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Testing Generative Models of Online Collaboration
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Abstract—We introduce BigBang, a new Python toolkit for analyzing online
collaborative communities such as those that build open source software. Mail-
ing lists serve as critical communications infrastructure for many communities,
including several of the open source software development communities that
build scientific Python packages. BigBang provides tools for analyzing mailing
lists. As a demonstration, in this paper we test a generative model of network
growth on collaborative communities. We derive social networks from archival
mailing list history and test the Barabási-Alpert model against this data. We
find the model does not fit the data, but that mailing list social networks share
statistical regularities. This suggests room for a new generative model of network
formation in the open collaborative setting.

Index Terms—mailing lists, network analysis, assortativity, power law distribu-
tions, collaboration

Introduction

Open source software communites such as those that produce
many scientific Python packages are a critical part of contem-
porary scientific organization. A distinguishing feature of these
communities is their heavy use of Internet-based infrastructure,
such as mailing lists, version control systems, and issue trackers,
for managing communications and organizing work on distributed
teams. This data is often deliberately publicly accessible as open
source best practices include the "conspicuous use of archives"
[Fogel]. The availability of these digital records are also an
excellent resource for the researcher interested in sociotechnical
organization and collaboration within science.

This paper introduces BigBang, a Python project whose pur-
pose is the collection, preprocessing, and analysis of data from
open collaborative communities. Built for the use case of studying
the Scientific Python communities in particular, it generalizes
to other communities and supports fruitful comparisons between
them.

To demonstrate the potential of this approach, this paper will
explore the structure of mailing list discussions in the context of
open collaborative projects. We extract social network data from
the archives of public mailing lists and test the plausibility that
these graphs were generated by Barabási-Alpert network model.
We find that of the mailing lists we’ve analyzed, none exhibit
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two features of Barabási-Alpert networks: power law degree
distribution and zero degree assortativity. Instead the data indicates
that these networks have a log-normal degree distribution and have
negative degree disassortivity. This result suggests the possibility
of future work of scientifically developing a generative model of
collaboration.

BigBang Overview

Launched in 2014, BigBang is a software project that aims to
provide researchers a complete toolkit for the scientific analysis
of open online collaborative communities. Though applicable to
many domains, research into online collaboration has special rel-
evance to practicioners of computationally intensive open science.
Through it scientific programming communities such as Scientific
Python can achieve a quantitative understanding of their own work
and innovation process.

Thorough study of these kinds of communities requires the
collection and rationalization of many heterogenous and high-
dimensional data sources, including but not limited to mailing
lists, version control systems such as Git, and issue trackers such
as GitHub and Bugzilla.

This data is complex in that it has many dimensions that afford
very different kinds of analysis:

• Time. All data from online collaboration infrastructure is
timestamped, affording use of time series methods.

• Text. Email message bodies, issue contents, and commit
messages in version control are all text data suitable for
study with natural language processing techniques.

• Social network. Participants in the project are individuals
linked by relational ties of communication. Hence these
data afford study through social network analysis tech-
niques.

• Software static analysis. Source code in version control is
complex data containing the definition of many interelated
variables, functions, classes, and modules. Static analysis
and compilation techniques from computer science can be
used to study these entities within the software itself.

The richness and granularity of the data from open source soft-
ware communities and other open on-line collaborative projects
promise the answers to many research questions about software
engineering, innovation, social organization, and more. The catch
is that with data that is so multifaceted, preprocessing the data is
an engineering-intensive endeavor.

https://www.youtube.com/watch?v=AQFS_ES7rT0
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The versatility and scope of open source Scientific Python
packages makes building a generic research infrastructure for
analyzing these communities a possibility within reach. Archi-
tecturally, BigBang is a Python package that includes Scientific
Python libraries for time series analysis, natural language process-
ing, network analysis, and software analysis as dependencies.

BigBang includes methods for collecting research data from
sources on the web about the activity of open collaborative
communities. At the time of this writing, BigBang supports data
collection from Mailman, the mailing list service, as well as other
.mbox formatted email archives. It also supports data collection
from Git repositories. Future versions will have methods for
collecting data from issue trackers.

The BigBang repository contains an examples directory of
Jupyter notebooks demonstrating its functionality and exploring
lines of research inquiry. Researchers can contribute to the project
by submitting Jupyter notebooks to the repository for review
through the GitHub Pull Request system. Source code that per-
forms preprocessing that is usable by multiple computational
experiments is in a separate source code directory that can be
imported as a Python module.

