PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

The Advanced Scientific Data Format (ASDF): An
Update

Perry Greenfield**, Edward Slavich*", William Jamieson*’, Nadia Dencheva*’

Abstract—We report on progress in developing and extending the new (ASDF)
format we have developed for the data from the James Webb and Nancy Grace
Roman Space Telescopes since we reported on it at a previous Scipy. While
the format was developed as a replacement for the long-standard FITS format
used in astronomy, it is quite generic and not restricted to use with astronomical
data. We will briefly review the format, and extensions and changes made to
the standard itself, as well as to the reference Python implementation we have
developed to support it. The standard itself has been clarified in a number
of respects. Recent improvements to the Python implementation include an
improved framework for conversion between complex Python objects and ASDF,
better control of the configuration of extensions supported and versioning of
extensions, tools for display and searching of the structured metadata, bet-
ter developer documentation, tutorials, and a more maintainable and flexible
schema system. This has included a reorganization of the components to make
the standard free from astronomical assumptions. A important motivator for the
format was the ability to support serializing functional transforms in multiple
dimensions as well as expressions built out of such transforms, which has now
been implemented. More generalized compression schemes are now enabled.
We are currently working on adding chunking support and will discuss our plan
for further enhancements.

Index Terms—data formats, standards, world coordinate systems, yaml

Introduction

The Advanced Scientific Data Format (ASDF) was originally
developed in 2015. That original version was described in a paper
[Grel5]. That paper described the shortcomings of the widely used
astronomical standard format FITS [FIT16] as well as those of
existing potential alternatives. It is not the goal of this paper to
rehash those points in detail, though it is useful to summarize the
basic points here. The remainder of this paper will describe where
we are using ASDF, what lessons we have learned from using
ASDF for the James Webb Space Telescope, and summarize the
most important changes we have made to the standard, the Python
library that we use to read and write ASDF files, and best practices
for using the format.

We will give an example of a more advanced use case that
illustrates some of the powerful advantages of ASDF, and that
its application is not limited to astronomy, but suitable for much
of scientific and engineering data, as well as models. We finish

Corresponding author: perry@stsci.edu
Space Telescope Science Institute
1 These authors contributed equally.

Copyright © 2022 Perry Greenfield et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

by outlining our near term plans for further improvements and
extensions.

Summary of Motivations
o Suitable as an archival format:

— OlId versions continue to be supported by
libraries.

— Format is sufficiently transparent (e.g., not
requiring extensive documentation to de-
code) for the fundamental set of capabili-
ties.

— Metadata is easily viewed with any text
editor.

« Intrinsically hierarchical

« Avoids duplication of shared items

« Based on existing standard(s) for metadata and structure

« No tight constraints on attribute lengths or their values.

¢ Clearly versioned

o Supports schemas for validating files for basic structure
and value requirements

« Easily extensible, both for the standard, and for local or
domain-specific conventions.

Basics of ASDF Format

o Format consists of a YAML header optionally followed by
one or more binary blocks for containing binary data.

o The YAML [http://yaml.org] header contains all the meta-
data and defines the structural relationship of all the data
elements.

e YAML tags are used to indicate to libraries the semantics
of subsections of the YAML header that libraries can use to
construct special software objects. For example, a tag for
a data array would indicate to a Python library to convert
it into a numpy array.

¢« YAML anchors and alias are used to share common ele-
ments to avoid duplication.

e JSON Schema [http://json-schema.org/specification.html],
[http://json-schema.org/understanding-json-schema/] is
used for schemas to define expectations for tag content
and whole headers combined with tools to validate actual
ASDEF files against these schemas.

o Binary blocks are referenced in the YAML to link binary
data to YAML attributes.

o Support for arrays embedded in YAML or in a binary
block.

mailto:perry@stsci.edu
http://yaml.org
http://json-schema.org/specification.html
http://json-schema.org/understanding-json-schema/

« Streaming support for a single binary block.

« Permit local definitions of tags and schemas outside of the
standard.

« While developed for astronomy, useful for general scien-
tific or engineering use.

« Aims to be language neutral.

Current and planned uses
James Webb Space Telescope (JWST)

NASA requires JWST data products be made available in the
FITS format. Nevertheless, all the calibration pipelines operate
on the data using an internal objects very close to the the ASDF
representation. The JWST calibration pipeline uses ASDF to
serialize data that cannot be easily represented in FITS, such as
World Coordinate System information. The calibration software
is also capable of reading and producing data products as pure
ASDF files.

