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Abstract—The deformation of the Earth surface reflects the action of several
forces that act inside the planet. To understand how the Earth surface evolves
complex models must be built to reconcile observations with theoretical numeri-
cal simulations. Starting from a well known numerical methodology already used
among the geodynamic scientific community, PyGmod has been developed from
scratch in the last year. The application simulates 2D large scale geodynamic
processes by solving the conservation equations of mass, momentum, and
energy by a finite difference method with a marker-in-cell technique. Unlike
common simulation code written in Fortran or C this code is written in Python.
The code implements a new approach that takes advantage of the hybrid ar-
chitecture of the latest HPC machines. In PyGmod the standard MPI is coupled
with a threading architecture to speed up some critical computations. Since the
OpenMP API cannot be used with Python, threading is implemented in Cython.
In addition a realtime visualization library has been developed to inspect the
evolution of the model during the computation.

Index Terms—HPC, numerical modelling, geodynamics

Introduction

The dynamics of surface and deep Earth processes, referred as
geodynamics, is a challenging subject in geosciences since the
establishment of plate tectonics in the late 1960s. The outer shell
of the Earth is split into a number of thin, rigid plates that are
in relative motion with respect to one another [Mor68]. Most
of the earthquakes, volcanic eruptions and mountain buildings
occur at plate boundaries [Tur02]. Geology started to move from
a descriptive approach to a quantitative one [McK69], [Min70].
Numerical modeling in geodynamics is necessary because tectonic
processes are too slow and too deep in the Earth to be observed
directly. In the last 30 years numerical geodynamic modeling
has developed very rapidly thanks to the introduction of new
numerical techniques and the availability of powerful computers
[Ger10]. Several of the known problems in computational science,
such as the non-linear nature of rock rheology, the multicomponent
nature of the systems and other thermodynamic variables, can
now be managed. In the past years computer clusters of differ-
ent architectures (shared memory systems, distributed memory
systems and distributed shared memory systems) have become
available to most researchers. To take full advantage of the power
of these machines, parallel algorithms and software packages must
be developed. However, geoscience researchers often do not have
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enough knowledge to build and debug parallel software. While
in the last fifteen years several numerical methods and libraries
have been developed to solve many of the equations needed
to model geodynamic problems, almost all of them are written
in C/C++ or Fortran. Sometimes geodynamic modeling is done
with commercial software [Pas02], [Jarl11] to reduce the effort
of solving equations, as well as writing and debugging a new
application. By exploiting several years of Python experience with
remote sensing and geoscience topics, a numerical geodynamic
modeling application, PyGmod, has been developed in the last
twelve months. The development of PyGmod occurred within
the PRACE-OGS research project, which is concerned with HPC
applications for oceanographic and geophysical numerical simula-
tions.

Scientific Context

PyGmod can simulate different geodynamic scenarios (e.g. plate
subduction/collision, magma intrusion, continental drifting, etc.
[Tur02]) and processes. The main target of PyGmod is the study
of extensional geodynamic contexts. The application has been
developed as a tool for understanding the genesis and evolution of
extensional continental zones (rifts). Rifts and their final product,
passive margins, are the expression of fundamental processes
continually shaping planetary surfaces [TurO2]. They are sites
of magmatic fluid and volatile transfer from the mantle to the
surface trough flood basalt and alkaline magmatism, and from
the surface to the mantle via surface weathering, hydrothermal
systems and serpentinization. Sedimentary sequences contained
within the segmented rift systems record the interplay between
tectonics and climate throughout basin evolution, and they may se-
quester large volumes of CO2 and hydrocarbons. Like subduction
margins, rifts may be sites of voluminous and explosive volcanism.
Passive margins are sites of enormous landslides and destructive
earthquakes [Jac97], [BucO4]. The poor understanding of rift
initiation is partly due to the fact that extensive stretching, syn-
and post-rift magmatism, and post breakup sedimentation usually
overprint and bury the record of incipient extension at mature
rifts and rifted margins. Understanding how, why and when rifts
initiate and localize is important for defining factors controlling
their dynamics. The relative importance of these factors during the
inception and earliest development of a new rift is controversial.