In the context of Scientific Python, BigBang is deliberately
recursive. It is a Python project that depends on many other scien-
tific Python projects. It is designed to study, among other things,
dependencies and interactions between the Scientific Python tech-
nologies and communities. Our goal is for BigBang to provide
a new means for these communities to engage in scientific self-
management.

Testing Generative Models of Online Collaboration

As a demonstration of BigBang’s capabilities, in this paper we
will test a well known generative model of network formation
against social network data derived from public mailing list
discussions. A generative model is a formal model that describes
a process through which data is generated. A principle benefit
of a formal generative model is that the statistical properties of
data it generates can be compared with the statistical properties
of empirical data. Such comparisons are one way to get empirical
purchase on the mechanism behind even purely observational data.
Discovering a concise generative model that fits data from on-
line collaboration would give us insight into the mechanism of
collaboration itself.

In this paper, we will test one well known generative model of
network data, the Barabási-Alpert model. This model describes a
process by which new nodes, as they join a network, form edges
with other nodes with probability proportional to their degree. This
process is called preferential attachment. Very roughly speaking,
in social networks preferential attachment is suggestive of a net-
work dominated by attachments to a small number of luminaries.
In its basic form, this model generates networks with two notable
statistical properties:

• The degree distributions of Barabási-Alpert networks are
scale-free, meaning that the fraction of nodes of degree k
falls asymptotically according to a power law distribution.
P(k)∼ k−γ for some positive γ .

• The correlation between the degrees of adjacent nodes
converges to zero (from below) as the network grows.

We discover in our empirical data that neither of these proper-
ties hold for the social networks fo public mailing list discussions.

This suggests that preferential attachment is not a mechanism
that dominates the social interactions on the collaborative projects
represented in our data. On the contrary, the statistical properties
of public mailing list discussions suggest that participation is more
widely distributed than in many other social networks, and that
interaction with new participations is a priority.

Preferential attachment model

An early result in the study of complex networks was the obser-
vation that many networks existing in nature exhibit a scale-free
degree distribution. [BarabásiAlbert] This means that the tail of the
distribution of the number of edges of each node in the network
(the node’s degree) converges to a power law function:

y = axk

(Scale-free refers to the scale invariance of the power law distri-
bution.)

The prevalence of scale-free networks in nature has raised the
question of what generative processes produce networks with this
property. What was at one point the most well-known random
graph model, the Erdős-Rénri model, produces networks with
binomial degree distribution. Barabási and Alpert [BarabásiAlbert]
have proposed a widely cited and studied model of network gen-
eration that produces graphs with scale-free degree distribution.

The attractiveness of the Barabási-Alpert model is due in part
to its being a generative model that describes a process for creating
data of an observed distribution, as opposed to being simply a
description of the distribution itself. This gives the Barabási-Alpert
model explanatory power.

In particular, the Barabási-Alpert model attributes the scale-
free distribution of node degree to a preferential attachment
mechanism, parameterized by m0 and m. The network is formed
by beginning with a small number m0 of nodes and adding new
nodes, connecting each new node to m < m0 nodes, where the
probability of connecting to node i is proportional to the prior
degree of that node, ki.

P(ki) =
ki

∑ j k j

Here, ∑ j k j is the sum of all degrees of all nodes in the graph. The
parameter m is fixed across all iterations. [AlbertBarabási]

The Barabási-Alpert model is favored for its simplicity, its
intuitively clear mechanism of preferential attachment, and for
its analytic tractability. Intuitively, a social process driven by
preferential attachment is one in which "the rich get richer".
Consider the social graph from an on-line social network such
as Facebook or Twitter. New entrants to the network will ’friend’
or ’follow’ existing nodes. If they preferentially attach, the will be
much more likely to connect to celebrities who already dominate
the network than to new entrants such as themselves. The most
highly connected participants will likely owe their position in the
network to their seniority. Studies have supported the role of a
preferential attachment mechanism in social network formation
[Zhou2011], [Tinatti2012]. It is an empirical question whether
the preferential attachment mechanism explains the data from
collaborative communities such as those that develop Scientific
Python packages.
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Power law or log-normal?