Nancy Grace Roman Space Telescope

This telescope, with the same mirror size as the Hubble Space
Telescope (HST), but a much larger field of view than HST, will
be launched in 2026 or thereabouts. It is to be used mostly in
survey mode and is capable of producing very large mosaicked
images. It will use ASDF as its primary data format.

Daniel K Inoue Solar Telescope

This telescope is using ASDF for much of the early data products
to hold the metadata for a combined set of data which can involve
many thousands of files. Furthermore, the World Coordinate
System information is stored using ASDF for all the referenced
data.

Vera Rubin Telescope (for World Coordinate System interchange)

There have been users outside of astronomy using ASDF, as well
as contributors to the source code.

Changes to the standard (completed and proposed)

These are based on lessons learned from usage.

The current version of the standard is 1.5.0 (1.6.0 being
developed).

The following items reflect areas where we felt improvements
were needed.

Changes for 1.5

Moving the URI from stsci.edu to

asdf-format.org

authority

This is to remove the standard from close association with STScI
and make it clear that the format is not intended to be controlled
by one institution.

Moving astronomy-specific schemas out of standard

These primarily affect the previous inclusion of World Coordinate
Tags, which are strongly associated with astronomy. Remaining
are those related to time and unit standards, both of obvious gen-
erality, but the implementation must be based on some standards,
and currently the astropy-based ones are as good or better than
any.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Changes for 1.6
Addition of the manifest mechanism

The manifest is a YAML document that explicitly lists the tags and
other features introduced by an extension to the ASDF standard.
It provides a more straightforward way of associating tags with
schemas, allowing multiple tags to share the same schema, and
generally making it simpler to visualize how tags and schemas
are associated (previously these associations were implied by the
Python implementation but were not documented elsewhere).

Handling of null values and their interpretation

The standard didn’t previously specify the behavior regarding null
values. The Python library previously removed attributes from the
YAML tree when the corresponding Python attribute has a None
value upon writing to an ADSF file. On reading files where the
attribute was missing but the schema indicated a default value,
the library would create the Python attribute with the default. As
mentioned in the next item, we no longer use this mechanism, and
now when written, the attribute appears in the YAML tree with
a null value if the Python value is None and the schema permits
null values.

Interpretation of default values in schema

The use of default values in schemas is discouraged since the
interpretation by libraries is prone to confusion if the assemblage
of schemas conflict with regard to the default. We have stopped
using defaults in the Python library and recommend that the ASDF
file always be explicit about the value rather than imply it through
the schema. If there are practical cases that preclude always
writing out all values (e.g., they are only relevant to one mode
and usually are irrelevant), it should be the library that manages
whether such attributes are written conditionally rather using the
schema default mechanism.

Add alternative tag URI scheme
We now recommend that tag URIs begin with asdf://

Be explicit about what kind of complex YAML keys are supported

For example, not all legal YAML keys are supported. Namely
YAML arrays, which are not hashable in Python. Likewise,
general YAML objects are not either. The Standard now limits
keys to string, integer, or boolean types. If more complex keys are
required, they should be encoded in strings.

Still to be done
Upgrade to JSON Schema draft-07

There is interest in some of the new features of this version,
however, this is problematic since there are aspects of this version
that are incompatible with draft-04, thus requiring all previous
schemas to be updated.

Replace extensions section of file history

This section is considered too specific to the concept of Python
extensions, and is probably best replaced with a more flexible
system for listing extensions used.

THE ADVANCED SCIENTIFIC DATA FORMAT (ASDF): AN UPDATE

Changes to Python ASDF package

Easier and more flexible mechanism to create new extensions
(2.8.0)

The previous system for defining extensions to ASDF, now
deprecated, has been replaced by a new system that makes the
association between tags, schemas, and conversion code more
straightforward, as well as providing more intuitive names for the
methods and attributes, and makes it easier to handle reference
cycles if they are present in the code (also added to the original
Tag handling classes).

Introduced global configuration mechanism (2.8.0)

This reworks how ASDF resources are located, and makes it easier
to update the current configuration, as well as track down the
location of the needed resources (e.g., schemas and converters),
as well as removing performance issues that previously required
extracting information from all the resource files thus slowing the
first asdf . open call.

