[i]['ecosystem_exposure']

nx.write_gexf(G,'pkg-with-risk.gexf')

A significant problem with this implementation of risk calculation
is that if node A is accessible to node B through multiple distinct
paths, then the vulnerability (or exposure) of B will be counted
towards A’s ecosystem vulnerability (or exposure) once for each
path. A superior version of this algorithm would ensure that each
node was only counted once in ecosystem measurements. The
version of the algorithm presented above uses a heuristic measure
for performance reasons.

Removing cycles

The above algorithm has one very important limitation: it assumes
that there are no cycles in the dependency graph. This property is
necessary for the nodes to have a well-defined topological order.
However, Python package dependencies do indeed include many
cycles. An amusing example are the packages chicken and egg.
We can adapt any directed cyclic graph into a directed acyclic
graph simply by removing one edge from every cycle.

def remove_cycles(G):
cycles = nx.simple_cycles(G)

for c in cycles:
try:

if len(c) == 1:
G.remove_edge(c[0],c[0])

else:
G.remove_edge(c[0],c[1])

except:
pass

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 133

One way to improve this algorithm would be to remove as few
edges as possible in order to eliminate all cycles. Another way to
improve this algorithm would be to adapt the heuristic assumptions
that motivate this framework to make reasonable allowances for
cycle dependencies. It is unknown how these changes will effect
the results. We leave the elaboration of this algorithm for future
work.

Data collection and publication

Data for this analysis comes from two sources. For package
and release metadata, we used data requested from PyPI, the
Python Package Index. This includes the publication date and
number of unique downloads for each software release. We also
downloaded each Python release and inspected it for the presence
of a setup.py file. We then extracted package dependency
information from setup.py through its install_requires
field. This data is available in .gexf format [Benthall2016].

Python dependencies are determined through execution of
Python install scripts. Therefore, our method of discovering pack-
age dependencies via static analysis of the source code does not
capture all cases.

For each package, we consider dependencies to be the re-
cursive union of all requirements for all releases. Specifically
we collapse all releases of a package into a single node in
the dependency graph. While this loses some of the available
information, it is sufficient for this prelimenary analysis of the
PyPI ecosystem.

Empirical and Modeling Results

Our data collection process created a network with 66,536 nodes
and 72,939 edges. Over half of the nodes, 33,573, have no edge.
This isolates them from the dependency network. Of the remaining
32,963, 31,473 belong to a single giant connected component.
Complex networks often exhibit the preponderance of a single
connected component like this.

Statistical properties of the software dependency network

The PyPI package dependency network resembles classical com-
plex networks, with some notable departures.

A early claim in complex network theory by [Newman2002],
[Newman2003] is that random complex networks will exhibit
negative degree assortativity, and that social networks will exhibit
positive degree assortativity due to homophily or other effects of
group membership on network growth. [Noldus2015] notes that in
directed graphs, there are four variations on the degree assortativ-
ity metric as for each pair of adjacent nodes one can consider each
node’s in-degree and out-degree. The degree assortativity metrics
for the PyPI dependency graph are given in Table 1.

The PyPI package dependency network notably has in-in
degree assortativity of 0.19, and out-in degree assortativity of
−0.16. The in-out and out-out degree assortativities are both close
to zero. We have constructed the graph with the semantics that an
edge from A to B implies that A depends on B.

This is a strange structure because its assortativity measures
defy the assortativity patterns seen in other complex networks.
One reason is that there is much greater variation in out-degree
than in in-degree. Table 2 shows the top ten most depended on
packages. Table 3 shows the top ten packages with the most
dependencies. Three packages, requests, six, and django
have out-degree over 1000.

Fig. 1: Visualization of PyPI dependency network. Annotated depen-
dency graph (see Implementation of risk computation) was exported
as .gexf, loaded into Gephi [Bastian2009], styled using Force Atlas
layout, and colored by ecosystem risk property. This visualization
does not include singleton nodes with zero degree, which are the vast
majority of nodes. Node size is proportional to out degree. Nodes
are colored by the log (base 10) of package ecosystem risk. Red nodes
are higher risk. The large red cluster consists of projects related to the
Zope web application server, including the Plone content management
system.

Metric Value

in-in 0.19
in-out 0.05
out-in −0.16
out-out −0.04

TABLE 1: Degree assortativity metrics for the PyPI dependency
graph.