An implicit challenge to the Barabási-Alpert model comes from
[Clauset2007], who argue that many conventionally accepted
techniques for fitting power law distributions to empirical data
are biased and unsound. Specifically, they critique the common
method of plotting the histogram of the data on a log-log axis and
testing for linearity by perfoming a least-squares linear regression,
and variations of this. They propose an alternative Bayesian
technique for testing power law distributions. By computing the
likelihood of the data being generated by a power law distribution
and comparing it with the likelihood of it being generated by other
heavy-tail distributions, such as the log-normal distribution, they
provide a statistically sound basis for model comparison.

The Clauset et al. method considers only the tail of the data,
picking a cutoff value xmin below which data are ignored. They
argue that picking this value is of critical importance: to pick too
high an xmin is to fit a power law to non-power law data. to pick too
low a value is to throw out legitimate data, which can lead to bias.
They propose selecting the xmin that minimizes the Kolmogorov-
Smirnov distance between the best fitting power law distribution
and the empirical data above the mininum.

We refer the reader to [Clauset2007] for the in-depth defense
of this method as an alternative to those based on testing for
linearity on a log-log scale. Besides its statistical soundess, an
advantage of this method is that it has been implemented in Python
in the powerlaw package by [Alstott2014], which is what is used
for the computational results below.

From a Bayesian perspective, the ratio of likelihoods rep-
resents how much one should update one’s beliefs based on
observation of data. In this case, the computed likelihood ratio
of the data being generated by a power law over a log-normal
distribution would be interpreted as how much the data should
persuade that it came from a power law distribution independent
of one’s prior untested belief.

This leaves open the question of the prior probability of a
distribution being generated by a power law producing process, or
a log-normal producing process. [Mitzenmacher2003] surveys a
century of scientific disagreement over the prevalance of each dis-
tribution across many disciplines. Different processes are expected
to produce different distributions.

Processes through which "the rich get richer" systematically,
such as the preferential attachment process described above, will
produce power law distributed data.

Log-normal distributions are produced by what
[Mitzenmacher2003] calls multiplicative processes. A
multiplicative process occurs when independent random variables
are multiplied together. Contrast this with the preferential
attachment process, where the possibility of attachement is
distinctly not independent of prior conditions. When a series of
independent and identically distributed variables is multiplied
together, the product’s distribution converges on a log-normal
distribution by the Central Limit Theorem.

Mitzenmacher argues that subtle variations in generative pro-
cesses can turn their results one way or another. Ideally one can
look more deeply at the structure of data, not just its distribution, to
determine the process behind a heavy-tailed data set. Despite this
difficulty, the statistical consequences of different processes will
become more apparent asymptotically as more data is generated.

In summary, a process of network growth according to which
degree is the result of a independent multiplicative process will
assymptotically produce a log-normal distribution. A process of

network growth driven by non-independent preferential attach-
ment will approach a power law degree distribution. A test of the
log likelihood of the best fit of either distribution on an empirical
data set provides empirical support for the data’s being produced
by one process or the other.

Degree assortativity

Another graph theory concept that we will use in our analysis of
collaborative mailing lists is degree assortativity. Degree assorta-
tivity is the correlation between degrees of adjacent nodes in the
network. In the context of social networks, it is a measure of a
special case of homophily, the tendency of people to be connected
to others who are similar to them. Degree assortativity means that
the most connected members of the network are connected with
each other.

Following the mathematical definition of [Newman2003], the
degree assortativity coefficient is

r =
∑ jk jk(e jk−q jqk))

σ2
q

In the above formula, e jk is the fraction of edges that connect
vertices of degree j+1 and k+1, i.e. the degrees of the connected
vertices not including the connecting edge itself. [Newman2003]
calls this excess degree. The value qk is the distribution of excess
degree.

qk = ∑
j

e jk

The value σq is the standard deviation of qk.
[Newman2002] studied degree assortativity in complex net-

works and introduced an intriguing hypothesis. Observed social
networks, such as those of academic coauthorship networks and
business director associations, exhibit positive degree assortativity.
Technical and biological networks, such as connections between
autonomous systems on the Internet, protein interactions, and
neural networks, exhibit negative degree assortativity, or disas-
sortivity. Our own speculative interpretation is that the organi-
zation of technical and biological networks evolves for a func-
tional purpose facilitated better by having highly connected hubs
distributed widely, whereas many social networks are organized
more according to the self-interest or homophilic tendencies of
the participants.

