
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 1

Will Millennials Ever Get Married?
Allen B. Downey‡∗

https://www.youtube.com/watch?v=XHYFNraQEEo

F

Abstract—Using data from the National Survey of Family Growth (NSFG), we
investigate marriage patterns among women in the United States We describe
and predict age at first marriage for successive generations based on decade of
birth. The fraction of women married by age 22 has dropped by 11 percentage
points per decade, from 69% for women born in the 1940s to 13% for women
born in the 90s. The fraction of women married by age 42 fell more slowly, from
93% for women born in the 40s to 82% for women born in the 70s. Projections
suggest that this fraction will be substantially lower for later generations, between
68% and 72%. Along with these results, this paper presents an introduction to
survival analysis methods and an implementation in Python.

Keywords—Survival analysis, marriage patterns, Python.

Introduction

A recent study from the Pew Research Center [Wan14] reports
that the fraction of adults in the U.S. who have never married
is increasing. Between 1960 and 2012, the fraction of men 25
and older who had never married increased from 10% to 23%.
The corresponding fraction of women increased from 8% to
17%. The Pew study focuses on the causes of these trends, but
does not address this question: is the fraction of people who
never marry increasing, are people marrying later, or both?
That is the subject of this paper.

To answer this question, we apply tools of survival anal-
ysis to data from the National Survey of Family Growth
(NSFG). Since 1973 the U.S. Centers for Disease Control
and Prevention (CDC) have conducted this survey, intended
to gather “information on family life, marriage and divorce,
pregnancy, infertility, use of contraception, and men’s and
women’s health.” See http://cdc.gov/nchs/nsfg.htm.

NSFG data is organized in cycles; during each cycle several
thousand respondents were interviewed, including women ages
14–44. Men were included starting with Cycle 6 in 2002, but
for this study we use only data from female respondents.

Table 1 shows the interview dates for each cycle, the number
of respondents, and the birth years of the respondents. We did
not use data from Cycles 1 and 2 because they included only
married women. The total sample size for this study is 52 789.

* Corresponding author: allen.downey@olin.edu
‡ Olin College of Engineering

Copyright © 2015 Allen B. Downey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Cycle Interview Number of Birth
dates respondents years

3 1982–83 7 969 1937–68
4 1988–88 8 450 1943–73
5 1995 10 847 1950–80
6 2002–03 7 643 1957–88
7 2006–10 12 279 1961–95
8 2011–13 5 601 1966–98

TABLE 1: NSFG Survey Cycles

For each respondent we have date of birth (year and month),
date of interview, and date of first marriage, if applicable.
So we can compute with resolution of one month each re-
spondent’s age at interview, age, and age at first marriage,
agemarry.

To study changes in marriage patterns over time, we group
the respondents into cohorts by decade of birth. For each co-
hort, Table 2 reports the number of respondents, range of ages
when they were interviewed, number who had been married
at least once at time of interview, and the number of married
respondents whose date of marriage was not ascertained.

Cohort 30 includes women born in the 1930s, and so on
for the other cohorts. One goal of this paper is to describe
and predict marriage patterns for the Millennial Generation,
defined here to include women born in the 1980s and 90s.

Another goal of this paper is to present survival analysis and
its implementation in Python to an audience that may not be
familiar with it. We also describe the resampling methods we
use to deal with the stratified sampling design of the NSFG.

The code and data for this project are available in
a public Git repository at https://github.com/AllenDowney/
MarriageNSFG.

Cohort Number of Age at Number Number with
respondents interview married missing data

30 325 42–44 310 0
40 3 608 32–44 3275 0
50 10 631 22–44 8658 10
60 14 484 15–44 8421 27
70 12 083 14–43 5908 25
80 8 536 14–33 2203 8
90 3 122 15–23 93 0

TABLE 2: NSFG Birth Cohorts

https://www.youtube.com/watch?v=XHYFNraQEEo
http://cdc.gov/nchs/nsfg.htm
mailto:allen.downey@olin.edu
https://github.com/AllenDowney/MarriageNSFG
https://github.com/AllenDowney/MarriageNSFG

2 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Methodology

Survival analysis

Survival analysis is a powerful set of tools with applications in
many domains, but it is often considered a specialized topic.

Survival analysis is used to study and predict the time until
an event: in medicine, the event might be the death of a patient,
hence “survival”; but more generally we might be interested
in the time until failure of a mechanical part, the lifetimes of
civilizations, species, or stars; or in this study the time from
birth until first marriage.