Hot spot analysis

Our analysis suggests that the riskiest packages in the Python
ecosystem are those that are part of the Zope web application
server and the Plone content management system (CMS) built
on it. The Zope community has declared that Zope is now
a legacy system and does not recommend that developers use
these projects. Therefore, our analytic findings are consistent with
community and domain knowledge regarding the resilience of
these communities. Despite these warnings, the Plone community
is still active and many web sites may still depend on this legacy
technology. This study motivates further work on the resilience of
Zope to new security threats.

The security properties of Plone have been the subject of
considerable informal debate. [Walsh2011] noted that Plone has
an order of magnitude lower number of vulnerabilites reported
in Mitre’s Common Vulnerabilities and Exposures database com-
pared to other popular CMSes like Joomla, Drupal, and Word-

134 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Package Out-Degree

requests 2125
six 1381
django 1174
pyyaml 775
zope.interface 663
lxml 619
flask 607
python-dateutil 599
zope.component 550
jinja2 507

TABLE 2: Top ten most dependencies.

Package Out-Degree

plone 92
mypypi 53
invenio 52
ztfy.sendit 48
ztfy.blog 47
smartybot 47
icemac.addressbook41
sentry 40
products.silva 38
ztfy.scheduler 37

TABLE 3: Top ten packages by number of dependencies.

press. This has lead Wikipedia [Wiki2016] to assert that Plone’s
security record is cause of its widespread adoption by government
and non-government organizations. [Byrne2013] has challenged
this conventional wisdom, noting that the high number of recorded
vulnerabilites may just as likely be due to the much greater pop-
ularity of the other CMS’s. That Drupal, Wordpress, and Joomla
are all written in PHP is another confounding factor, as PHP may

Fig. 2: Hex plot of log vulnerability and log exposure of each package,
with bin density scored on log scale. All logs are base 10. Exposure is
more widely distributed than vulnerability. Vulnerability scores for the
vast majority of packages are low. There is a fringe of packages that
are either highly vulnerable, highly exposed, or both. There is a log-
linear tradeoff between high vulnerability and high exposure. This is
most likely due to the fact that ecosystem vulnerability and ecosystem
exposure both depend on an package’s position in the dependency
network. Rendered with Matplotlib [Hunter2007].

be a language prone to security problems. Drupal, Joomla, and
Wordpress are beyond the scope of our study, which is concerned
only with the PyPI ecosystem. In our risk analysis, Plone scores
poorly compared to other Python web frameworks such as Django
and Flask. We take this as an indication that beyond its scientific
merits, our risk analysis method can provide actionable insights
into security that are relevant to practicing software engineers.

We have also identified six, a Python 2 and Python 3
compatibility library, as an ecosystem risk hot spot. The second
most depended on project in PyPI, six inherits its exposure from
all of its downstream descendants. For this reason, it is important
to ensure that six does not have any security-related flaws.

We must admit that there is another reason why the Plone
ecosystem has score highly in software risk. The Zope and Plone
packages are notably dense in their dependency connectivity. In
the original dependency network, before cycles were excised from
the graph by removing edges, many Zope and Plone packages
were implicated in large cycles of mutual dependency. Even with
many of these edges removed, it is possible that packages in this
subsystem are more likely to be linked by multiple disitinct paths.
With our present algorithm, this would result in some packages
being double counted. Due to this technical complication, we must
conclude that our results, though suggestive, are only tentative
pending future work.

Discussion and future work

We have synthesized techniques from computer security and dis-
aster risk reduction to develop a novel method of predicting risk in
the software ecosystem. This fits within the broad scope of supply
chain analysis, though we recognize that the software ecosystem
as a whole is not merely a chain, but a complex network with a
distinctive topology. We approach risk analysis as a science that
employs static analysis techniques but also looks more broadly at
developer communities and the rate and flow of their activities and
communications. This paper proposes a framework of predicting
risk in software infrastructure based on static analysis of package
dependencies, metadata about downloads and release schedules,
and minimal assumptions about the distribution of exposure and
vulnerability in software. We have demonstrated the implications
of this framework using the PyPI package ecosystem.

A major shortcoming of our analysis is the lack of validation
against a gold standard data of ground truth regarding software
risk. In future work, we will test this framework using other
data sets, including data from project issue trackers (such as
GitHub) and Common Vulnerabilities and Exposure (CVE) data.
We anticipate that linking this data with package dependencies
will require a non-trivial amount of work on entity resolution.
It is an open question to what extent this framework is useful
for assessing software robustness (absence of software errors that
can be exploited, for example) and software resilience (capacity of
software development communities to respond to known exploits).