Core Development

PyGmod is inspired by some examples available in the geody-
namic literature [Ger10], [Deu08]. These codes have been studied,
ported to Python and tested. The first Python version was serial,
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was based on the Numpy [Vanl1] and Scipy [JonOl] packages
to manage arrays and solved the governing differential equations.
The parallel version of the algorithm has been developed on a
multicore commodity PC with the target of the distributed shared
memory architecture systems available at CINECA [Cin]. The
porting of PyGmod from the commodity PC to a supercomputer
was not straightforward beacuse every supercomputer has a dif-
ferent hardware architecture. The MPI message-passing system
has been adopted while the Python multiprocessing module was
avoided because it is not available on all supercomputers (e.g.
the IBM Blue Gene series [Gill3]). The management of parallel
distributed arrays has been possible thanks to the Global Array
Toolkit (GA) library [Nie0O6] which is available in Python as
gadpy. GA hides all the complexity of managing the distributed
arrays between the nodes making them available simply as Numpy
arrays. The parallel solution of the governing equations is done
using the well known PETSc library provided by the petsc4py
package [Dalll]. Simulation results are stored in an HDF5 file
using the h5py [Coll3] package. Gadpy, petsc4py and h5py are
all depending on mpidpy [Dal05], [Dalll] and provide a higher
level interface that greatly reduces the parallel programming effort.
Practically all the MPI communication in PyGmod is hidden by
the previous three packages and there are only few direct calls to
MPI methods (Figure 1).
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Fig. 1: PyGmod layer diagram.

PyGmod Structure

PyGmod is a 2D thermomechanical code based on an well known
geodynamic modeling methodology characterized by the solution
of conservative finite difference schemes [Pat80] coupled with the
marker-in-cell method [Ger03], [Ger07], [Deu08]. The deforma-
tion of rocks is modeled as flow of variable viscous material as in
computational fluid dynamics [VerO7]. The governing equations
reflect the conservation laws of physics:

e conservation of mass,

« conservation of momentum (rate of change of momentum
is equal to the sum of forces on the fluid particle, second
law of Newton),

« conservation of energy (first law of thermodynamics).

These equations are coupled with rock rheological laws that
take in account stress, strain-rate, viscosity, temperature, pressure
and composition. The solution is achieved by a finite difference
conservative schema and coupled with the the moving-marker
Lagrangian approach [Bra86]. The equations are solved on an
Eulerian grid while the markers are a cloud of points which
covers the grid. The marker-in-cell methodology is characterized
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by several interpolation processes from the markers to the nodes of
the grid and back [Ger03], [Deu08]. These are atomic calculations
whose execution time depends on the number of markers and the
type of interpolator (linear, bilinear, cubic, etc.). Implementation
of this algorithm is usually done on shared memory architecture
computers using the OpenMP API [Gor(06]. These interpolations
unfortunately cannot be vectorized by Numpy as they need the
allocation of large temporary arrays for every MPI process and
the memory available can be very little even if the number of
processors is huge. For example, the IBM BG/Q at CINECA has
only 1 Gb of RAM available to each MPI process even if the
system has 160K cores [Gil13].

GA greatly helps to create, distribute and manage all the
arrays, both 1D and 2D, providing a shared memory style pro-
gramming environment in the context of a distributed array data
structures. GA arrays are global and can be used as if they
were stored in a shared memory environment. All details of the
data distribution, addressing, and data access are encapsulated
in the global array objects. The basic shared memory operations
supported include get, put, scatter, and gather. These operations
are truly one-sided/unilateral and will complete regardless of
any action taken by the remote process(es) which own(s) the
referenced data.

PyGmod uses a modified GA version which implements the
ARMCI-MPI [Armci] RMA (Remote Memory Access) one-sided
communication because the standard GA implementation, avail-
able at the time of the development of PyGmod, worked only on
few hardware architectures.

The MPI topology implemented by a global array is used to
split the 2D domain in Cartesian blocks along the vertical and
horizontal axes and to assign to each block the markers which
belong to it. Each block of data is then extended to partially
overlap its neighbors to avoid border effects. Markers move inside
the model domain at every time step iteration and the local portion
of markers inside each Cartesian block must be extracted again.
In each time iteration, most of the calculation is done on the
local portion of the markers and on the grid nodes using only
Numpy arrays and methods. Numerical calculation on local arrays
has been vectorized by Numpy methods wherever possible. The
following is an example of a block of code that has been vectorized
to speed up computation (up to 75x) by removing a double for-
loop:

