
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 67

Structural Cohesion: Visualization and Heuristics for
Fast Computation with NetworkX and matplotlib

Jordi Torrents§∗, Fabrizio Ferraro‡

https://www.youtube.com/watch?v=K8RFIdG3g9Y

F

Abstract—The structural cohesion model is a powerful sociological conception
of cohesion in social groups, but its diffusion in empirical literature has been
hampered by computational problems. We present useful heuristics for comput-
ing structural cohesion that allow a speed-up of one order of magnitude over
the algorithms currently available. Both the heuristics and the exact algorithm
have been implemented on NetworkX by the first author. Using as examples
three large collaboration networks (co-maintenance of Debian packages, co-
authorship in Nuclear Theory, and co-authorship in High-Energy Theory) we
illustrate our approach to measure structural cohesion in relatively large net-
works. We also introduce a novel graphical representation of the structural
cohesion analysis to quickly spot differences across networks. It is implemented
using matplotlib.

Index Terms—Network Analysis, Sociology, Structural Cohesion, NetworkX,
matplotlib

Introduction

Group cohesion is a central concept that has a long and illustrious
history in sociology and organization theory, although its precise
characterization has remained elusive. Its use in most sociological
research has been ambiguous at best. This is largely because,
as [moody2003] argued, it is often based on sloppy definitions
of cohesion, grounded mostly in intuition and common sense.
Network analysis has provided a large number of solutions to this
problem. From classical work in the graph-theoretic sociological
tradition on cliques, clans, clubs, k-plexes, k-cores and lambda sets
[wasserman1994], to the more recent contribution of physicists
and computer scientists on community analysis [fortunato2010],
network theorists have provided researchers with a wide range of
measures of cohesion in social networks.

However, neither the classical approaches nor new develop-
ments in community analysis are well-enough suited to address
many of the common uses of group cohesion in the sociological
literature, and thus fall short when used in empirical analysis. The
structural cohesion model ([white2001], [moody2003]) has strong
mathematical foundations, and captures many of the features of
the concept group cohesion. Despite this, it has not been widely
used in empirical analysis because it is not possible to perform

* Corresponding author: jordi.t21@gmail.com
§ University of Barcelona
‡ IESE Business School

Copyright © 2015 Jordi Torrents et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the required computations for networks with more than a few
thousands nodes and edges in a reasonable time frame. Moreover,
there are very few implementations available to researchers.

In this paper we present a set of heuristics to compute
the connectivity structure of a given network. We implemented
them, along with the exact algorithm, on top of NetworkX
[hagberg2008], a Python Library for Network Analysis. We also
suggest a novel graphical representation of the results, imple-
mented using Matplotlib [hunter2007]. The rest of the paper is
organized as follows: we start by discussing the main features
which a cohesive subgroup formalization should have from a
sociological perspective, and then discuss in depth the structural
cohesion model. We then describe the exact algorithm and intro-
duce our proposed heuristics. We go on to report our findings
from applying the structural cohesion analysis to three large
collaboration networks, which allows us to illustrate the novel
graphical representation of the connectivity structure. Finally we
conclude with some implications for future research.

Cohesion in social networks

[doreian1998] argue that group cohesion can be divided ana-
lytically into an ideational component, which is based on the
members’ identification with a collectivity, and a relational com-
ponent, which is based on connections among members. These
connections are, at least in part, observable, and thus the rela-
tional approach seems more appropriate for theory building and
empirical research. But, despite its attractiveness, the relational
component has received much less attention than the ideational
component in sociological literature. Social network analysis has
been the exception, and since the beginning, its proponents for-
malized group cohesion in relational terms, that is, they defined
the boundaries of subgroups in a community starting from the
patterns of relations among actors.

Unfortunately most of the existing formalizations of cohesive
subgroups do not capture some key properties of the concept of
cohesive groups. First, a cohesive subgroup should be robust, in
the sense that its qualification as a group should not be dependent
on the actions of a single individual, or any small set of individuals
that belong to the group. This implies, on the one hand, that no
actor, or small set of actors, should be able to dissolve the cohesive
subgroup by abandoning it; while, on the other hand, all actors in
a group should be related to all other actors by multiple direct
or indirect connections in order to pull it together [moody2003].
Therefore, cohesive subgroups should also be relatively invariant
to changes outside the group [brandes2005].

https://www.youtube.com/watch?v=K8RFIdG3g9Y
mailto:jordi.t21@gmail.com


68 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Second, actual social groups tend to overlap in the sense that
some actors are likely to be part of more than one cohesive
subgroup. As [freeman1992] notes, formalizations of subgroups
that overlap a lot are not well suited to capturing the concept of
groups because their sociological use is not focused on individuals
but on contexts, such as productive relations, friendship relations,
or family ties, to name a few. Thus if groups are defined around a
highly specific context the overlap is likely to be small. Therefore
the formalization of subgroups often assumed non-overlapping
subgroups. However, there is always overlap among cohesive
subgroups in actual social groups; and this overlap might be both
empirically and theoretically relevant.

Third, following a typical distinction in the social network
literature, cohesive groups have both a structural and a positional
dimension. In the former, cohesive subgroups are defined in terms
of the global patterns of relations, and the focus is on the groups
and the network as a whole. In the latter, the focus is on the
identification of actors who, because of their network position,
obtain preferential access to information or resources that flow
through the network. Cohesive subgroup formalizations should
help address both structural and positional questions.