[Noldus2015] reviews the extensive scholarship on assorta-
tivity in networks since Newman’s work in 2002. They note
that Barabási-Alpert networks are only slightly disassortive, con-
verging on zero assortativity as the number of nodes increases.
[Noldus2015] also surveys work such as [Newman2003] and
[Foster2009] that define and analyze directed degree assortativity.
In directed variations, degree assortativity is computed as above
except using either the in-degree or out-degree of the source and
targets nodes. In our empirical work below, we report directed
assortativity in its in/in and out/out variations. We have observed
little difference between these and the computed values for the
in/out and out/in variations in our data, though there are theoretical
graph structures for which these values can vary greatly.

According to the survey by [Noldus2015], assortivity in
weighted networks is not well explored either theoretically or
empirically. The weighted assortativity of a a network is the
correlation between the weighted degree of its adjacent nodes,
where weighted degree is the sum of the weights of all edges
of a node. Directed weighted assortativity is computed from
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weighted in- and out-degrees. [Networkx] provides functions for
computing these values on networks. We will compare weighted
and unweighted directed assortivity in empirical networks below.

Methods

We collected archival data of 13 mailing lists from open collab-
orative communities. From these data we derived an interaction
graph of who replied to whom. We then computed the weighted
and unweighted degree assortativity of these networks. We also
used the Alstott package to test the degree distribution of these
networks using the Clauset method.

Email data collection

BigBang supports collection of email data. It can do this either
by scraping the archival pages of a Mailman 2 instance, or by
importing an .mbox formatted file. Internally, BigBang parses this
data into a Pandas DataFrame [McKinney] and stores parsed and
normalized email data in .csv format.

For the purpose of this study, we scraped data from public
Mailman 2 instances associated with the following projects:

• SciPy: http://mail.scipy.org/mailman/listinfo/
• WikiMedia: http://lists.wikimedia.org/mailman/listinfo
• OpenStreetMap: http://lists.openstreetmap.org/listinfo

We selected mailing lists from the SciPy Mailman instance
primarily for their relevance to the SciPy community. We also
selected some mailing lists from other projects for comparison.

A limiting factor for our analysis is that every new data set
introduces new edges cases BigBang’s processing logic must take
into account. For example, misformatted timestamps cause errors
in many archival email data sets. In future work we hope to sample
data more systematically in order to establish general principles of
collaboration. This preliminery study is merely descriptive.

Deriving interaction graphs

Email is archived in the same text format that email is sent in, as
specified in RFC2822 [RFC2822]. Every email is comprised of a
message body and a number of metadata headers that are essential
for email processing and presentation.

For our study, we have been interested in extracting the implied
social network from an email archive of a public mailing list. To
construct this network, we have used the From, Message-ID, and
In-Reply-To headers of the email.

The From field of an email contains data identifying the
mailbox of the message author. This often includes both a full
name and an email address of the sender. As this is set by the
email client and a single person may use many different mailboxes,
a single person is often represented differently in the From field
across many emails. See Entity Resolution for our strategies for
resolving entities from divergent email headers.

The Message-ID header provides a globally unique identifi-
cation string for every email. The uniqueness of the identifier
must be guaranteed by the host that generates the message. It
is recommended in [RFC2822] that email hosts accomplish this
by including their domain name and combination of the exact date
and time, as well as some other unique identifier (such as a process
ID number) from the host system. The In-Reply-To header is set
when an email is sent as a reply to another email. The reply’s
In-Reply-To header will match the Message-ID of the original
email.

Formally, we construct the directed interaction graph G from
a set of emails indexed by i ∈ I. Each email consists of a tuple
( fi,ri), where fi identifies the mailbox of the sender (correspond-
ing to the From header) and ri ∈ I ∪ {ε} (corresponding to the
In-Reply-To header) may be a null value ε or be the index of
another email.

• For every email i, if there is not one already add a node
with label fi to G corresponding and set its sent attribute
1. If such a node already exists, increment its sent attribute
by 1.

• Iterating again through every email i, if ri 6= ε , and if there
is not one already, then create a directed edge between
nodes fi and fri with a weight attribute set to 1. If the edge
already exists, increment the weight attribute by 1.

In sum, the final graph G has a node for every email author
annotated by the number of emails from that sender in the data
set. There is an edge from fi to f j if author fi ever wrote a reply
to an email authored by f j. The weight of an edge corresponds to
the number of these replies in the data set.

