
138 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

TrendVis: an Elegant Interface for dense,
sparkline-like, quantitative visualizations of multiple

series using matplotlib

Mellissa Cross‡∗

https://www.youtube.com/watch?v=tklAFsce7eg

F

Abstract—TrendVis is a plotting package that uses matplotlib to create
information-dense, sparkline-like, quantitative visualizations of multiple dis-
parate data sets in a common plot area against a common variable. This plot
type is particularly well-suited for time-series data. We discuss the rationale
behind and the challenges associated with adapting matplotlib to this particular
plot style, the TrendVis API and architecture, and various features available for
users to customize and enhance the readability of their figures while walking
through a sample workflow.

Index Terms—time series visualization, matplotlib, plotting

Introduction

Data visualization and presentation is a key part of scientific
communication, and many disciplines depend on the visualization
of multiple time-series or other series datasets. The field of pale-
oclimatology (the study of past climate and climate change), for
example, relies heavily on plots of multiple time-series or "depth
series", where data are plotted against depth in an ice core or
stalagmite, for example. These plots are critical to place new data
in regional and global contexts and they facilitate interpretations of
the nature, timing, and drivers of climate change. Figure 1, created
using TrendVis, compares stalagmite records of climate and hy-
drological changes that occurred during the last two deglaciations,
or "terminations". Ice core records of carbon dioxide (black) and
methane (pink) [Petit] concentrations and Northern Hemisphere
summer insolation (the amount of solar energy received on an
area, gray) are also included.

Creating such plots can be difficult, however. Many scientists
depend on expensive software such as SigmaPlot and Adobe
Illustrator. With pure matplotlib [matplotlib], users have two
options: display data in a grid of separate subplots or overlaid
using twinned axes. This works for two or three traces, but does
not scale well. The ideal style in cases with larger datsets is the
style shown in Figure 1: a densely-plotted figure that facilitates
direct comparison of curve features. The key aim of TrendVis,
available on GitHub, is to enable the creation and readability of

* Corresponding author: cros0324@umn.edu, mellissa.cross@gmail.com
‡ Department of Earth Sciences, University of Minnesota

Copyright © 2015 Mellissa Cross. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: A TrendVis figure illustrating the similarities and differ-
ences among climate records from Israel [BarMatthews], China
[Wang], [Dykoski], [Sanbao]; Italy [Drysdale], the American South-
west [Wagner], [Asmerom], and Great Basin region [Winograd0],
[Winograd1], [Lachniet], [Shakun] between the last deglaciation and
the penultimate deglaciation (respectively known as Termination I and
Termination II). Most of these records are stalagmite oxygen isotope
records - oxygen isotopes, depending on the location, may record
temperature changes, changes in precipitation seasonality, or other
factors. All data are available online as supplementary materials or
through the National Climatic Data Center.

https://www.youtube.com/watch?v=tklAFsce7eg
https://github.com/mscross/trendvis
mailto:cros0324@umn.edu, mellissa.cross@gmail.com

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 139

Fig. 2: In XGrid, stackdim refers to number of rows of y axes
and maindim indicates the number of columns. This is reversed in
YGrid. Both dimension labels begin in XGrid.axes[0][0].

these plots in the scientific Python ecosystem using a matplotlib-
based workflow. Here we discuss how TrendVis interfaces with
matplotlib to construct and format this complex plot type as well
as several challenges faced while we walk through the creation of
Figure 1.

The TrendVis Figure Framework

The backbone of TrendVis is the Grid class, in which the figure,
basic attributes, and orientation-agnostic methods are initialized.
Grid should only be initialized through one of its two subclasses,
XGrid and YGrid. As a common application of these types
of plots is time-series data, we will examine TrendVis from the
perspective of XGrid. In XGrid, the x axis is shared among all
the datasets, and y axes are individual - in the terminology of
TrendVis, x axes are the main axes, and y axes are the stacked
axes. This is reversed for YGrid. A graphical representation of
XGrid is shown in Figure 2.