Last but by no means least, cohesive subgroups are likely to
display a hierarchical structure in the sense that highly cohesive
subgroups are nested inside less cohesive ones. This notion of
hierarchy is grounded on Simon’s definition: a system that is
composed of interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level of
elementary subsystem [simon1962]. A hierarchical conception of
cohesive subgroups implies that there is a relevant organization at
all scales of the network, and that cohesive groups are a mesolevel
structure that is not reducible to neither macro nor micro level
phenomena and dynamics.

The structural cohesion model

Structural cohesion is a powerful explanatory factor for a wide
variety of interesting empirical social phenomena. It can be used
to explain, for instance: the likelihood of building alliances and
partnerships among biotech firms [powell2005]; how positions
in the connectivity structure of the Indian inter-organizational
ownership network are associated with demographic features
(age and industry); and differences in the extent to which firms
engage in multiplex and high-value exchanges [mani2014]. Social
cohesion can also help us understand degrees of school attach-
ment and academic performance in young people, as well as the
tendency of firms to enroll in similar political activity behaviors
[moody2003]. It offers insight, also, into emerging trust relations
among neighborhood residents or the hiring relations among top
level US graduate programs [grannis2009]. In addition to social
solidarity and group cohesion, the model can equally fit many
relevant theoretical issues, such as conceptualizing structural dif-
ferences among fields and organizations [white2004], explaining
the role of highly connected subgroups in boosting diffusion in
social networks without a high rate of decay [moody2004], or
highlighting the complexity and diversity of the structure of real
world markets beyond stylized one-dimensional characterizations
of the market [mani2014].

The structural cohesion approach to subgroup cohesion
([white2001], [moody2003]) is grounded on two mathematically
equivalent definitions of cohesion that are based on commonly
used concepts of cohesion in the sociological literature. On the one

hand, the ability of a collectivity to hold together independently
of the will of any individual. As set out by the formal definition,
a group’s structural cohesion is equal to the minimum number
of actors who, if removed from the group, would disconnect the
group. Yet, on the other hand, a cohesive group has multiple inde-
pendent relational paths among all pairs of members. According
to the formal definition a group’s structural cohesion is equal to
the minimum number of independent paths linking each pair of
actors in the group [moody2003]. These two definitions are math-
ematically equivalent in terms of the graph theoretic concept of
node connectivity1 as defined by Menger’s Theorem [white2001],
which can be formulated locally: The minimum node cut set κ(u,v)
separating a nonadjacent u,v pair of nodes equals the maximum
number of node-independent u− v paths; and globally: A graph
is k-connected if and only if any pair of nodes u,v is joined by
at least k node-independent u− v paths. Thus Menger’s theorem
links with an equivalence relation the connectivity based on cut
sets with the number of node independent paths among pairs of
different nodes. This equivalence relation has a deep sociological
meaning because it allows for the definition of structural cohesion
in terms of the difficulty to pull a group apart by removing actors
and, at the same time, in terms of multiple relations between actors
that keep a group together.

The starting point of cohesion in a social group is a state
where every actor can reach every other actor through at least
one relational path. The emergence of a giant component --a
large set of nodes in a network that have at least one path that
links any two nodes-- is a minimal condition for the develop-
ment of group cohesion and social solidarity. [moody2003] argue
that, in this situation, the removal of only one node can affect
the flow of knowledge, information and resources in a network
because there is only one single path that links some parts of
the network. Thus, if a network has actors who are articulation
points2, their role in keeping the network together is critical; and
by extension the network can be disconnected by removing them.
[moody2003] convincingly argue that biconnectivity provides a
baseline threshold for strong structural cohesion in a network
because its cohesion does not depend on the presence of any
individual actor and the flow of information or resources does
not need to pass through a single point to reach any part of the
network. Therefore, the concept of robustness is at the core of the
structural cohesion approach to subgroup cohesion.

Note that the bicomponent structure of a graph is an exact
partition of its edges, which means that each edge belongs to
one, and only one, bicomponent; but this is not the case for
nodes because k-components can overlap in k− 1 nodes. In the
case of bicomponents, articulation points belong to all bicom-
ponents that they separate. Thus, this formalization of subgroup
cohesion allows limited horizontal overlapping over k-components
of the same k. On the other hand, the k-component structure of
a network is inherently hierarchical because k-components are
nested in terms of connectivity: a connected graph can contain
several 2-components, each of which can contain one or more
tricomponents, and so forth.

However, one shortcoming of classifying cohesive subgroups
only in terms of node connectivity is that k-components of the
same k are always considered equally cohesive despite the fact

1. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.connectivity.node_connectivity.html .

2. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.components.biconnected.articulation_points.html .

http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.connectivity.node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.connectivity.node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.components.biconnected.articulation_points.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.components.biconnected.articulation_points.html


STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 69

that one of them might be very close to the next connectivity
level, while the other might barely qualify as a component of
level k (i.e. removing a few edges could reduce the connectivity
level to k− 1). To deal with this shortcoming, we propose using
another connectivity-based metric to obtain a continuous and more
granular measure of cohesion. [beineke2002] propose the measure
of average node connectivity of G3, denoted κ̄(G), defined as the
sum of local node connectivity between all pairs of different nodes
of G divided by the number of distinct pairs of nodes. Or put more
formally:

κ̄(G) =
∑u,v κG(u,v)(n

2

)
Where n is the number of nodes of G. In contrast to node
connectivity κ , which is the minimum number of nodes whose
removal disconnects some pairs of nodes, the average connectivity
κ̄(G) is the expected minimal number of nodes that must be
removed in order to disconnect an arbitrary pair of nodes of G. For
any graph G it holds that κ̄(G) ≥ κ(G). As [beineke2002] show,
average connectivity does not increase only with the increase in
the number of edges: graphs with the same number of nodes
and edges, and the same degree for each node can have different
average connectivity.