The motivation for constructing interaction graphs in this way
is to build a concise representation of the social network implied
by email data. We posit that building a social network represen-
tation based on actual messages sent between people provides a
more granular and faithful description of social relationships than
one based on higher-level descriptions of social relationships or
ties from web services such as Facebook ’friends’ and Twitter
’followers’

BigBang implements this interaction graph creation using
Python’s native email processing libraries, pandas, and networkx.
[Networkx] The following code builds the interaction graph rep-
resentations.
import networkx as nx

def messages_to_interaction_graph(messages):
"""
*messages* is a Pandas DataFrame, each row
containing the body and header metadata for
an email from the archive.
Messages should be in chronological order.

Returns a NetworkX DiGraph (directed graph),
the nodes of which are mailing list participants.

Nodes have a 'sent' attribute indicating number
of emails they have sent within the archive.

Edges from i to j indicate that i has sent at least
one reply to j. The weight of the edge is equal
to the number of replies sent from i to j.
"""

IG = nx.DiGraph()

from_dict = {}

sender_counts = {}
reply_counts = {}

for m in df.iterrows():
m_from = m[1]['From']

from_dict[m[0]] = m_from
sender_counts[m_from] = \\

sender_counts.get(m_from, 0) + 1
IG.add_node(m_from)

if m[1]['In-Reply-To'] is not None:
reply_to_mid = m[1]['In-Reply-To']

http://mail.scipy.org/mailman/listinfo/
http://lists.wikimedia.org/mailman/listinfo
http://lists.openstreetmap.org/listinfo
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if reply_to_mid in from_dict:
m_to = from_dict[reply_to_mid]
reply_counts[m_from][m_to] = \\

reply_counts[m_from].get(m_to, 0) + 1

for sender, count in sender_counts.items():
IG.node[sender]['sent'] = count

for m_from, edges in reply_counts.items():
for m_to, count in edges.items():

IG.add_edge(m_from, m_to, weight=count)

return IG

One potential objection to this approach is that since the data
we are considering comes from public mailing lists where every
message has a potentially large audience, it may be misleading to
build a network representation on the assumption that a reply is
directed primarily at the person who was replied to and not more
broadly to other participants in a thread or, even more broadly,
to the mailing list as a whole. While this is a valid objection,
it points to the heart of what is distinctive about this research.
While there have been many studies of social network formation
in conventional settings, the conditions of open collaboration
are potentially quite different. Theoretically, we expect them to
be explicitly and collectively goal-directed, self-organized for
efficient action as opposed to positional social advantage, and
designed around an archiving system for the sake of efficiency.
Understanding the statistical properties of this particular form of
social organization, as opposed to others, is the very purpose of
this empirical work.

Entity Resolution

Empirically, over the extent of a mailing list’s archival data it
is common for the From fields of emails to vary even when
the email is coming from the same person. Not only do people
sometimes change their email address or use multiple addresses
to interact with the same list, but also different email clients may
represent the same email address in the From header in different
ways. BigBang includes automated techniques for resolving these
entities, cleaning the data for downstream processing.

Data from the From header of messages stored by Mailman
is most often represented in a form that includes both a full name
representation and an email representation. Unfortunately these
fields can vary widely for one person. Table 1 shows some of the
variability that might appear for a single prolific sender. Variation
in entity representation is a source of noise in our research and an
ongoing area of development for BigBang.

For the study in this paper, we have implemented a heuristic
system for entity matching.

• First we standardize the data by converting it to lower case
and normalizing " at " and "@".

• Then we construct a similarity matrix between each entry.
Each entry is parsed into email and full name subfields.
The value of the similarity matrix at cell (i, j) is 1 if there
is an exact match of either the email address or the full
name, and 0 otherwise.

• We then construct a graph from the similarity matrix and
treat each connected component (group of nodes that are
connected to each other by at least one path) as an entity.

Under this procedure, all of the above email addresses would
be collapsed into a single entity. These heuristics were developed

Variations

tyrion.lannister at gmail.com (Tyrion
Lannister)

Tyrion.Lannister at gmail.com (Tyrion
Lannister)

Tyrion.Lannister at gmail.com
(Tyrion.Lannister@gmail.com)

Tyrion.Lannister at gmail.com (Tyrion.Lannister
at gmail.com)

Tyrion.Lannister@gmail.com (Tyrion Lannister)

Tyrion.Lannister@gmail.... (Tyrion Lannister)