TrendVis figures appear to consist of a common plot space.
This, however, is an illusion carefully crafted via a framework of
axes and a mechanism to systematically hide extra axes spines,
ticks, and labels. This framework is created when the figure is
initialized:

1 paleofig = XGrid([7, 8, 8, 6, 4, 8], xratios=[1, 1],
2 figsize=(6,10))

First, let’s examine the construction of this framework. The overall
area of the figure is determined by figsize, which is passed
to matplotlib. The relative sizes of the rows (ystack_ratios,
the first argument), however, is determined by the contents
of ystack_ratios and the sum of ystack_ratios
(self.gridrows), which in this case is 41. Similarly, the
contents and sum of xratios (self.gridcols) determine
the relative sizes of the columns. So, all axes in paleofig are
initialized on a 41 row, 2 column grid within the 6 x 10 inch
space set by figsize. The axis in position 0,0, (2) spans 7/41
unit rows (0 through 6) and the first unit column; the next axis
created spans the same unit rows and the second unit column,
finishing the first row of paleofig. The next row spans 8 unit
rows, numbers 7 through 15, and so on. All axes in the same row
share a y axis, and all axes in the same column share an x axis.
This axes creation process, shown in the code below, is repeated
for all the values in ystack_ratios and xratios, yielding
a figure with 6 rows and 2 columns of axes. The code below and
all other unnumbered snippets indicate an internal process rather
than part of the paleofig workflow.

xpos = 0
ypos = 0

Create axes row by row
for rowspan in self.yratios:

row = []

for c, colspan in enumerate(self.xratios):
sharex = None
sharey = None

All ax in row share y with first ax in row
if xpos > 0:

sharey = row[0]

All ax in col share x with first ax in col
if ypos > 0:

sharex = self.axes[0][c]

ax = plt.subplot2grid((self.gridrows,
self.gridcols),
(ypos, xpos),
rowspan=rowspan,
colspan=colspan,
sharey=sharey,
sharex=sharex)

ax.patch.set_visible(False)

row.append(ax)
xpos += colspan

self.axes.append(row)

Reset x position to left, move to next y pos
xpos = 0
ypos += rowspan

Axes are stored in paleofig.axes as a nested list, where the
sublists contain axes in the same rows. Next, two parameters that
dictate spine visibility are initialized:

paleofig.dataside_list
This list indicates where each row’s y axis spine,
ticks, and label are visible. This by default alternates
sides from left to right (top to bottom in YGrid),
starting at left, unless indicated otherwise during the

140 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

initialization of paleofig, or changed later on by
the user.

paleofig.stackpos_list
This list controls the x (main) axis visibility. Each
row’s entry is based on the physical location of the
axis in the plot; by default only the x axes at the top
and bottom of the figure are shown and the x axes
of middle rows are invisible. Each list is exposed and
can be user-modified, if desired, to meet the demands
of the particular figure.

These two lists serve as keys to TrendVis formatting dictio-
naries and as arguments to axes (and axes child) methods. At any
point, the user may call:
3 paleofig.cleanup_grid()

and this method will systematically adjust labelling
and limit axis spine and tick visibility to the posi-
tions indicated by paleofig.dataside_list and
paleofig.stackpos_list, transforming the mess in
Figure 3 to a far clearer and more readable format in Figure 2.

Creating Twinned Axes

Although for large datasets, using twinned axes as the sole plotting
tool is unadvisable, select usage of twinned axes can improve data
visualization. In the case of XGrid, a twinned axis is a new axis
that shares the x axis of the original axis but has a different y axis
on the opposite side of the original y axis. Using twins allows the
user to directly overlay datasets. TrendVis provides the means to
easily and systematically create and manage entire rows (XGrid)
or columns (YGrid) of twinned axes.

In our paleofig, we need four new rows:
4 paleofig.make_twins([1, 2, 3, 3])
5 paleofig.cleanup_grid()

This creates twinned x axes, one per column, across the
four rows indicated and hides extraneous spines and
ticks, as shown in Figure 4. As with the original axes,
all twinned axes in a column share an x axis, and all
twinned axes in the twin row share a y axis. The twin row
information is appended to paleofig.dataside_list
and paleofig.stackpos_list and twinned axes are
stored at the end of the list of axes, which previously
contained only original rows. If the user decides to
get rid of twin rows (paleofig.remove_twins()),
paleofig.axes, paleofig.dataside_list, and
paleofig.stackpos_list are returned to their state prior
to adding twins.