Despite all its merits, the structural cohesion model has
not been widely applied to empirical analysis because it is not
practical to compute it for networks with more than a few
thousands nodes and edges due to its computational complexity.
What’s more, it is not implemented in most popular network
analysis software packages. In the next section, we will review
the existing algorithm to compute the k-component structure for a
given network, before introducing our heuristics to speed up the
computation.

Existing algorithms for computing k-component structure

[moody2003] provide an algorithm for identifying k-components
in a network4, which is based on the [kanevsky1993] algorithm for
finding all minimum-size node cut-sets of a graph5; i.e. the set (or
sets) of nodes of cardinality k that, if removed, would break the
network into more connected components. The algorithm consists
of 4 steps:

1) Identify the node connectivity, k, of the input graph using
flow-based connectivity algorithms.

2) Identify all k-cutsets at the current level of connectivity
using the Kanevsky’s algorithm.

3) Generate new graph components based on the removal of
these cutsets (nodes in the cutset belong to both sides of
the induced cut).

4) If the graph is neither complete nor trivial, return to 1;
otherwise end.

As the authors note, one of the main strengths of the structural
cohesion approach is that it is theoretically applicable to both
small and large groups, which contrasts with the historical focus of
the literature on small groups when dealing with cohesion. But the

3. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.connectivity.average_node_connectivity.
html .

4. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.kcomponents.k_components.html .

5. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.kcutsets.all_node_cuts.html .

fact that this concept and the algorithm proposed by the authors,
are theoretically applicable to large groups does not mean that this
would be a practical approach for analyzing the structural cohesion
on large social networks.

The equivalence relation established by Menger’s theorem
between node cut sets and node independent paths can be useful
to compute connectivity in practical cases but both measures are
almost equally hard to compute if we want an exact solution.
However, [white2001b] proposed a fast approximation algorithm
for finding good lower bounds of the number of node independent
paths between two nodes6. This algorithm is based on the idea of
searching paths between two nodes, marking the nodes of the path
as used and searching for more paths that do not include nodes
already marked. But instead of trying all possible paths without
order, this algorithm considers only the shortest paths: it finds
node independent paths between two nodes by computing their
shortest path, marking the nodes of the path found as used and
then searching other shortest paths excluding the nodes marked
as used until no more paths exist. Because finding the shortest
paths is faster than finding other kinds of paths, this algorithm
runs quite fast, but is not exact because a shortest path could use
nodes that, if the path were longer, may belong to two different
node independent paths [white2001b].

Heuristics for computing k-components and their average con-
nectivity

The logic of the heuristics presented here is based on repeatedly
applying fast algorithms for k-cores7 [batagelj2011] and bicon-
nected components8 [tarjan1972] in order to narrow down the
number of pairs of different nodes over which we have to compute
their local node connectivity for building the auxiliary graph in
which two nodes are linked if they have at least k node indepen-
dent paths connecting them. We follow the classical insight that,
:math:‘k‘-cores can be regarded as seedbeds, within which we
can expect highly cohesive subsets to be found [seidman1983].
More formally, our approach is based on Whitney’s theorem
[white2001], which states an inclusion relation among node con-
nectivity κ(G), edge connectivity λ (G) and minimum degree
δ (G) for any graph G:

κ(G)≤ λ (G)≤ δ (G)

This theorem implies that every k-component is nested inside a
k-edge-component, which in turn, is contained in a k-core. This
approach does not require computing node independent paths for
all pairs of different nodes as a starting point, thus saving an
important amount of computation. Moreover it does not require
recursively applying the same procedure over each subgraph. In
our approach we only have to compute node independent paths
among pairs of different nodes in each biconnected part of each
k-core, and repeat this procedure for each k from 3 to the maximal
core number of a node in the input network.

The aim of the heuristics presented here is to provide a fast
and reasonably accurate way of analyzing the cohesive structure
of empirical networks of thousands of nodes and edges. As we

6. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.approximation.connectivity.node_connectivity.html .

7. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.core.k_core.html .

8. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.components.biconnected.biconnected_components.html .

http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.connectivity.average_node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.connectivity.average_node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.connectivity.average_node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcomponents.k_components.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcomponents.k_components.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcutsets.all_node_cuts.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcutsets.all_node_cuts.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.connectivity.node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.connectivity.node_connectivity.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.core.k_core.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.core.k_core.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.components.biconnected.biconnected_components.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.components.biconnected.biconnected_components.html


70 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

have seen, k-components are the cornerstone of structural cohesion
analysis. But they are very expensive to compute. Our approach
consists of computing extra-cohesive blocks of level k for each
biconnected component of a k-core. Extra-cohesive blocks are
a relaxation of the k-component concept in which not all node
independent paths among pairs of different nodes have to run
entirely inside the subgraph. Thus, there is no guarantee that an
extra-cohesive block of level k actually has node connectivity k.
We introduce an additional constraint to the extra-cohesive block
concept in order to approximate k-components: our algorithm
computes extra-cohesive blocks of level k that are also k-cores
by themselves in G. Furthermore, extra-cohesive blocks maintain
high requirements in terms of multiconnectivity and robustness,
thus conserving the most interesting properties from a sociological
perspective on the structure of social groups.