# Original code
(r0, c0), (rl, cl) = ga.distribution(self.dexy)

for i in range (dexy.shape[0]):
for j in range (dexy.shape[l]):

dexy[i, J] = (
0.5  ((vx[i + 1, 3] - vx[i, J]) /
self.dyc[i + r0] +
(vyli, 3 + 11 - vyli, 31) /

self.dxc[j + c0]))

# Vectorized code

i = np.arange (dexy.shape[0]

j = np.arange (dexy.shape[1l]

dexyl[:] = (
0.5 » ((vx[i + 1, :1[:, 31 -
vx[i, :1[:, J1) / self.dyc[i + r0, np.newaxis] +
(vyli, :10[:, J + 11 - wvyli, :10[:, J1) /

self.dxc[j + c0]))

The governing equations are solved using the PETSc library
provided by petsc4py. PyGmod uses direct equation solvers to
achieve accurate solutions like MUMPS [AmeO0] or Superlu
[Li03] beacuse the problem is 2D and current supercomputers
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Fig. 2: Example of on-screen log outputby four MPI tasks running with log level "info".

provide enough memory. Unfortunately GA arrays cannot be di-
rectly passed to PETSc solvers so local processor ranges of PETSc
sparse arrays and vectors must be extracted and the corresponding
data block must be retrieved as Numpy arrays from the global
array instance. The following is an example of the extraction of
the local portion of a quantity from a global array needed later to
fill PETSc arrays:

# Get local PEI

istart, iend = 1l.getOwnershipRange ()

ranges

c0 = istart / dofs / (ynum - 1)
cl = iend / dofs / (ynum - 1) + 2
r0 = 0
rl = ynum - 1
# a get needed block as
local_érray = ga.get (
global_array, (r0, c0), (rl, cl)

In this example, / is a PETSc distributed bi-dimensional array,
dofs is the degree of freedom of the system, and ynum is the total
number of rows of the model. The local array is used to fill the
local PETSc portion of the sparse arrays and vectors. The local
solution of the equations, a Numpy array, is then put back in the
corresponding global array.

PyGmod communicates with the user by a logging system,
based on MPI, that helps the tracking of each step of the simulation
and is of paramount importance in debugging the code. The
MPILog class uses an MPI.File object’s methods to write logging
information to standard output (Figure 2) or to a file. Six log levels
are defined: critical, error, warning, notice, info and debug, with
warning as the default. Each MPI process writes its log to the
same file in a different color. Log level as well as processor ID
number can be filtered out. Log calls are invoked according to the
following syntax:
log.info(...)
log.error(...)
log.critical(...)

Each of these is a pythonic shortcut to the write method of the
MPILog object:

def write (self,
rank=True,

inmsg, watch=['all'],
mono=False, level=INFO):

In this example inmsg is the message string, watch is the list of
processors to which the message applies, rank is a switch to hide
the processor rank from the message, mono disables colorized
messages, and level defines the minimum level at which the
message will be printed.

Each simulation is controlled by a single configuration file
handled by the ConfigObj [Cfg] package. This file provides some
general physical constants, modeling switches, PETSc equation
solver options, mesh geometry and size, lithological geometry,
initial distribution of temperature, boundary conditions, and topog-
raphy. Units of measurements can be included in the configuration
file because the parsing system implemented converts the units
to the right ones needed by PyGmod checking also for dimen-
sionality consistency. This has been accomplished adopting the
Pint [Pint] package. The configuration file is organized in several
sections as in the following condensed example:

# Physical constants
gx = 0. m / sxx2
gy = 9.8l m / sx%2

# Ouput file
output_file = 'extension.hdf5'
log_file = 'extension.log'

# Stokes solver options

stokesSolver = """
ksp_type=preonly
pc_type=1lu
pc_factor_mat_solver_package=superlu_dist
mat_superlu_dist_colperm=PARMETIS
mat_superlu_dist_parsymbfact=1

# Specific sections
[Mesh]
model = "extension"
SizeAlongX = 400000
SizeAlongY = 300000
NumberOfNodesAlongX = 161
NumberOfNodesAlongY = 61
NumberOfMarkersAlongX = 500
NumberOfMarkersAlongY = 400
DistributionOfNodesAlongX = """ (
'Variable (0.0, 100000.0, 2000.0,
rtol=True) ',
'Constant (100000.0, 300000.0,
'Variable (300000.0, 400000,
30, rtol=False)'

30,

100) ",
2000.0,
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Fig. 3: RTV screenshot of a rift simulation.