Accessing Axes

Retrieving axes, especially when dealing with twin axes in a
figure with many hapazardly created twins, can sometimes be
non-straightforward. The following means are available to return
individual axes from a TrendVis figure:

paleofig.fig.axes[axes index]
Matplotlib stores axes in a 1D list in Figure in the
order of creation. This method is easiest to use when
dealing with an XGrid of only one column.

paleofig.axes[row][column]
An XGrid stores axes in a nested list in the order
of creation, no matter its dimensions. Each sublist

Fig. 3: Freshly initialized XGrid. After running
XGrid.cleanup_Grid() (and two formatting calls adjusting the
spinewidth and tick appearance), the structure of Figure 2 is left,
in which stack spines are staggered, alternating sides according to
XGrid.dataside_list, starting at left.

contains all axes that share the same y axis- a row.
The row index corresponds to the storage position in
the list, not the actual physical position on the grid,
but in original axes (those created when paleofig
was initialized) these are the same.

paleofig.get_axis()
Any axis can be retrieved from paleofig by provid-
ing its physical row number (and if necessary, column
position) to paleofig.get_axis(). Twins can
be parsed with the keyword argument is_twin,
which directs paleofig.twin_rownum() to find
the index of the sublist containing the twin row.

In the case of YGrid, the row, column indices are
flipped: YGrid.axes[column][row]. Sublists correspond to
columns rather than rows.

Plotting and Formatting

The original TrendVis procedurally generated a simple, 1-column
version of XGrid. Since the figure was made in a single function

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 141

Fig. 4: The results of paleofig.make_twins(), performing
another grid cleanup and some minor tick/axis formatting.

call, all data had to be provided at once in order, and it all
had to be line/point data, as only Axes.plot() was called.
TrendVis still provides convenience fuctions make_grid() and
plot_data() to enable easy figure initialization and quick
line plotting on all axes with fewer customization options. The
regular object-oriented API is designed to be a highly flexible
wrapper around matplotlib. Axes are readily exposed via the
matplotlib and TrendVis methods described above, and so the user
can determine the most appropriate plotting functions for their
figure. The author has personally used Axes.errorbar(),
Axes.fill_betweenx(), and Axes.plot() on two pub-
lished TrendVis figures (see figures 3 and 4 in [Cross]), which
required the new object-oriented API. Rather than make individual
calls to plot on each axis, we will use the convenience function
plot_data. The datasets have been loaded from a spreadsheet
into individual 1D NumPy [NumPy] arrays containing age infor-
mation or climate information:

6 plot_data(paleofig,[[(sorq_age, sorq, '#008080')],
7 [(hu_age, hu, '#00FF00',[0]),
8 (do_age, do, '#00CD00', [0]),
9 (san_age, san, 'green', [1])],

10 [(co2age, co2, 'black')],
11 [(cor_age, cor, 'maroon', [1])],
12 [(dh_age, dh, '#FF6103')],

13 [(gb_age, gb, '#AB82FF'),
14 (leh_age, leh, 'red', [1])],
15 [(insol_age, insol, '0.75')],
16 [(ch4_age, ch4, 'orchid')],
17 [(fs_age, fs, 'blue')],
18 [(cob_age, cob, '#00BFFF')]],
19 marker=None, lw=2, auto_spinecolor=False)

Using plot_data, simple line plotting only requires a tuple of
the x and y values and the color in a sublist in the appropriate
row order. Some tuples have a fourth element that indicates which
column the dataset should be plotted on. Without this element, the
dataset will be plotted on all, or in this case both columns. Setting
different x axis limits for each column will mask this fact.

Although plots individualized on a per axis basis may be im-
portant to a user, most aspects of axis formatting should generally
be uniform. In deference to that need and to potentially the sheer
number of axes in play, TrendVis contains wrappers designed to
expedite these repetitive axis formatting tasks, including setting
major and minor tick locators and dimensions, axis labels, and
axis limits.