Combining this logic with three observations about the aux-
iliary graph H allows us to design a new algorithm9 for finding
extra-cohesive blocks in each biconnected component of a k-core,
that can either be exact but slow ---using flow-based algorithms for
local node connectivity [brandes2005] --- or fast and approximate,
giving a lower bound with certificate of the composition and
the connectivity of extra-cohesive blocks ---using [white2001b]
approximation for local node connectivity. Once we have a fast
way to compute extra-cohesive blocks, we can approximate k-
components by imposing that the induced subgraph of the nodes
that form an extra-cohesive block of G have to also be a k-core in
G.

Let H be the auxiliary graph in which two nodes are linked
if they have at least k node independent paths connecting them
in each of the biconnected components of the core of level k of
original graph G (for k > 2). The first observation is that complete
subgraphs in H (Hclique) have a one to one correspondence with
subgraphs of G in which each node is connected to every other
node in the subgraph for at least k node independent paths. Thus,
we have to search for cliques in H in order to discover extra-
cohesive blocks in G.

The second observation is that an Hclique of order n is also a
core of level n− 1 (all nodes have core number n− 1), and the
degree of all nodes is also n−1. The auxiliary graph H is usually
very dense, because we build a different H for each biconnected
part of the core subgraph of level k of the input graph G. In this
kind of network big clusters of almost fully connected nodes are
very common. Thus, in order to search for cliques in H we can do
the following:

1) For each core number value cvalue in each biconnected
component of H:

2) Build a subgraph Hcandidate of H induced by the nodes
that have exactly core number cvalue. Note that this is
different than building a k-core, which is a subgraph
induced by all nodes with core number greater or equal
than cvalue.

3) If Hcandidate has order cvalue + 1 then it is a clique and
all nodes will have degree n− 1. Return the clique and
continue with the following candidate.

4) If this is not the case, then some nodes will have degree
< n− 1. Remove all nodes with minimum degree from
Hcandidate.

9. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.approximation.kcomponents.k_components.html .

5) If the graph is trivial or empty, continue with the follow-
ing candidate. Or otherwise recompute the core number
for each node and go to 3.

Finally, the third observation is that if two k-components of
different order overlap, the nodes that overlap belong to both
cliques in H and will have core numbers equal to all other nodes
in the bigger clique. Thus, we can account for possible overlap
when building subgraphs Hcandidate (induced by the nodes that
have exactly core number cvalue) by also adding to the candidate
subgraph the nodes in H that are connected to all nodes that
have exactly core number cvalue. Also, if we sort the subgraphs
Hcandidate in reverse order (starting from the biggest), we can skip
checking for possible overlap for the biggest.

Based on these three observations, our heuristics for approx-
imating the cohesive structure of a network and the average
connectivity of each individual block, consists of:

Let G be the input graph. Compute the core number of each
node in G. For each k from 3 to the maximum core number build
a k-core subgraph Gk−core with all nodes in G with core level ≥ k.

For each biconnected component of Gk−core:

1) Compute local node connectivity κ(u,v) between all pairs
of different nodes. Optionally store the result for each
pair. Either use a flow-based algorithm (exact but slow)
or White and Newman’s approximation for local node
connectivity (approximate but a lot faster).

2) Build an auxiliary graph H with all nodes in this bi-
component of Gk−core with edges between two nodes if
κ(u,v)≥ k. For each biconnected component of H:

3) Compute the core number of each node in Hbicomponent ,
sort the values in reverse order (biggest first), and for
each value cvalue:

a) Build a subgraph Hcandidate induced by nodes
with core number exactly equal to cvalue plus
nodes in H that are conected with all nodes with
core number equal to cvalue.

i) If Hcandidate has order cvalue + 1 then it is a
clique and all nodes will have degree n−1.
Build a core subgraph Gcandidate of level k
of G induced by all nodes in Hcandidate that
have core number ≥ k in G.

ii) If this is not the case, then some nodes
will have degree < n−1. Remove all nodes
with minimum degree from Hcandidate. Build
a core subgraph Gcandidate of level k of G
induced by the remaining nodes of Hcandidate
that have core number ≥ k in G.

A) If the resultant graph is trivial or empty,
continue with the following candidate.

B) Else recompute the core number for
each node in the new Hcandidate and go
to (i).

b) The nodes of each biconnected component of
Gcandidate are assumed to be a k-component of
the input graph if the number of nodes is greater
than k.

c) Compute the average connectivity of each de-
tected k-component. Either use the value of

http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.kcomponents.k_components.html
http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.kcomponents.k_components.html


STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 71

κ(u,v) computed in step 1 or recalcualte κ(u,v)
in the induced subgraph of candidate nodes.

Notice that because our approach is based on computing node
independent paths between pairs of different nodes, we are able
to use these computations to calculate both the cohesive structure
and the average node connectivity of each detected k-component.
Of course, computing average connectivity comes with a cost:
either more space to store κ(u,v) in step 1, or more computation
time in step 3.c if we did not store κ(u,v). This is not possible
when applying the exact algorithm for k-components proposed by
[moody2003] because it is based on repeatedly finding k-cutsets
and removing them, thus it does not consider node independent
paths at all.

The output of these heuristics is an approximation to k-
components based on extra-cohesive blocks. We find extra-
cohesive blocks and not k-components because we only build the
auxiliary graph H one time on each bicoennected component of
a core subgraph of level k from the input graph G. Local node
connectivity is computed in a subgraph that might be larger than
the final Gcandidate and thus some node independent paths that
shouldn’t could end up being counted.