Tyrion.Lannister@gmail.com

Tyrion.Lannister at gmail.com (Tyrion)

tyrion at lanister.net (Tyrion Lannister)

halfman@council.kings-landing.gov (Tyrion
Lannister)

halfman@council.kings-landing.gov (Tyrion
Lannister, Hand of the King)

halfman@council.kings-landing.gov
(halfman@council.kings-landing.gov)

tyrion+hand at lanister.net (Tyrion Lannister)

tyrion.lannister at gmail.com
(=?UTF-8?B?RGF2aWQgQWJpw6Fu?=)

"Tyrion Lannister" <Tyrion.Lannister@gmail.com>

TABLE 1: Examples of variations in From header values correspond-
ing to the same person in an email archive. Some of these changes
reflect changes of email address. Others are artifacts of the users’
email clients and the mailing list software.

through informal but thorough investigation of mailing list data we
have analyzed for this paper. We leave it to future work to formally
test and improve this method with respect to a sufficiently large
and labeled test data set.

In our interaction graph study, this has the effect of combining
several nodes into a single one in a way that’s similar to the
blockmodel technique. The edges to and from the derived node
are weighted by the sum of the edges of the original nodes. The
sent attribute of the new node is also set as the sum of the sent
attribute of the original nodes.

Results

We computed the (unweighted) degre distribution and the
weighted and unweighted degree assortativities of each of the
mailing lists for which we collected data. We also aggregated the
interaction graphs of each list into a single graph that we have
called total and ran the same analysis.

Every mailing list of the 13 we analyzed exhibits degree disas-
sortivity better fit to log-normal instead of power law distribution.
This is the meaning of the negative R value given in Table 2.

The p values require special explanation. The value given is
computed by the [Alstott2014] package in the direction of the best
fitting distribution. Since the best fitting distribution is log-normal,
the null hypothesis used for computing the p-values is that the data
was generated from a power law distribution. That the p-value
for no individual mailing list is beneath a threshold of statistical
significance (such as p < .05 speaks to the similarity between
these two distributions that is the source of such confusion and
debate, as outlined previously. Especially for lists with low n,
the [Clauset2007] test can be entirely inconclusive as to which
distribution is more likely.



180 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

List name List Source n R value p in,in,weighted out,out,weighted in,in,unweighted out,out,unweighted
total All sources 9576 -7.62 0.01 -0.13 -0.12 -0.21 -0.17
numpy-discussion SciPy 2973 -0.76 0.40 -0.22 -0.20 -0.29 -0.26
scipy-user SciPy 2735 -0.02 0.31 -0.11 -0.11 -0.19 -0.18
wikimedia-l WikiMedia 1729 -3.65 0.07 -0.15 -0.15 -0.21 -0.20
ipython-user SciPy 1085 -0.33 0.23 -0.27 -0.26 -0.29 -0.26
scipy-dev SciPy 1056 -0.33 0.58 -0.28 -0.26 -0.31 -0.29
ipython-dev SciPy 689 -0.52 0.08 -0.25 -0.24 -0.36 -0.36
hot OpenStreetMap 524 -0.85 0.40 -0.19 -0.20 -0.24 -0.24
astropy SciPy 404 -0.08 0.77 -0.16 -0.20 -0.16 -0.16
gendergap WikiMedia 301 -0.86 0.40 -0.15 -0.18 -0.20 -0.21
apug SciPy 121 -0.01 0.52 -0.20 -0.20 -0.21 -0.22
maps-l WikiMedia 118 -0.00 0.95 -0.19 -0.18 -0.27 -0.26
design WikiMedia 111 -3.62 0.10 -0.18 -0.17 -0.21 -0.21
potlatch-dev OpenStreetMap 75 -0.00 0.97 -0.01 -0.08 -0.45 -0.34

TABLE 2: Results of analysis. For each mailing list archive, number of participants n, loglikelihood ratio R and statistical significance p
in the direction of the best fit. In all cases, the log-normal distribution is a better fit, though only in the case of the aggregated graph is the
power-law distribution ruled out with statistical significance. We compute weighted and unweighted variations of (in,in) and (out,out) degree
assorativity.

Fig. 1: Interaction graph of all participants across all mailing lists
explored in this study, rendered with [Gephi]. The large blue module
is roughly the SciPy community. The green module is the Wikimedia
community. The purple module is the OpenStreetMap community.
Notably, these communities are not completely disjoint. There are
several bridge nodes, meaning there are some mailboxes that have
participated in two or more of the communities represented. Singleton
points on either side of the central component indicate email authors
to whom nobody ever replied.