20 paleofig.set_ylim([(3, -7, -2), (4, 13.75, 16),
21 (5, -17, -9),
22 (6, 420, 520, (7, 300, 725),
23 (8, -11.75, -5))])
24

25 paleofig.set_xlim([(0, 5, 24), (1, 123.5, 142.5)])
26

27 paleofig.reverse_yaxis([0, 1, 3])
28

29 paleofig.set_all_ticknums([(5, 2.5), (5, 2.5)],
30 [(2,1),(2,1),(40,20),(2,1),
31 (1,0.5), (2,1),(40,20),
32 (100,25),(2,1),(2,1)])
33

34 paleofig.set_ticks(major_dim=(7, 3), labelsize=11,
35 pad=4, minor_dim=(4, 2))
36

37 paleofig.set_spinewidth(2)
38

39 # Special characters for axis labels
40 d18o = r'$\delta^{18}\!O$'
41 d13c = r'$\delta^{13}\!C$'
42 d234u = r'$\delta^{234}\!U_{initial}$'
43 co2label = r'CO_{2}'
44 ch4label = r'CH_{4}'
45 mu = ur'$\u03BC$'
46 vpdb = ' ' + ur'$\u2030$'+ ' (VPDB)'
47 vsmow =' ' + ur'$\u2030$'+' (VSMOW)'
48

49 paleofig.fig.suptitle('Age (kyr BP)', y=0.065,
50 fontsize=16)
51 paleofig.set_ylabels([d18o + vpdb, d18o + vpdb,
52 co2label +' (ppmv)',
53 d18o + vpdb,
54 d18o + vsmow, d18o + vpdb,
55 r'W/m^{2}',
56 ch4label + ' (ppmv)', '',
57 d18o + vpdb, d13c + vpdb],
58 fontsize=13)

In this plot style, there are two other formatting features that are
particularly useful: moving data axis spines, and automatically
coloring spines and ticks. The first involves the lateral movement
of data axis (y axis in XGrid, x axis in YGrid) spines into or
out of the plot space. Although the default TrendVis behavior is
alternating the data axis spines from left to right, resulting in space
between data axis spines, adding twin rows disrupts this pattern
and spacing, as shown in Figure 5. This problem is exacerbated
when compacting the figure, which is a typical procedure in this
plot type, to improve both the look of the figure and its readability.
The solution in XGrid plots is to move spines laterally- along the

142 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 5: Figure after plotting paleoclimate time series records, editing
the axes limits, and setting the tick numbering and axis labels. At this
point it is difficult to see which dataset belongs to which axis and to
clearly make out the twin axis numbers and labels.

x dimension- out of the way of each other, into or out of the plot
space. TrendVis provides means to expedite the process of moving
spines:

59 # Make figure more compact:
60 paleofig.fig.subplots_adjust(hspace=-0.4)
61

62 # Move spines
63 # Shifts are in fractions of figure
64 # Absolute position calc as 0 - shift (ax at left)
65 # or 1 + shift (for ax at right)
66 paleofig.move_spines(twin_shift=[0.45, 0.45,
67 -0.2, 0.45])

In the above code, all four of the twinned visible y axis spines
are moved by an individual amount; the user may set a universal
twin_shift or move the y axis spines of the original axes in
the same way. Alternatively, all TrendVis methods and attributes
involved in paleofig.move_spines() are exposed, and the
user can edit the axis shifts manually and then see the results via
paleofig.execute_spineshift(). As the user-provided
shifts are stored, if the user changes the arrangement of visi-
ble y axis spines (via paleofig.set_dataside() or by
directly altering paleofig.dataside_list), then all the
user needs to do to get the old relative shifts applied to the
new arrangement is get TrendVis to calculate new spine posi-
tions (paleofig.absolute_spineshift()) and perform
the shift (paleofig.execute_spineshift()).

Fig. 6: Although the plot is very dense, the lateral movement of spines
and coloring them to match the curves has greatly improved the
readability of this figure relative to Figure 5. The spacing between
subplots has also been decreased.

Although the movement of y axis spines allows the user to
read each axis, there is still a lack of clarity in which curve belongs
with which axis, which is a common problem for this plot type.
TrendVis’ second useful feature is automatically coloring the data
axis spines and ticks to match the color of the first curve plotted
on that axis. As we can see in Figure 6, this draws a visual link
between axis and data, permitting most viewers to easily see which
curve belongs against which axis.