Accuracy can be improved by rebuilding H from the pairwise
node connectivity in Gcandidate and following the remaining steps
of the heuristics at the cost of slowing down the computation.
There is a trade-off between speed and accuracy. After some tests
we decided to compute H only once and lean towards the speed
pole of the trade-off. Our goal is to have an usable procedure for
analyzing networks of thousands of nodes and edges in which
we have substantive interests. Following this goal, the use of
[white2001b] approximation algorithm for local node connectivity
in step 3.b is key. It is almost on order of magnitude faster than the
exact flow-based algorithms. As usual, speed comes with a cost in
accuracy: [white2001b] algorithm provides a strict lower bound
for the local node connectivity. Thus, by using it we can miss an
edge in H that should be there.

Our tests reveal that the use of [white2001b] approximation
does indeed underestimate the order of some k-components, par-
ticularly in not very sparse networks. One approach to mitigate this
problem is to relax the strict cohesion requirement of Hcandidate
being a clique. Following the network literature on cliques, we can
relax its cohesion requirements in terms of degree, coreness and
density. We did some experiments and found that a good relaxation
criteria is to set a density threshold of 0.95 for Hcandidate.

Case study: Structural cohesion in collaboration networks

The structural cohesion model can be used to explain cooperation
in different kinds of collaboration networks; for instance, co-
authorship networks ([moody2004] , [white2004]) and collab-
oration among biotech firms [powell2005]. Most collaboration
networks are modeled as bipartite graphs, in which nodes can
be divided in two disjoin sets, and edges only connect nodes from
opposite sets. In the case of co-authorship networks, one node set
represents authors and the other papers. Each author has edges
that link her to all papers she authored. The usual practice to deal
with bipartite networks is focus the analysis only on unipartite
projections. That is, a new network only with the nodes that
represent authors from the original bipartite network, where two
authors are linked by an edge if they co-authored a paper together.

However, recent literature on bipartite networks strongly sug-
gests that it is necessary to analyze bipartite networks directly to

get an accurate picture ([uzzi2007], [opsahl2011], [latapy2008]).
We show that this is also the case for the k-component structure of
collaboration networks. This kind of analysis has been conducted
very rarely on bipartite networks, and only on very small ones
[white2004]. Its limited diffusion can be readily explained by the
fact that bipartite networks are usually quite a lot bigger than their
unipartite counterparts, and the computational requirements, once
again, stifled empirical research in this direction.

The heuristics for structural cohesion presented here allow us
to analyze relatively large networks (up to tens of thousands of
nodes and edges) quickly enough to be practical. To illustrate this
we use data on collaboration among software developers in one
organization (the Debian project) and scientists publishing papers
in the arXiv.org electronic repository in two different scientific
fields: High Energy Theory and Nuclear Theory. We built the
Debian collaboration network by linking each software developer
with the packages (i.e. programs) that she uploaded to the package
repository of the Debian Operating System during a complete
release cycle. We analyze the Debian Operating System version
5.0, codenamed Lenny, which was developed from April 8, 2007,
to February 1, 2009. Scientific networks are built using all the
papers uploaded to the arXiv.org preprint repository from January
1, 2006, to December 31, 2010, for High Energy Physics Theory
and Nuclear Theory. In these networks each author is linked to
the papers that she has authored during the time period analyzed.
Unipartite projections consist of scientists linked together if they
have co-authored a paper, and developers linked together if they
have worked on the same program. Table 1 presents some details
on those networks (which are available, see10).

In the remaining part of this section we perform two kinds of
analysis to illustrate how the structural cohesion model can help us
understand the structure and dynamics of collaboration networks.
First, we present a tree representation of the k-component structure
---which is also named cohesive blocks structure in the literature
([white2001], [moody2003], [white2004], [mani2014])--- for our
bipartite networks and their unipartite projections, both for actual
networks and for their random counterparts. Finally, we present
a novel graphic representation of the structural cohesion of a
network, based on three-dimensional scatter plot, using average
node connectivity as a fine-grained measure of cohesion of each
k-component.

For the first analysis we do need to generate null models in
order to discount the possibility that the observed structure of
actual networks is just the result of randomly mixing papers and
scientists or packages and developers. The null models used in this
paper are based on a bipartite configuration model [newman2003],
which consists of generating networks by randomly assigning
papers/programs to scientists/developers but maintaining constant
the distribution of papers per scientists and scientists by paper
observed in the actual networks. For unipartite projections, we
generated bipartite random networks, and then performed the
unipartite projection.

10. You can download the networks used in this section in graphml for-
mat. Nodes have an attribute named bipartite, with values 0 and 1, which
indicates the node set to which each node belongs. Note that this is the
convention used in NetworkX’s bipartite package (see https://networkx.github.
io/documentation/latest/reference/algorithms.bipartite.html):

• Debian Lenny: http://dx.doi.org/10.6084/m9.figshare.1472938
• Nuclear Theory: http://dx.doi.org/10.6084/m9.figshare.1472940
• High Energy Theory: http://dx.doi.org/10.6084/m9.figshare.1472939

https://networkx.github.io/documentation/latest/reference/algorithms.bipartite.html
https://networkx.github.io/documentation/latest/reference/algorithms.bipartite.html
http://dx.doi.org/10.6084/m9.figshare.1472938
http://dx.doi.org/10.6084/m9.figshare.1472940
http://dx.doi.org/10.6084/m9.figshare.1472939


72 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Bipartite Unipartite
Network # nodes # edges Av. degree Time(s) # nodes # edges Av. degree Time(s)

Debian Lenny 13,121 20,220 3.08 1,105.2 1,383 5,216 7.54 204.7
High Energy (theory) 26,590 37,566 2.81 3,105.7 9,767 19,331 3.97 7,136.0

Nuclear Theory 10,371 15,969 3.08 1,205.2 4,827 14,488 6.00 3,934.1

TABLE 1: Collaboration networks analyzed from science and from software development. See text for details on their content. Time refers to
the execution of our heuristics on each network expressed in seconds.