Added info/search methods and command line tools (2.6.0)

These allow displaying the hierarchical structure of the header and
the values and types of the attributes. Initially, such introspection
stopped at any tagged item. A subsequent change provides mech-
anisms to see into tagged items (next item). An example of these
tools is shown in a later section.

Added mechanism for info to display tagged item contents (2.9.0)

This allows the library that converts the YAML to Python objects
to expose a summary of the contents of the object by supplying
an optional "dunder" method that the info mechanism can take
advantage of.

Added documentation on how ASDF library internals work

These appear in the readthedocs under the heading "Developer
Overview".

Plugin API for block compressors (2.8.0)

This enables a localized extension to support further compression
options.

Support for asdf : // URI scheme (2.8.0)
Support for ASDF Standard 1.6.0 (2.8.0)
This is still subject to modifications to the 1.6.0 standard.

Modified handling of defaults in schemas and None values (2.8.0)
As described previously.

Using ASDF to store models

This section highlights one aspect of ASDF that few other formats
support in an archival way, e.g., not using a language-specific
mechanism, such as Python’s pickle. The astropy package contains
a modeling subpackage that defines a number of analytical, as well
as a few table-based, models that can be combined in many ways,
such as arithmetically, in composition, or multi-dimensional. Thus
it is possible to define fairly complex multi-dimensional models,
many of which can use the built in fitting machinery.

These models, and their compound constructs can be saved
in ASDF files and later read in to recreate the corresponding
astropy objects that were used to create the entries in the ASDF

100 -

80 1

60

40 4

Amplitude (Jy)

20 A

60 80 100 120 140 160 180 200
Frequency (MHz)

Fig. 1: A plot of the compound model defined in the first segment of
code.

file. This is made possible by the fact that expressions of models
are straightforward to represent in YAML structure.

Despite the fact that the models are in some sense executable,
they are perfectly safe so long as the library they are implemented
in is safe (e.g., it doesn’t implement an "execute any OS com-
mand" model). Furthermore, the representation in ASDF does not
explicitly use Python code. In principle it could be written or read
in any computer language.

The following illustrates a relatively simple but not trivial
example.

First we define a 1D model and plot it.

import numpy as np
import astropy.modeling.models as amm
import astropy.units as u
import asdf
from matplotlib import pyplot as plt
Define 3 model components with units
gl = amm.GaussianlD (amplitude=100+u.Jdy,
mean=120+u.MHz,
stddev=5.*u.MHz)
g2 = amm.GaussianlD (65+u.Jy, 140%u.MHz, 3xu.MHz)
powerlaw = amm.PowerLawlD (amplitude=10+u.Jy,
x_0=100%u.MHz,
alpha=3)
Define a compound model
model = gl + g2 + powerlaw
X = np.arange (50, 200) * u.MHz
plt.plot (x, model (x))

The following code will save the model to an ASDF file, and read
it back in

af = asdf.AsdfFile ()
af.tree = {'model': model}
af.write_to('model.asdf'")
af2 = asdf.open('model.asdf")
model2 = af2['model']
model2 is model
False
model2 (103.5) == model (103.5)
True

Listing the relevant part of the ASDF file illustrates how the model
has been saved in the YAML header (reformatted to fit in this paper
column).

model: !transform/add-1.2.0
forward:

- !transform/add-1.2.0
forward:
- !transform/gaussianld-1.0.0

amplitude: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 Jy, value: 100.0}
bounding_box:
- l!unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 92.5}
- l!unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 147.5}
bounds:

stddev: [1.1754943508222875e-38, null]
inputs: [x]
mean: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 120.0}
outputs: [y]
stddev: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 5.0}

- !transform/gaussianld-1.0.0

amplitude: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 Jy, value: 65.0}
bounding_box:
- l!unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 123.5}
- l!unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 156.5}
bounds:

stddev: [1.1754943508222875e-38, null]
inputs: [x]
mean: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 140.0}
outputs: [y]
stddev: !unit/quantity-1.1.0

{unit: !'unit/unit-1.0.0 MHz, value: 3.0}

inputs: [x]

outputs: [y]
- !transform/power_lawld-1.0.0

alpha: 3.0
amplitude: !unit/quantity-1.1.0
{unit: !'unit/unit-1.0.0 Jy, value: 10.0}
inputs: [x]
outputs: [y]
x_0: lunit/quantity-1.1.0
{unit: !'unit/unit-1.0.0 MHz, value: 100.0}
inputs: [x]

outputs: [y]

Note that there are extra pieces of information that define the
model more precisely. These include:

« many tags indicating special items. These include different
kinds of transforms (i.e., functions), quantities (i.e., num-
bers with units), units, etc.

o definitions of the units used.