68 paleofig.autocolor_spines()

Visualizing Trends

Large stacks of curves are overwhelming to viewers. In compli-
cated figures, it is critical to not only keep the plot area tidy and
link axes with data, as we saw above, but also to draw the viewer’s
eye to essential features. This can be accomplished with shapes
that span the entire figure, highlighting areas of importance or
demarcating particular spaces. In paleofig, we are interested
in the glacial terminations. Termination II coincided with a North
Atlantic cold period, while during Termination I there were two
cold periods interrupted by a warm interval:

69 # Termination I needs three bars, get axes that will
70 # hold the lower left, upper right corners of bar
71 ll = paleofig.get_axis(5)
72 ur = paleofig.get_axis(0)
73 alpha = 0.2
74

75 paleofig.draw_bar(
76 ll, ur, (11, 12.5), alpha=alpha,
77 edgecolor='none', facecolor='green')
78 paleofig.draw_bar(
79 ll, ur, (12.5, 14.5), alpha=alpha,
80 edgecolor='none', facecolor='yellow')

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 143

81 paleofig.draw_bar(
82 ll, ur, (129.5, 136.5), alpha=alpha,
83 edgecolor='none', facecolor='green')
84

85 # Draw bar for Termination II, in column 1
86 paleofig.draw_bar(paleofig.get_axis(5, xpos=1),
87 paleofig.get_axis(0, xpos=1),
88 (129.5, 136.5), alpha=alpha,
89 facecolor='green',
90 edgecolor='none')
91

92 # Label terminations
93 ax2 = paleofig.get_axis(0, xpos=1)
94 paleofig.ax2.text(133.23, -8.5, 'Termination II',
95 fontsize=14, weight='bold',
96 horizontalalignment='center')
97

98 ax1 = paleofig.get_axis(0)
99 paleofig.ax1.text(14, -8.5, 'Termination I',

100 fontsize=14, weight='bold',
101 horizontalalignment='center')

The user provides the axes containing the lower left corner of the
bar and the upper right corner of the bar. In the vertical bars of
paleofig the vertical limits consist of the upper limit of the
upper right axis and the lower limit of the lower left axis. The
horizontal upper and lower limits are provided in data units, for
example (11, 12.5). The default zorder is -1 in order to place the
bar behind the curves, preventing data from being obscured.

As these bars typically span multiple axes, they must be
drawn in Figure space rather than on the axes. This presents
two challenges. The first is converting data coordinates to figure
coordinates. In the private function _convert_coords(), we
transform data coordinates (dc) into axes coordinates, and then
into figure coordinates:
ac = ax.transData.transform(dc)

fc = self.fig.transFigure.inverted().transform(ac)

The figure coordinates are then used to determine the width,
height, and positioning of the Rectangle in figure space.

TrendVis strives to be as order-agnostic as possible. However,
a patch drawn in Figure space is completely divorced from the
data the patch is supposed to highlight. If axes limits are changed,
or the vertical or horizontal spacing of the plot is adjusted, then
the bar will no longer be in the correct position relative to the data.

As a solution, for each bar drawn with TrendVis, the upper
and lower horizontal and vertical limits, the upper right and lower
left axes, and the index of the patch in XGrid.fig.patches are all
stored as XGrid attributes. Storing the patch index allows the user
to make other types of patches that are exempt from TrendVis’
patch repositioning. When any of TrendVis’ wrappers around
matplotlib’s subplot spacing adjustment, x or y limit settings, etc
are used, the user can stipulate that the bars automatically be
adjusted to new figure coordinates. The stored data coordinates
and axes are converted to figure space, and the x, y, width, and
height of the existing bars are adjusted. Alternatively, the user
can make changes to axes space relative to figure space without
adjusting the bar positioning and dimensions each time or without
using TrendVis wrappers, and simply adjust the bars at the end.