So let’s start with the tree representation of the cohesive blocks
structure. As proposed by [white2004], we can represent the k-
component structure of a network by drawing a tree whose nodes
are k-components; two nodes are linked if the k-component of
higher level is nested inside the k-component of lower level (see
pp. 1643, 1651 from [mani2014] for this kind of analysis on
the Indian firm ownership network). This representation of the
connectivity structure can be built during the run time of the
exact algorithm. However, because our heuristics are based on
finding node independent paths, we have to compute first the k-
components hierarchy, and then construct the tree that represents
the connectivity structure of the network.

Figures 1 (a) and 1 (c) show the connectivity structure of
Nuclear Theory collaboration networks represented as a tree, the
former for the bipartite network and the latter for the unipartite
one. As we can see, both networks display non-trivial structure.
The bipartite network has up to an 8-component, but most nodes
are in k-components with k < 6. Up to k = 3 most nodes are
in giant k-components, but for k = {4,5} there are many k-
components of similar order. Figure 1 (c), which corresponds to
the unipartite projection, has a lot more connectivity levels. In this
network, the maximum connectivity level is 46; the four long legs
of the plot correspond to 4 cliques with 47, 31, 27 and 25 nodes.
Notice that each one of these 4 cliques are already a separated
k-component at k = 7 It is at this level of connectivity (k = {7,8})
where the giant k-components start to dissolve and many smaller
k-components emerge.

In order to be able to assess the significance of the results
obtained, we have to compare the connectivity structure of actual
networks with the connectivity structure of a random network that
maintains some constraints observed in the empirical networks.
In this case, we compare actual networks with only one random
network. We obtained it by generating 1000 random networks
and choosing one randomly. Figures 1 (b) and 1 (d) show the
connectivity structure of the random counterparts for Nuclear
Theory collaboration networks. For the bipartite network, instead
of the differentiated connectivity structure displayed by the actual
bipartite network, there is a flatter connectivity structure, where the
higher level k-component is a tricomponent. Moreover, instead of
many small k-components at high connectivity levels, the random
bipartite network has only giant k-components where all nodes
with component number k are. In this case, the unipartite network
is also quite different from its random counterpart. There are
only giant k-components up until k = 15, where the four cliques
observed in the actual network separate from each other to form
distinct k-components.

Going one step beyond classical structural cohesion analysis,
as proposed above, we can deepen our analysis by also considering
the average connectivity of the k-components of these networks.
By analogy with the k-component number of each node, which
is the maximum value k of the deepest k-component in which
that node is embedded, we can establish the average k-component

number of each node as the value of average connectivity of the
deepest k-component in which that node is embedded. Notice
that, unlike plain node connectivity, average node connectivity is a
continuous measure of cohesion. Thus it provides a more granular
measure of cohesion because we can rank k-components with the
same k according to their average node connectivity.

Figure 2 graphically represent the three networks with three-
dimensional scatter plots produced with the powerful Matplotlib
library [hunter2007]. In these graphs, each dot corresponds to a
node of the network, for bipartite networks nodes represent both
scientists/developers and papers/programs. The Z axis (the vertical
one) is the average k-component number of each node, and the X
and Y axis are the result of a 2 dimensional force-based layout
algorithm implemented by the neato program of Graphviz. The
two dimensional layout is computed by constructing a virtual
physical model and then using an iterative solver procedure to
obtain a low-energy configuration. Following [kamada1989], an
ideal spring is placed between each pair of nodes (even if they
are not connected in the network). The length of each spring
corresponds to the geodesic distance between the pair of nodes
that it links. The final node positioning in the layout approximates
the path distance among pairs of nodes in the network.

This novel graphic representation of cohesion structure is in-
spired by the approximation technique developed by [moody2004]
for plotting the approximate cohesion contour of large networks
to which is not practical to apply Moody & White (2003) exact
algorithm for k-components. Moody’s technique is based on the
fact that force-based layouts algorithms tend to draw nodes within
highly cohesive subgroups near each other. Then we have to divide
the surface of the two-dimensional plane in squares of equal areas
and compute node independent paths on a sample of pairs of nodes
inside each square so as to obtain an approximation for the node
connectivity in that square. Then we can draw a surface plot using
a smoothing probability density function. However, in order to
obtain a nice smooth surface plot, we have to use heavy smoothing
in the probability density function, and carefully choose the area
of the squares (mostly by trial and error). Moreover, this technique
strongly relies on the force-based layout algorithm to put nodes in
highly cohesive subgroups near each other ---something which is
not guaranteed because they are usually based in path distance and
not directly on node connectivity. Because we are able to compute
the k-component structure with our heuristics for large networks,
the three-dimensional scatter plot only relies on the layout algo-
rithm for setting the X and Y positions of the nodes, while the
Z position (average node connectivity) is computed directly from
the network. Moreover, we don’t have to use a smoothed surface
plot because we have a value of average connectivity for each
node, and thus we can plot each node as a dot on the plot. This
gives a more accurate picture of the actual cohesive structure of a
network.

This representation of cohesive structures can help researchers
visualize the presence of different organizational mechanisms in



STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 73

(a) Actual bipartite network (b)
Random
bipartite
network

(c) Actual unipartite net-
work

(d) Random
unipartite
network

Fig. 1: Cohesive blocks for bipartite and unipartite Nuclear Theory collaboration networks, and for their random counterparts. Random
networks were generated using a bipartite configuration model. We built 1000 random networks and chose one randomly, see text for details.
For lower connectivity levels we have removed some small k-components to improve the readability: we do not show 1-components with less
than 20 nodes, 2-components with less than 15 nodes, or tricomponents with less than 10 nodes.