« indications of the valid range of the inputs or parameters
(bounds)

« each function shows the mapping of the inputs and the
naming of the outputs of each function.

« the addition operator is itself a transform.

Without the use of units, the YAML would be simpler. But
the point is that the YAML easily accommodates expression trees.
The tags are used by the library to construct the astropy models,
units and quantities as Python objects. However, nothing in the
above requires the library to be written in Python.

This machinery can handle multidimensional models and sup-
ports both the combining of models with arithmetic operators as
well as pipelining the output of one model into another. This
system has been used to define complex coordinate transforms
from telescope detectors to sky coordinates for imaging, and
wavelengths for spectrographs, using over 100 model components,

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

something that the FITS format had no hope of managing, nor any
other scientific format that we are aware of.

Displaying the contents of ASDF files

Functionality has been added to display the structure and content
of the header (including data item properties), with a number of
options of what depth to display, how many lines to display, etc.
An example of the info use is shown in Figure 2.

There is also functionality to search for items in the file by
attribute name and/or values, also using pattern matching for
either. The search results are shown as attribute paths to the items
that were found.

ASDF Extension/Converter System

There are a number of components that are involved. Converters
encapsulate the code that handles converting Python objects to
and from their ASDF representation. These are classes that inherit
from the basic Converter class and define two Class attributes:
tags, types each of which is a list of associated tag(s) and class(es)
that the specific converter class will handle (each converter can
handle more than one tag type and more than one class). The
ASDF machinery uses this information to map tags to converters
when reading ASDF content, and to map types to converters when
saving these objects to an ASDF file.

Each converter class is expected to supply two methods:
to_yaml_tree and from_yaml_tree that construct the
YAML content and convert the YAML content to Python class
instances respectively.

A manifest file is used to associate tags and schema ID’s
so that if a schema has been defined, that the ASDF content
can be validated against the schema (as well as providing extra
information for the ASDF content in the info command). Normally
the converters and manifest are registered with the ASDF library
using standard functions, and this registration is normally (but is
not required to be) triggered by use of Python entry points defined
in the setup.cfqg file so that this extension is automatically
recognized when the extension package is installed.

One can of course write their own custom code to convert the
contents of ASDF files however they want. The advantage of the
tag/converter system is that the objects can be anywhere in the tree
structure and be properly saved and recovered without having any
implied knowledge of what attribute or location the object is at.
Furthermore, it brings with it the ability to validate the contents
by use of schema files.

Jupyter tutorials that show how to use converters can be found
at:

o https://github.com/asdf-format/tutorials/blob/master/
Your_first_ ASDF_converter.ipynb

« https://github.com/asdf-format/tutorials/blob/master/
Your_second_ASDF_converter.ipynb

ASDF Roadmap for STScl Work

The planned enhancements to ASDF are understandably focussed
on the needs of STScI missions. Nevertheless, we are particularly
interested in areas that have wider benefit to the general scientific
and engineering community, and such considerations increase the
priority of items necessary to STScl. Furthermore, we are eager
to aid others working on ASDF by providing advice, reviews, and

https://github.com/asdf-format/tutorials/blob/master/Your_first_ASDF_converter.ipynb
https://github.com/asdf-format/tutorials/blob/master/Your_first_ASDF_converter.ipynb
https://github.com/asdf-format/tutorials/blob/master/Your_second_ASDF_converter.ipynb
https://github.com/asdf-format/tutorials/blob/master/Your_second_ASDF_converter.ipynb