The result of survival analysis is often a survival function,
which shows the fraction of the population that survives after
t, for any time, t. If T is a random variable that represents
the time until an event, the survival function, S(t), is the
probability that T exceeds t:

S(t)≡ Pr(T > t)

If the distribution of T is known, or can be estimated from
a representative sample, computing S(t) is simple: it is the
complement of the cumulative distribution function (CDF):

S(t) = 1−CDFT (t)

In Python we can compute the survival function like this:

from collections import Counter
import numpy as np

def MakeSurvivalFunction(values):
counter = Counter(values)
ts, fs = zip(*sorted(counter.items()))
ts = np.asarray(ts)
ps = np.cumsum(fs, dtype=np.float)
ps /= ps[-1]
ss = 1 - ps
return SurvivalFunction(ts, ss)

values is a sequence of observed lifetimes. Counter makes a
map from each unique value to the number of times it appears,
which we split into a sorted sequence of times, ts, and their
frequencies, fs.

We convert ts to a NumPy array [Wal11]. Then ps is the
cumulative sum of the frequencies, normalized to go from 0 to
1, so it represents the CDF of the observed values. ss, which
is the complement of ps, is the survival function.
SurvivalFunction is defined in marriage.py, a

Python module we wrote for this project.
Given a survival curve, we can compute the hazard func-

tion, which is the instantaneous death rate at time t; that is,
the fraction of people who survive until time t and then die at
time t. When t is continuous, the hazard function, λ (t), is

λ (t) =−S′(t)/S(t)

Where S′(t) is the derivative of S(t). Since the survival function
decreases monotonically, its derivative is nonpositive, so the
hazard function is nonnegative.

Fig. 1: Survival and hazard functions for 1930s cohort.

With a survival function represented by discrete ts and ss,
we can compute the hazard function like this:
import pandas as pd

class SurvivalFunction
def MakeHazardFunction(self):

lams = pd.Series(index=self.ts)
prev = 1.0
for t, s in zip(self.ts, self.ss):

lams[t] = (prev - s) / prev
prev = s

return HazardFunction(lams)

MakeHazardFunction is a method of
SurvivalFunction, which provides attributes ts
and ss. The result, lams, is a Pandas Series [McK10] object
that maps from the same set of ts to the estimated hazard
function, λ (t).

Figure 1 shows the survival and hazard functions for women
born in the 1930s. These women were interviewed when they
were 42–44 years old. At that point more than 95% of them had
been married; for the others we set age at marriage to infinity
(np.inf). In this cohort, the hazard function is highest at
ages 18–22, and lower as age increases.

This example demonstrates the simple case, where the
respondents are the same age and most events are complete.
But for most applications of survival analysis, the sample also
includes incomplete events. For example, the 1960s cohort
includes women from ages 14–44; for the ones that are not
married, we don’t know when they will marry, if ever. These
missing data are said to be “censored”.

It might be tempting to ignore unmarried women and com-
pute the survival function for women whose ages at marriage

WILL MILLENNIALS EVER GET MARRIED? 3

are known. But that would discard useful information and
seriously bias the results.

For women who are not married yet, their age at interview
is a lower bound on their age at marriage. We can use both
groups to estimate the hazard function, then compute the
survival function. One common way to do that is Kaplan-Meier
estimation.

The fundamental idea is that at each time, t, we know the
number of events that occurred and the number of respondents
who were “at risk”; that is, known to to be unmarried. The ratio
of these factors estimates the hazard function.

Initially, the entire sample is considered at risk. At each time
step, we subtract people who got married at age t as well as
people who were interviewed at age t (and therefore no longer
in the observation pool at the next time step). The following
function implements this algorithm:
def EstimateHazardFunction(complete, ongoing):

hist_complete = Counter(complete)
hist_ongoing = Counter(ongoing)

ts = list(hist_complete | hist_ongoing)
ts.sort()

at_risk = len(complete) + len(ongoing)

lams = pd.Series(index=ts)
for t in ts:

ended = hist_complete[t]
censored = hist_ongoing[t]

lams[t] = ended / at_risk
at_risk -= ended + censored

return HazardFunction(lams)

complete is a sequence of lifetimes for complete events,
in this case age at marriage. ongoing is a sequence of
lower bounds for incomplete observations, in this case age
at interview.
hist_complete counts how many respondents were

married at each age; hist_ongoing counts how many
unmarried respondents were interviewed at each age.
ts is a sorted list of observation times, which is the union

of unique values from complete and ongoing.
at_risk is the number of respondents at risk; initially it

is the total number of respondents.
lams is a Pandas Series that maps from each observation

time to the estimated hazard rate.
For each value of t we look up ended, which is the number

of people married for the first time at t, and censored,
which is the number of never married people interviewed at
t. The estimated hazard function at t is the ratio of ended
and at_risk.

At the end of each time step, we update at_risk by
subtracting off ended and censored.

The result is a HazardFunction object that contains the
Series lams and provides methods to access it.