There is also room to improve our data preprocessing in future
work. For the work in this paper, Python dependencies were dis-
covered using crude static analysis. We used a regular expression
to parse each package’s setup.py file. Python requirements are
in fact determined upon package installation by executing Python
code. We can get more accurate data by running the setup scripts
and extracting requirements from the resulting Python objects.

We simplified the dependency graph by considering any re-
quirement relation between any versions of two packages to be

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 135

Log Eco. Risk Log Eco. Vulnerability Log Eco. Exposure Fragility Num. Releases Downloads In Degree Out Degree

zope.app.publisher 17.54 6.95 10.59 0.04 26 232460 24 54
zope.app.form 17.54 6.89 10.64 0.04 26 265370 19 45
five.formlib 17.44 6.47 10.97 0.20 5 127280 13 10
plone 17.44 2.37 15.07 0.01 79 387614 96 152
zope.interface 17.42 10.48 6.94 0.03 31 8685819 0 841
zope2 17.41 6.40 11.01 0.03 32 241354 28 163
zope.traversing 17.32 8.40 8.92 0.04 28 367494 9 181
zope.schema 17.29 9.61 7.68 0.03 31 624429 4 399
zope.site 17.28 7.60 9.68 0.07 14 255063 9 72
zope.container 17.27 7.73 9.54 0.05 20 294873 20 119

TABLE 4: Highest risk Python packages. All logs base 10.

sufficient for an edge in the final graph. In reality, package require-
ments configurations often refer to specific versions or version
ranges in their dependencies. In order to take this into account,
we will need to reexamine our risk model and its assumptions
about vulnerability and exposure propagation. A fully dynamic
version of our risk model would also take into account how proxy
variables such as number of unique downloads change between
versions.

The research presented here deals exclusively with data about
technical organization. However, as we expand into research into
how software communities and their interactions are predictive
of software risk, we must be mindful of ethical considerations.
Though all the data we intend to use is public and more impor-
tantly known to be public in the context of software development,
study of human subjects is nevertheless sensitive. Our research
agenda depends critically on maintaining the trust of the developer
communities we study. For this reason we are dedicated to ecosys-
tems and software projects, which aggregate individual efforts, as
the fundamental unit of analysis.

Acknowledgements

We gratefully acknowledge David Lippa, Kyle Niemeyer, and J.
Edward Pickle for their helpful comments.

REFERENCES

[Bastian2009] Bastian, Mathieu, Sebastien Heymann, and Mathieu
Jacomy. "Gephi: an open source software for exploring
and manipulating networks." ICWSM 8 (2009): 361-
362.

[Benthall2016] Sebastian Benthall. (2016). PyPI Packages Annotated.
Zenodo. 10.5281/zenodo.57563

[Byrne2013] Byrne, Tony. "Is Plone Really More Secure Than Drupal
and Joomla?" Web log post. Real Story Group. N.p., 11
Feb. 2013. Web. 23 June 2016.

[Clauset2007] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-
law distributions in empirical data. arXiv:0706.1062,
June 2007.

[Mitzenmacher2003] Mitzenmacher, M. 2003. "A Brief History of Generative
Models for Power Law and Lognormal Distributions."
Internet Mathematics Vol. 1, No. 2: 226-251

[CensusProject] Census Project. (n.d.). Retrieved July 12, 2016, from
https://www.coreinfrastructure.org/programs/census-
project

[Cardona2012] Cardona, Omar-Daria, et al. "Determinants of risk: ex-
posure and vulnerability." (2012).

[Girardot2013] O. Girardot. STATE OF THE PYTHON/PYPI
DEPENDENCY GRAPH. 2013

[Hagberg2008] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena,
CA USA), pp. 11–15, Aug 2008

[Haney2016] David Haney. 2016. "NPM & left-pad: Have We For-
gotten How To Program?" http://www.haneycodes.net/
npm-left-pad-have-we-forgotten-how-to-program/

[Hunter2007] Hunter, J. D. (2007). Matplotlib: A 2D graphics envi-
ronment. Computing in science and engineering, 9(3),
90-95. http://dx.doi.org/10.5281/zenodo.44579

[IonChannel] (n.d.). Retrieved July 12, 2016, from http://ionchannel.
io/

[LaBelle2004] N. LaBelle, E. Wallingford. 2004. Inter-package
dependency networks in open-source software.