DistributionOfNodesAlongyY = """ (

'Const
'Varia

ymnn

# Lithological
[Lithologies]

[["Lithosp
density
melt_den
sinFI0 =
sinFIl =
GAM1 = 0

# Geometry of
# lithologies

[Polygons]
lid = """
0
0
48
48

ant (0.0, 80000.0, 40)
ble (80000.0, 300000,
20, rtol=False)'

/Rheological model

heric mantle"]]

= 3300 * kg/mxx3

sity = 2700 * kg/m*x3
0.6 » dimensionless
0.0 » dimensionless
.1 x dimensionless

polygons where

are defined

32
95
95
32

[Thermal Boundary Condition]

[Fluid Boundar

y Condition]

'
’

2000.0,

[Topography]

Modeling results are stored in HDFS5 files created by the parallel
(MPI) version of the h5py package. Each time iteration is saved
in a different HDF5 file (evolution step) to avoid large files. A
main output file also contains a copy of the configuration which
generated the simulation for the entire evolution.

Results of the simulation can be explored by a viewer applica-
tion module called Real Time Viewer (RTV). RTV code is based
on Matplotlib [Hun07] and plots some of the quantities calculated
in the simulation (Figure 3). Because the visualization of over
a million markers as a cloud of points can be challenging, data
are interpolated during the simulation using the power of MPI and
saved in the HDF? file as arrays. Thus, each processor interpolates
only a small image patch from its own local markers pool. The
interpolation uses the griddata module of Scipy with a nearest
neighbors switch. RTV can plot data from a real-time simulation
showing the current evolution step or historical data.

Each simulation can be interrupted by the user or by the
operating system and restarted from the last completed time
iteration without any data loss.



156
Performance

PyGmod was built using optimized third party libraries to speed
up the computation and avoid the direct calls to MPI primitives
needed for the parallelization wherever possible. Some sections
(e.g. the mesh and topography objects) and some arrays are not
yet parallel. These objects and arrays are replicated on all tasks
since the size of the problems used to develop the code was not
so big so as to require further optimization. Further parallelization
should increase the speed and decrease the memory allocation.
Tests proved that marker interpolation is a critical operation that
can take a large amount of time. Interpolation is done in for-
loops as the atomic nature of the algorithm used forbids the use of
Numpy methods. Marker points contribute to the resolution of the
model and they tend to be on the order of millions dramatically
slowing down the computation. The following code is an example
of one of the interpolations in PyGmod:

# Loop over markers
for mk in range(len(idx)):
# Check if data is in the model domain

if self.inDomain(...):

# >r left node of the grid
# from marker coordinates

xn, yn, dx, dy = self.ul_node(...)
# Linear interpolation method

self.markerBint (...)

The loop operates over all the markers inside the block assigned to
each processor and every time iteration step calls the interpolation
methods several times. Because Python loops are inherently slow,
Cython has been used to speed up markers interpolation. Most of
the original Python code has been ported to Cython with minor
modifications, just adding static typing and using pointers for
arrays. The net increase of speed with this simple technique is
almost three orders of magnitude (Table 1). The performance has
been further improved by threading the interpolation methods.
Thanks to Cython [Behl1], the Global Interpreter Lock (GIL) can
be removed to make the threads concurrent. Loops are split into
threads and each of them owns only a small section of the block
of markers assigned locally to every processor. More tests are
now taking place on the HPC facilities provided by CINECA to
understand the scalability and further optimize the code.

Final Remarks

PyGmod shows that it is possible to build a simulation code that
runs efficiently on HPC computers with a small programming
effort. Available third party Python packages (Figure 1) greatly
reduced the work needed to parallelize the algorithms. Petsc4py,
gadpy, mpi4py and h5py are efficient and handle of all the neces-
sary communication. Pure Python code can be optimized further
by using different switches or methods provided by external
packages (e.g. equation solvers). PyGmod is young code that
works without any C or Fortran. It can be modified with minor
effort, adapted to the needs of the research, and extended including
other geodynamic phenomena like melting, fluid migration, phase
changes, etc.. Open-source and efficient libraries and packages
available in the Python universe overcome the myth that Python is
only a scripting language not suited for computationally intensive
purposes or that cannot be used on HPC facilities.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Interpolation Speedup
Pure Python 1
Cython 725
Cython (2 Threads) 1187
Cython (4 Threads) 2056

TABLE 1: Performance comparision between interpolation code
adopting Cython and threading.
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