74 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

X

500
1000

1500
2000

2500
3000

3500

Y

500
1000

1500
2000

2500
3000

3500

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

1

2

3

4

5

6

(a) Bipartite Debian Lenny network

X

200
400

600
800

1000
1200

1400

Y

200
400

600
800

1000
1200

1400

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

5

10

15

20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Unipartite Debian Lenny network

X

1000
2000

3000
4000

5000

Y

1000
2000

3000
4000

5000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(c) Bipartite Nuclear Theory network

X

500
1000

1500
2000

2500
3000

3500

Y

500
1000

1500
2000

2500
3000

3500

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

10

20

30

40

12
34
56
78
910111213141516171819202122232425262728293031323334353637383940414243444546

(d) Unipartite Nuclear Theory network

X

2000
4000

6000
8000

Y
2000

4000

6000

8000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(e) Bipartite High Energy Theory network

X

1000
2000

3000
4000

5000

Y

1000
2000

3000
4000

5000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

5

10

15

20

25

12
34
56
78
910111213141516171819202122232425

(f) Bipartite High Energy Theory network

Fig. 2: Average connectivity three-dimensional scatter plots. X and Y are the positions determined by the Kamada-Kawai layout algorithm.
The vertical dimension is average connectivity. Each dot is a node of the network and bipartite networks contain both papers/programs and
scientists/developers.



STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 75

different kinds of collaboration networks. The difference between
the Debian and the scientific collaboration networks is striking.
In figure 2 (a) we can see the scatter plot for a Debian bipartite
network. We can observe a clear vertical separation among nodes
in different connectivity levels. This is because almost all nodes in
each connectivity level are in a giant k-component and thus they
have the same average connectivity. In other words, developers
in Debian show different levels of engagement and contribution,
with a core group of developers deeply nested at the core of the
community. This pattern is the result of formal and informal rules
of collaboration that evolved over the years [ferraro2007] into a
homogeneous hierarchical structure, where there is only one core
of highly productive individuals at the center. Not surprisingly,
perhaps, the Debian project has been particularly resilient to
developers’ turnover and splintering factions.

Scientific collaboration networks show a rather different struc-
ture of collaboration. The bipartite science collaboration networks
(figures 2 (c) and 2 (e)) display a continuous hierarchical structure
in which there are nodes at different levels of average connectivity
for each discrete plain connectivity level. This is because science
collaboration networks have a complex cohesive block structure
where there are a lot of independent k-components in each plain
connectivity level, for k ≥ 3. Each small cohesive block has a
different order, size and average connectivity; thus, when we
display them in this three-dimensional scatter plot we observe a
continuous hierarchical structure that contrasts with the almost
discrete structure of Debian collaboration networks.

One explanation why we observe this heterogeneous connec-
tivity structure is that scientific collaborations cluster around a
variety of different aims, methods, projects, and institutional envi-
ronments. Therefore as the most productive scientists collaborate
with each other, hierarchies naturally emerge. However, we are
less likely to observe one single hierarchical order as we did in
the Debian network, as more than one core of highly productive
scientists is likely to emerge.

If we compare the bipartite networks with their unipartite
projections using this graphical representation (see figures 2 (b), 2
(d), and 2 (f)) we can see that, again, they look quite different.
While bipartite average connectivity structure for the Debian
network is characterized by clearly defined and almost discrete
hierarchical levels, its unipartite counterpart shows a continuous
hierarchical structure. However, this is not caused by the presence
of many small k-components at the same level k, as in the case
of bipartite science networks discussed above, but by the close
succession of hierarchy levels with almost the same number of
nodes in a chain-like structure.

For collaboration science networks, the three-dimensional
scatter plots of unipartite projections are also quite different than
their original bipartite networks. They have a lot more hierarchy
levels than bipartite networks but most nodes are at lower connec-
tivity levels. Only a few nodes are at top levels of connectivity,
and they all form part of some clique, which are the groups in
the long legs of the cohesive block structure depicted in figure
1 (c). Thus, the complex hierarchical connectivity structure of
bipartite collaboration networks gets blurred when we perform
unipartite projection. An important consequence of the projection
is that only a few nodes embedded in big cliques appear at
top connectivity levels and all other nodes are way down in the
connectivity structure. This could lead the risk of overestimating
the importance of those nodes in big cliques and to underestimate
the importance of nodes that, despite being at high levels of the

bipartite connectivity structure, appear only at lower levels of the
unipartite connectivity structure.

Conclusions

We developed heuristics to compute the k-components structure,
along with the average node connectivity for each k-component,
based on the fast approximation to compute node independent
paths [white2001b]. These heuristics allow for the computing of
the approximate value of group cohesion for moderately large net-
works in a reasonable time frame. We showed that these heuristics
can be applied to networks at least one order of magnitude bigger
than the ones manageable by the exact algorithm proposed by
[moody2003]. To ensure reproducibility and facilitate diffusion of
these heuristics we provided an implementation of both the exact
algorithm and the heuristics on top of NetworkX [hagberg2008].
These implementations are included in the recently released 1.10
version of NetworkX.