[Nagappan2005] Nagappan, N., & Ball, T. (2005, May). Use of relative
code churn measures to predict system defect density. In
Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. (pp. 284-292). IEEE.

[Nagappan2007] Nagappan, N., & Ball, T. (2007). Explaining failures
using software dependences and churn metrics. In Pro-
ceedings of the 1st International Symposium on Empir-
ical Software Engineering and Measurement.

[Newman2002] Newman, M. E. J. 2002. "Assortative mixing in net-
works."

[Newman2003] Newman, M. E. J. 2003. "Mixing patterns in networks."
Phys. Rev. E 67, 026126

[Noldus2015] Noldus, R and Mieghem, P. 2015. "Assortativity in
Complex Networks" Journal of Complex Networks. doi:
10.1093/comnet/cnv005

[Schweik2012] C. Schweik and R. English. Internet Success: A Study of
Open-Source Software Commons, The MIT Press. 2012

[Verdon2004] D. Verdon and G. McGraw, "Risk analysis in soft-
ware design," in IEEE Security & Privacy, vol.
2, no. 4, pp. 79-84, July-Aug. 2004.

[Walsh2011] Walsh, M. (2011, March 11). Gov 2.0 guide to Plone.
Retrieved June 23, 2016, from http://www.govfresh.
com/2011/03/gov-2-0-guide-to-plone/

[Wagner2000] David A. Wagner. 2000. Static Analysis and Computer
Security: New Techniques for Software Assurance.
Ph.D. Dissertation. University of California, Berkeley.
AAI3002306.

[Wiki2016] Plone (software). (2016, May 5). In Wikipedia, The
Free Encyclopedia. Retrieved 18:20, June 23, 2016,
from https://en.wikipedia.org/w/index.php?title=Plone_
(software)&oldid=718838043

[Wheeler2014] Wheeler, David A. How to Prevent the next Heart-
bleed. 2014-10-20. http://www.dwheeler.com/essays/
heartbleed.html

[Wheeler2015] D. Wheeler and S. Khakimov. Open Source Se-
curity Census: Open Source Software Projects
Needing Security Investments, Institute for De-
fense Analysis. 2015

[Yamin2013] Yamin, Luis Eduardo; Ghesquiere, Francis;
Cardona, Omar Dario; Ordaz, Mario Gustavo.
2013. Modelacion probabilista para la gestion del

https://www.coreinfrastructure.org/programs/census-project
https://www.coreinfrastructure.org/programs/census-project
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://dx.doi.org/10.5281/zenodo.44579
http://ionchannel.io/
http://ionchannel.io/
http://www.govfresh.com/2011/03/gov-2-0-guide-to-plone/
http://www.govfresh.com/2011/03/gov-2-0-guide-to-plone/
https://en.wikipedia.org/w/index.php?title=Plone_(software)&oldid=718838043
https://en.wikipedia.org/w/index.php?title=Plone_(software)&oldid=718838043
http://www.dwheeler.com/essays/heartbleed.html
http://www.dwheeler.com/essays/heartbleed.html

136 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

riesgo de desastre. Washington DC ; World Bank.
http://documents.worldbank.org/curated/en/2013/07/
18100020/colombia-probabilistic-modeling-disaster-
risk-management-modelacion-probabilista-para-la-
gestion-del-riesgo-de-desastre

http://documents.worldbank.org/curated/en/2013/07/18100020/colombia-probabilistic-modeling-disaster-risk-management-modelacion-probabilista-para-la-gestion-del-riesgo-de-desastre
http://documents.worldbank.org/curated/en/2013/07/18100020/colombia-probabilistic-modeling-disaster-risk-management-modelacion-probabilista-para-la-gestion-del-riesgo-de-desastre
http://documents.worldbank.org/curated/en/2013/07/18100020/colombia-probabilistic-modeling-disaster-risk-management-modelacion-probabilista-para-la-gestion-del-riesgo-de-desastre
http://documents.worldbank.org/curated/en/2013/07/18100020/colombia-probabilistic-modeling-disaster-risk-management-modelacion-probabilista-para-la-gestion-del-riesgo-de-desastre

	Introduction
	Prior work
	Modeling Ecological Risk in Software
	Software dependency and project risk
	Robustness and resilience
	Computing fragility and exposure
	Implementation of risk computation
	Removing cycles

	Data collection and publication
	Empirical and Modeling Results
	Statistical properties of the software dependency network
	Hot spot analysis

	Discussion and future work
	Acknowledgements
	References