With this estimated HazardFunction, we can compute the
SurvivalFunction. The hazard function, λ (t), is the probability
of ending at time t conditioned on surviving until t. Therefore,
the probability of surviving until t is the cumulative product

of the complementary hazard function:

S(t) = ∏
ti<t

[1−λ (ti)]

Here’s the Python implementation:

class HazardFunction
def MakeSurvival(self):

series = (1 - self.series).cumprod()
ts = series.index.values
ss = series.values
return SurvivalFunction(ts, ss)

We wrote our own implementation of these methods in order
to demonstrate the methodology, and also to make them
work efficiently with the resampling methods described in the
next section. But Kaplan-Meier estimation and other survival
analysis algorithms are also available in a Python package
called Lifelines [Dav15].

Resampling

The NSFG is intended to be representative of the adult
U.S. population, but it uses stratified sampling to systemati-
cally oversample certain subpopulations, including teenagers
and racial minorities. Our analysis takes this design into
account to generate results that are representative of the
population.

As an example of stratified sampling, suppose there are
10 000 people in the population you are studying, and you
sample 100. Each person in the sample represents 100 people
in the population, so each respondent has the same “sampling
weight”.

Now suppose there are two subgroups, a minority of 1 000
people and a majority of 9 000. A sample of 100 people will
have 10 members of the minority group, on average, which
might not be enough for reliable statistical inference.

In a stratified sample, you might survey 40 people from
the minority group and only 60 from the majority group. This
design improves some statistical properties of the sample, but
it changes the weight associated with each respondent. Each
of the 40 minorities represents 1000/40 = 25 people in the
population, while each of the 60 others represents 9000/60 =
150 people. In general, respondents from oversampled groups
have lower weights.

The NSFG includes a computed weight for each respondent,
which indicates how many people in the U.S. population she
represents. Some statistical methods, like regression, can be
extended to take these weights into account, but in general it
is not easy.

However, bootstrapping provides a simple and effective
approach. The idea behind bootstrapping is to use the actual
sample as a model of the population, then simulate the results
of additional experiments by drawing new samples (with
replacement) from the actual sample.

4 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

With stratified sampling, we can modify the bootstrap pro-
cess to take sampling weights into account. The following
function performs weighted resampling on the NSFG data:
import thinkstats2

def ResampleRowsWeighted(df):
weights = df.finalwgt
cdf = thinkstats2.Cdf(dict(weights))
indices = cdf.Sample(len(weights))
sample = df.loc[indices]
return sample

df is a Pandas DataFrame with one row per respondent;
it includes a column that contains sampling weights, called
finalwgt.
weights is a Series that maps from respondent index

to sampling weight. cdf represents a cumulative distribution
function that maps from each index to its cumulative prob-
ability. The Cdf class is provided by thinkstats2.py, a
module that accompanies the second edition of Think Stats
[Dow14]. We use it here because it provides an efficient imple-
mentation of random sampling from an arbitrary distribution.
Sample generates a random sample of indices based on

the sampling weights. The return value, sample, is a Pandas
DataFrame that contains the selected rows. Since the sample
is generated with replacement, some respondents might appear
more than once; others might not appear at all.

After resampling, we jitter the data by adding Gaussian
noise (mean 0, standard deviation 1 year) to each respondent’s
age at interview and age at marriage. Jittering contributes some
smoothing, which makes the figures easier to interpret, and
some robustness, making the results less prone to the effect of
a small number of idiosyncratic data points.

Jittering also makes sense in the context of bootstrapping.
Each respondent in the sample represents several thousand
people in the population; it is reasonable to assume that there
is variation within each represented subgroup.

Finally, we discretize age at interview and age at marriage,
rounding down to integer values.

Results
Figure 2 shows the estimated survival curve for each cohort
(we omit the 1930s cohort because it only includes people
born after 1936, so it is not representative of the decade). The
lines show the median of 101 resampling runs; the gray regions
show 90% confidence intervals.

Two trends are apparent in this figure: women are getting
married later, and the fraction of women who remain unmar-
ried is increasing.

Table 3 shows the percentage of married women in each
cohort at ages 22, 32, and 42 (which are the last observed
ages for cohorts 90, 80, and 70).

Two features of this data are striking:
• By age 22, only 13% of the 90s cohort have been

married, contrasted with 69% of the 40s cohort. Between
these cohorts, the fraction of women married by age 22
dropped more than 11 percentage points per decade.

• By age 32, only 60% of the 80s cohort is married, and
their survival curve seems to have gone flat. In this

Fig. 2: Survival functions by birth cohort.