We analyzed three large collaboration networks and showed
that the heuristics and the novel visualization technique for cohe-
sive network structure help us capture important differences in the
way collaboration is structured. Future research could leverage
the tools we provide to systematically measure those structures.
For instance, sociologists of science often compare scientific
disciplines in terms of their collaborative structures [moody2004]
and their level of controversies [bearman2010]. The measures
and the visualization technique we proposed could nicely capture
these features and compare them across scientific disciplines.
This would make it possible to further our understanding of the
social structure of science, and its impact in terms of productiv-
ity, novelty and impact. Social network researchers interested in
organizational robustness would also benefit from leveraging the
structural cohesion measures to detect sub-groups that are more
critical to the organization’s resilience, and thus prevent factional-
ization. Exploring the consequences of different forms of cohesive
structures will eventually help us further our understanding of
collaboration and the role that cohesive groups play in linking
micro-level dynamics with macro-level social structures.

REFERENCES

[batagelj2011] Batagelj, V. and M. Zaveršnik (2011). Fast algorithms for
determining (generalized) core groups in social networks.
Advances in Data Analysis and Classification 5(2), 129–145.

[bearman2010] Shwed, U. and P. Bearman (2010). The temporal structure of
scientific consensus formation. American sociological review
75(6), 817–840.

[beineke2002] Beineke, L., O. Oellermann, and R. Pippert (2002). The
average connectivity of a graph. Discrete mathematics 252(1-
3), 31–45.

[brandes2005] Brandes, U. and T. Erlebach (2005). Network analysis:
methodological foundations, Volume 3418. Springer Verlag.

[doreian1998] Doreian, P. and T. Fararo (1998). The problem of solidarity:
theories and models. Routledge.

[freeman1992] Freeman, L. (1992). The sociological concept of “group”: An
empirical test of two models. American Journal of Sociology,
152–166.

[fortunato2010] Fortunato, S. (2010). Community detection in graphs. Physics
Reports, 486(3), 75-174.

[grannis2009] Grannis, R. (2009). Paths and semipaths: reconceptualizing
structural cohesion in terms of directed relations. Sociological
Methodology 39(1), 117–150.

[hagberg2008] Hagberg, A., Schult, D. A., & Swart, P. (2008). Exploring
network structure, dynamics, and function using NetworkX.
In Proceedings of the 7th Python in Science Conferences
(SciPy 2008) (Vol. 2008, pp. 11-16).



76 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[hunter2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing In Science & Engineering 9(3), 90–95.

[kamada1989] Kamada, T. and S. Kawai (1989). An algorithm for draw-
ing general undirected graphs. Information processing letters
31(1), 7–15.

[kanevsky1993] Kanevsky, A. (1993). Finding all minimum-size separating
vertex sets in a graph. Networks 23(6), 533–541.

[latapy2008] Latapy, M., C. Magnien, and N. Vecchio (2008). Basic
notions for the analysis of large two mode networks. Social
Networks 30(1), 31–48.

[mani2014] Mani, D. and J. Moody (2014). Moving beyond stylized
economic network models: The hybrid world of the indian
firm ownership network. American Journal of Sociology
119(6), pp. 1629–1669.

[moody2004] Moody, J. (2004). The structure of a social science collab-
oration network: Disciplinary cohesion from 1963 to 1999.
American Sociological Review 69(2), 213–238.

[moody2003] Moody, J., & White, D. R. (2003). Structural cohesion
and embeddedness: A hierarchical concept of social groups.
American Sociological Review, 103-127.

[newman2003] Newman, M. (2003). The structure and function of complex
networks. SIAM Review 45, 167.

[ferraro2007] O’Mahony, S. and F. Ferraro (2007). The emergence of
governance in an open source community. The Academy of
Management Journal 50(5), 1079–1106.

[opsahl2011] Opsahl, T. (2011). Triadic closure in two-mode networks:
Redefining the global and local clustering coefficients. Social
Networks 34.

[powell2005] Powell, W., D. White, K. Koput, and J. Owen-Smith (2005).
Network dynamics and field evolution: The growth of in-
terorganizational collaboration in the life sciences. American
Journal of Sociology 110(4), 1132–1205.

[simon1962] Simon, H. A. (1962). The architecture of complexity. Pro-
ceedings of the American philosophical society 106(6),
467–482.

[seidman1983] Seidman, S. (1983). Network structure and minimum degree.
Social networks 5(3), 269–287.

[tarjan1972] Tarjan, R. (1972). Depth-first search and linear graph al-
gorithms. In Switching and Automata Theory, 1971., 12th
Annual Symposium on, pp. 114–121. IEEE.

[uzzi2007] Uzzi, B., L. Amaral, and F. Reed-Tsochas (2007). Small-
world networks and management science research: a review.
European Management Review 4(2), 77–91.

[wasserman1994] Wasserman, S., & Faust, K. (1994). Social network analy-
sis: Methods and applications (Vol. 8). Cambridge university
press.

[white2004] White, D., J. Owen-Smith, J. Moody, and W. Powell (2004).
Networks, fields and organizations: micro-dynamics, scale
and cohesive embeddings. Computational & Mathematical
Organization Theory 10(1), 95–117.

[white2001b] White, D. and M. Newman (2001). Fast approximation algo-
rithms for finding node-independent paths in networks. Santa
Fe Institute Working Papers Series.

[white2001] White, D. R., & Harary, F. (2001). The cohesiveness of
blocks in social networks: Node connectivity and conditional
density. Sociological Methodology, 31(1), 305-359.


	Introduction
	Cohesion in social networks
	The structural cohesion model
	Existing algorithms for computing k-component structure
	Heuristics for computing k-components and their average connectivity
	Case study: Structural cohesion in collaboration networks
	Conclusions
	References