THE ADVANCED SCIENTIFIC DATA FORMAT (ASDF): AN UPDATE

meta (dict)

aperture (Aperture)
name (str): WFI_CEN
position_angle (int): 120

cal_step (CalStep)
assign_wcs (str): COMPLETE
flat_field (str): COMPLETE
dark (str): COMPLETE
dq_init (str): COMPLETE
jump (str): COMPLETE
linearity (str): COMPLETE
photom (str): COMPLETE
ramp_fit (str): COMPLETE
saturation (str): COMPLETE

calibration_software_version (str): ©.4.3.dev89+gca5771d

coordinates (Coordinates)
reference_frame (str): ICRS
crds_context_used (str): roman_0031.pmap
crds_software_version (str): 11.5.0
ephemeris (Ephemeris)
earth_angle (float): 3.3161255787892263
moon_angle (float): 3.3196162372932148
sun_angle (float): 3.316474644639625
type (str): PREDICTED
time (float): 59215.0
ephemeris_reference_frame (str): EME2000
spatial_x (int): 100
spatial_y (int): 20
spatial_z (int): 35
velocity_x (int): 10
velocity_y (int): 2
velocity_z (float): 3.5
exposure (Exposure)

id (int): 1

type (str): WFI_IMAGE

start_time (Time)

mid_time (Time)

end_time (Time)

start_time_mjd (float): 59215.0
mid_time_mjd (float): 59215.000862037035

Fig. 2: This shows part of the output of the info command that shows the structure of a Roman Space Telescope test file (provided by the Roman
Telescopes Branch at STScl). Displayed is the relative depth of the item, its type, value, and a title extracted from the associated schema to be

used as explanatory information.

possibly collaborative coding effort. STScI is committed to the
long-term support of ADSF.

The following is a list of planned work, in order of decreasing
priority.

Chunking Support

Since the Roman mission is expected to deal with large data
sets and mosaicked images, support for chunking is considered
essential. We expect to layer the support in our Python library
on zarr [https://zarr.dev/], with two different representations,
one where all data is contained within the ADSF file in separate
blocks, and one where the blocks are saved in individual files.
Both representations have important advantages and use cases.

Improvements to binary block management

These enhancements are needed to enable better chunking support
and other capabilities.

Redefining versioning semantics

Previously the meaning of different levels of versioning
were unclear. The normal inclination is to treat schema
version using the typical semantic versioning system de-
fined for software. But schemas are not software and
we are inclined to use the proposed system for schemas
[url: https://snowplowanalytics.com/blog/2014/05/13/introducing-
schemaver-for-semantic-versioning-of-schemas/] To summarize:
in this case the three levels of versioning correspond to:
Model.Revision.Addition where a schema change:

o [Model] prevents working with historical data
« [Revision] may prevent working with historical data
« [Addition] is compatible with all historical data

Integration into astronomy display tools

It is essential that astronomers be able to visualize the data
contained within ASDF files conveniently using the commonly
available tool, such as SAOImage DS9 [Joy03] and Ginga [Jes13].

https://zarr.dev/
https://snowplowanalytics.com/blog/2014/05/13/introducing-schemaver-for-semantic-versioning-of-schemas/
https://snowplowanalytics.com/blog/2014/05/13/introducing-schemaver-for-semantic-versioning-of-schemas/

6

Cloud optimized storage

Much of the future data processing operations for STScl are
expected to be performed on the cloud, so having ASDF efficiently
support such uses is important. An important element of this is
making the format work efficiently with object storage services
such as AWS S3 and Google Cloud Storage.

IDL support

While Python is rapidly surpassing the use of IDL in astronomy,
there is still much IDL code being used, and many of those still
using IDL are in more senior and thus influential positions (they
aren’t quite dead yet). So making ASDF data at least readable to
IDL is a useful goal.

Support Rice compression

Rice compression [Pen09], [Penl0] has proven a useful lossy
compression algorithm for astronomical imaging data. Supporting
it will be useful to astronomers, particularly for downloading large
imaging data sets.

Pandas Dataframe support

Pandas [McK10] has proven to be a useful tool to many as-
tronomers, as well as many in the sciences and engineering, so
support will enhance the uptake of ASDF.

Compact, easy-to-read schema summaries

Most scientists and even scientific software developers tend to
find JSON Schema files tedious to interpret. A more compact, and
intuitive rendering of the contents would be very useful.

Independent implementation

Having ASDF accepted as a standard data format requires a library
that is divorced from a Python API. Initially this can be done most
easily by layering it on the Python library, but ultimately there
should be an independent implementation which includes support
for C/C++ wrappers. This is by far the item that will require the
most effort, and would benefit from outside involvement.

Provide interfaces to other popular packages

This is a catch all for identifying where there would be significant
advantages to providing the ability to save and recover information
in the ASDF format as an interchange option.