Cohort % married by age
22 32 42

40 69 90 92
50 57 85 90
60 41 79 87
70 32 75 82
80 23 60 –
90 13 – –

TABLE 3: Marriage rates by birth cohort and age.

cohort, 259 were at risk at age 30, and only 9 were
married that year; 155 were at risk at age 31, and none
were married; 63 were are risk at age 32, and again
none were married. These low hazard rates are strange,
but they are based on sample sizes large enough that it
is hard to dismiss them.

Projection
Predicting these kinds of social trends is nearly futile. We can
use current trends to generate projections, but in general there
is no way to know which trends will continue and which will
decrease or reverse.

As we saw in the previous section, the 80s cohort seems
to be on strike, with unprecedented low marriage rates in
their early thirties. Visual extrapolation of their survival curve
suggests that 40% of them will remain unmarried, more than
double the fraction of previous generations.

At the same time the number of women getting married
at ages 35–45 has been increasing for several generations, so
we might expect that trend to continue. In that case the gap
between the 80s and 70s cohorts would close.

These prediction methods provide a rough upper and lower
bound on what we might expect. A middle ground is to assume
that the hazard function from the previous generation will
apply to the next.

This method predicts higher marriage rates than extrapo-
lating the survival curves because it takes into account the
structure of the model: because fewer women married young,
more are at risk at later ages, so we expect more late marriages.

WILL MILLENNIALS EVER GET MARRIED? 5

Fig. 3: Survival functions with projections.

To make these projections, we extend each HazardFunction
using data from the previous cohort:
class HazardFunction
def Extend(self, other):

last_t = self.series.index[-1]
other_ts = other.series.index
hs = other.series[other_ts > last_t]
self.series = pd.concat([self.series, hs])

Then we convert the extended hazard functions to survival
functions using HazardFunction.MakeSurvival.

Figure 3 shows the results. Again, the gray regions show
90% confidence intervals. For the 80s cohort, the median
projection is that 72% will marry by age 42, down from 82%
in the previous cohort.

For the 90s cohort, the median projection is that only 68%
will marry by age 42. This projection assumes that this cohort
will also go on a “marriage strike” in their early thirties, but
this event might not be repeated.

Discussion

The previous section addresses the title question of this paper,
"Will Millennials Ever Get Married?" Our projections suggest
that the fraction still unmarried at age 42 will be higher than
in previous generations, by about 10 percentage points, unless
there is a substantial increase in the hazard rate after age 30.

We also investigate how much of the change in marriage
rates is driven by two factors: people getting married later, or
never getting married at all. Up through the 70s cohort, people
were getting married later, but the fraction who never married
was increasing only slowly. Among Millennials (women born
in the 80s and 90s), the fraction of people marrying young is
continuing to fall, but we also see indications that the fraction
of people who never marry is increasing more quickly.

Future work

This work is preliminary, and there are many avenues for future
investigation:

• The NSFG includes data from male respondents, starting
with Cycle 6 in 2002. We plan to repeat our analysis for
these men.

• There are many subgroups in the U.S. that would be
interesting to explore, including different regions, edu-
cation and income levels, racial and religious groups.

• We have data from the Canadian General Social Sur-
vey, which will allow us to compare marriage patterns
between countries (see http://tinyurl.com/canadagss).

• We are interested in finding similar data from other
countries.

Acknowledgment

Many thanks to Lindsey Vanderlyn for help with data ac-
quisition, preparation, and analysis. And thanks to the SciPy
reviewers who made many helpful suggestions.

REFERENCES

[Dow14] Allen Downey, Think Stats: Exploratory Data Analysis, 2nd edi-
tion, O’Reilly Media, October 2014. http://thinkstats2.com

[Dav15] Cameron Davidson-Pilon, Lifelines, (2015), Github repository,
https://github.com/CamDavidsonPilon/lifelines

[McK10] Wes McKinney. "Data Structures for Statistical Computing in
Python", Proceedings of the 9th Python in Science Conference,
51-56 (2010) http://pandas.pydata.org.

[Wal11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. "The
NumPy Array: A Structure for Efficient Numerical Computation",
Computing in Science & Engineering, 13, 22-30 (2011) http:
//www.numpy.org

[Wan14] Wendy Wang and Kim Parker, “Record Share of Americans Have
Never Married”, Washington D.C.: Pew Research Center’s Social
and Demographic Trends project, September 2014. http://tinyurl.
com/wang14pew

http://tinyurl.com/canadagss
http://thinkstats2.com
https://github.com/CamDavidsonPilon/lifelines
http://pandas.pydata.org
http://www.numpy.org
http://www.numpy.org
http://tinyurl.com/wang14pew
http://tinyurl.com/wang14pew

	Introduction
	Methodology
	Survival analysis
	Resampling

	Results
	Projection

	Discussion
	Future work
	Acknowledgment
	References