In the total interaction graph, we can rule out that the data
was generated from a power law distribution because p < .05.
One reason for this may be simply because the graph size n is
much larger than for any of the individual graphs. Another may be
because of the sampling method of aggregating otherwise mainly
separate networks.

We find in all cases that interaction graphs are disassortative.
We have presented here the results of computing both weighted
and unweighted variations of directed (in, in) and (out,out) assor-
tativity. (In all cases, (out, in) and (out, in) were similar enough to
the values given that we felt they provided no additional insight to
the reader). We observe that the disassortativity of the interaction
graphs appears to be insensitive to graph size n. We tentatively
conclude that this disassortativity is therefore not of the residual
sort found in small Barabási-Alpert graphs. A more thorough
analysis of this point may be the subject of future work.

In most (but not all) cases, unweighted disassortativity in
interaction graphs is more extreme than its weighted variation.
As little work has been done on weighted degree disassortativity,
we find this notable.

Fig. 2: A common technique for testing whether a distribution fits a
log-normal or power law distribution is to plot its density function
on log-log axes and observe whether the tail of the distribution drops
below the line of best fit. As an illustration, this is the log-log plot
of the probability density function for the unweighted degrees of the
aggregated total interaction graph. In this paper, we eschew this
technique on the grounds that it is biased for reasons discussed in
depth in [Clauset2007].

Discussion

We have found no empirical support for email interaction networks
having power law degree distribution, as opposed to a log-normal
degree distribution. Interpretation of this result will vary depend-
ing on the "prior" probability on assigns to finding power law and
log-normal distributions in social processes like this. As similar
processes may generate both kinds of heavy-tail distributions, we
can say only that our study suggests we should not be tethered
to models that guarantee scale-free distributions such as Barabási-
Alpert when explaining the interaction network data. We consider
the development of a network generation model whose degree is
determined by a multiplicative process as a direction for future
work.

The statistical strength of the rejection of the power law
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hypothesis in the case of the aggregate interaction graph is note-
worthy because it suggests that other social network analysis may
suffer from a kind of myopia. Recall that preferential attachment
requires that new nodes attach according to a probability distribu-
tion that is a global property of the network. But considering the
growth of largely disjoint communities of collaborators, it is prima
facie for one participant to understand the aggregate network
structure. A network formation process that is more sensitive to
this modularity may be a better fit for aggregated collaboration
data.

A possible explanation for the disassortativity of these interac-
tion graphs is a community norm of inclusiveness. If community
leaders (who have high degree) make it a common practice to
respond to new or infrequent participants in an effort to encourage
them to contribute further, that would lead to disassortative mixing
of degree. On the other hand, this mixing pattern could be the
result of a much more generic statistical process.

It is our good fortune that the network data we study is
granularly time-stamped. Since the total network structure is
derived from an archive in which every email is annotated with
a particular time, we see an opportunity to test generative models
for there predictions during the whole duration of network growth.

Though anecdotally there is a difference between typical
behavior on an open source project’s developer list (e.g. ipython-
dev and scipy-dev in our data set) and a projects user list (e.g.
ipython-user and scipy-user), these behavior differences do not
surface as a clear statistical pattern in our study. A direction for
future work is to more carefully operationalize and test for these
behavioral differences.

We anticipate that research supported by BigBang will con-
tribute to discourse on social roles in on-line communities
[SocWik], [SocRole], measurement of digital labor [LaborWik],
and the relationship between social structure and technical modu-
larity [Zanetti2012].

We have also built BigBang and conducted this preliminary
analysis with a number of applications in mind. One is anomaly
detection in the open source ecosystem as a method of supply
chain risk management. An statistical understanding of the typ-
ical patterns of collaborative behavior in open source software
development could form the foundation for techniques that detect
deviations from those patterns. If non-adherence to these patterns
were correlated with propensity for software to be buggy or
brittle, then detecting non-adherence could play a useful role in
community self-management.

Another potential application of this research is in the appro-
priate incentivization of participation in open source development.
Supposing, as seems likely, that open source software development
is truly a collective effort and not merely the sum of many individ-
ual efforts, the question of how to best incentivize contributions
to open source software is not an easy one. An understanding of
how the network structure of collaboration relates to collective
productivity could inform incentive plans that are sensitive to
participants unique role within the network.

I gratefully acknowledge the helpful comments of Christine
Choirat, Allen Downey, Thomas Kluyver, and Skipper Seabold.
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