TrendVis also enables a special kind of bar, a frame. The frame
is designed to visually anchor data axis spines, and appears around
an entire column (row in YGrid) of data axes under the spines.
However, for paleofig we will use a softer division of our the
columns by using cut marks on the main axes to signify a broken
axis:

102 paleofig.draw_cutout(di=0.075)

Similar to bars, frames are drawn in figure space and can some-
times be moved out of place when axes positions are changed
relative to figure space, thus they are handled in the same way.
Cutouts, however, are actual line plots on the axes that live in axes
space and will not be affected by adjustments in axes limits or
subplot positioning. With the cut marks drawn on paleofig, we
have completed the dense but highly readable plot shown in Figure
1.

Conclusions and Moving Forward

TrendVis is a package that expedites the process of creating
complex figures with multiple x or y axes against a common y
or x axis. It is largely order-agnostic and exposes most of its
attributes and methods in order to promote highly-customizable
and reproducible plot creation in this particular style. In the long-
term, with the help of the scientific Python community, TrendVis
aims to become a widely-used higher level tool for the matplotlib
plotting library and alternative to expensive software such as
SigmaPlot and MATLAB, and to time-consuming, error-prone
practices like assembling multiple Excel plots in vector graphics
editing software.

REFERENCES

[Petit] J. R. Petit et al. Climate and Atmospheric History of the Past
420,000 years from the Vostok Ice Core, Antarctica Nature,
399:429-436, 1999.

[BarMatthews] M. Bar-Matthews et al. Sea--land oxygen isotopic relation-
ships from planktonic foraminifera and speleothems in the
Eastern Mediterranean region and their implication for pa-
leorainfall during interglacial intervals, Geochimica et Cos-
mochimica Acta, 67(17):3181-3199, 2003.

[Drysdale] R. N. Drysdale et al. Stalagmite evidence for the onset of
the Last Interglacial in southern Europe at 129 pm1 ka,
Geophysical Research Letters, 32(24), 2005.

[Wang] Y. J. Wang et al. A high-resolution absolute-dated late Pleis-
tocene monsoon record from Hulu Cave, China, Science,
294(5550):2345-2348, 2001.

[Dykoski] C. A. Dykoski et al., A high-resolution, absolute-dated
Holocene and deglacial Asian monsoon record from Dongge
Cave, China, Earth and Planetary Science Letters, 233(1):71-
86, 2005.

[Sanbao] Y. J. Wang et al. Millennial-and orbital-scale changes in the
East Asian monsoon over the past 224,000 years, Nature,
451(7182):1090-1093, 2008.

[Wagner] J. D. M. Wagner et al. Moisture variability in the southwestern
United States linked to abrupt glacial climate change, Nature
Geoscience, 3:110-113, 2010.

[Asmerom] Y. Asmerom et al. Variable winter moisture in the southwest-
ern United States linked to rapid glacial climate shifts, Nature
Geoscience, 3:114-117, 2010.

[Winograd0] I. J. Winograd et al. Continuous 500,000-year climate
record from vein calcite in Devils Hole, Nevada, Science,
258(5080):255-260, 1992.

[Winograd1] I. J. Winograd et al. Devils Hole, Nevada, $delta$ 18 O
record extended to the mid-Holocene, Quaternary Research,
66(2):202-212, 2006.

[Lachniet] M. S. Lachniet et al. Orbital control of western North America
atmospheric circulation and climate over two glacial cycles,
Nature Communications, 5, 2014.

[Shakun] J. D. Shakun et al. Milankovitch-paced Termination II in a
Nevada speleothem? Geophysical Research Letters, 38(18),
2011.

[matplotlib] J. D. Hunter. Matplotlib: A 2D Graphics Environment, Com-
puting in Science & Engineering, 9:90-95, 2007.

[Cross] M. Cross et al. Great Basin hydrology, paleoclimate, and
connections with the North Atlantic: A speleothem stable
isotope and trace element record from Lehman Caves, NV,
Quaternary Science Reviews, in press.

[NumPy] S. van der Walt et al. The NumPy Array: A Structure for
Efficient Numerical Computation, Computing in Science &
Engineering, 13:22-30, 2011.

	Introduction
	The TrendVis Figure Framework
	Creating Twinned Axes
	Accessing Axes
	Plotting and Formatting
	Visualizing Trends
	Conclusions and Moving Forward
	References