Sources of Information

e« ASDF Standard: https://asdf-standard.readthedocs.io/en/
latest/

e« Python ASDF package documentation:
readthedocs.io/en/stable/

o Repository: https://github.com//asdf-format/asdf

o Tutorials: https://github.com/asdf-format/tutorials

https://asdf.

REFERENCES

[Grel5] P. Greenfield, M. Droettboom, E. Bray. ASDF: A new data format
for astronomy, Astronomy and Computing, 12:240-251, September
2015. https://doi.org/10.1016/j.ascom.2015.06.004

[FIT16] FITS Working Group. Definition of the Flexible Image Transport
System, International Astronomical Union, http://fits.gsfc.nasa.gov/
fits_standard.html, July 2016.

[Jes13] E. Jeschke. Ginga: an open-source astronomical image viewer and
toolkit, Proc. of the 12th Python in Science Conference., p58-
64,January 2013. https://doi.org/10.25080/Majora-8b375195-00a

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[McK10] W. McKinney. Data structures for statistical computing in python,
Proceedigns of the 9th Python in Science Conference, p56-61, 2010.
https://doi.org/10.25080/Majora-92bf1922-00a

[Pen09] W. Pence, R. Seaman, R. L. White, Lossless Astronomical Image
Compression and the Effects of Noise, Publications of the Astro-
nomical Society of the Pacific, 121:414-427, April 2009. https:
//doi.org/10.48550/arXiv.0903.2140

[Pen10] W. Pence, R. L. White, R. Seaman. Optimal Compression of Floating-

Point Astronomical Images Without Significant Loss of Information,

Publications of the Astronomical Society of the Pacific, 122:1065-

1076, September 2010. https://doi.org/10.1086/656249

W. A. Joye, E. Mandel. New Features of SAOImage DS9, Astronomi-

cal Data Analysis Software and Systems XII ASP Conference Series,

295:489, 2003.

[Joy03]

https://asdf-standard.readthedocs.io/en/latest/
https://asdf-standard.readthedocs.io/en/latest/
https://asdf.readthedocs.io/en/stable/
https://asdf.readthedocs.io/en/stable/
https://github.com//asdf-format/asdf
https://github.com/asdf-format/tutorials
https://doi.org/10.1016/j.ascom.2015.06.004
http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_standard.html
https://doi.org/10.25080/Majora-8b375195-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.48550/arXiv.0903.2140
https://doi.org/10.48550/arXiv.0903.2140
https://doi.org/10.1086/656249

	Introduction
	Summary of Motivations
	Basics of ASDF Format

	Current and planned uses
	James Webb Space Telescope (JWST)
	Nancy Grace Roman Space Telescope
	Daniel K Inoue Solar Telescope
	Vera Rubin Telescope (for World Coordinate System interchange)

	Changes to the standard (completed and proposed)
	Changes for 1.5
	Moving the URI authority from stsci.edu to asdf-format.org
	Moving astronomy-specific schemas out of standard
	Changes for 1.6
	Addition of the manifest mechanism
	Handling of null values and their interpretation
	Interpretation of default values in schema
	Add alternative tag URI scheme
	Be explicit about what kind of complex YAML keys are supported
	Still to be done
	Upgrade to JSON Schema draft-07
	Replace extensions section of file history

	Changes to Python ASDF package
	Easier and more flexible mechanism to create new extensions (2.8.0)
	Introduced global configuration mechanism (2.8.0)
	Added info/search methods and command line tools (2.6.0)
	Added mechanism for info to display tagged item contents (2.9.0)
	Added documentation on how ASDF library internals work
	Plugin API for block compressors (2.8.0)
	Support for asdf:// URI scheme (2.8.0)
	Support for ASDF Standard 1.6.0 (2.8.0)
	Modified handling of defaults in schemas and None values (2.8.0)

	Using ASDF to store models
	Displaying the contents of ASDF files
	ASDF Extension/Converter System
	ASDF Roadmap for STScI Work
	Chunking Support
	Improvements to binary block management
	Redefining versioning semantics
	Integration into astronomy display tools
	Cloud optimized storage
	IDL support
	Support Rice compression
	Pandas Dataframe support
	Compact, easy-to-read schema summaries
	Independent implementation
	Provide interfaces to other popular packages

	Sources of Information
	References

