PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Galyleo: A General-Purpose Extensible Visualization
Solution

Rick McGeer**, Andreas Bergen*, Mahdiyar Biazi*, Matt Hemmings*, Robin Schreiber*

Abstract—Galyleo is an open-source, extensible dashboarding solution inte-
grated with JupyterLab [jup]. Galyleo is a standalone web application integrated
as an iframe [LS10] into a JupyterLab tab. Users generate data for the dash-
board inside a Jupyter Notebook [KRKP " 16], which transmits the data through
message passing [mdn] to the dashboard; users use drag-and-drop operations
to add widgets to filter, and charts to display the data, shapes, text, and images.
The dashboard is saved as a JSON [Cro06] file in the user’s filesystem in the
same directory as the Notebook.

Index Terms—JupyterLab, JupyterLab extension, Data visualization

Introduction

Current dashboarding solutions [hol22a] [hol22b] [plo] [pan22]
for Jupyter either involve external, heavyweight tools, ingrained
HTML/CSS coding, complex publication, or limited control over
layout, and have restricted widget sets and visualization libraries.
Graphics objects require a great deal of configuration: size, posi-
tion, colors, fonts must be specified for each object. Thus library
solutions involve a significant amount of fairly simple code. Con-
versely, visualization involves analytics, an inherently complex
set of operations. Visualization tools such as Tableau [DGHP13]
or Looker [loo] combine visualization and analytics in a single
application presented through a point-and-click interface. Point-
and-click interfaces are limited in the number and complexity
of operations supported. The complexity of an operation isn’t
reduced by having a simple point-and-click interface; instead, the
user is confronted with the challenge of trying to do something
complicated by pointing. The result is that tools encapsulate
complex operations in a few buttons, and that leads to a limited
number of operations with reduced options and/or tools with steep
learning curves.

In contrast, Jupyter is simply a superior analytics environment
in every respect over a standalone visualization tool: its various
kernels and their libraries provide a much broader range of analyt-
ics capabilities; its programming interface is a much cleaner and
simpler way to perform complex operations; hardware resources
can scale far more easily than they can for a visualization tool;
and connectors to data sources are both plentiful and extensible.

Both standalone visualization tools and Jupyter libraries have
a limited set of visualizations. Jupyter is a server-side platform.

% Corresponding author: rick.mcgeer@engageLively.com
f engageLively

Copyright © 2022 Rick McGeer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Jupyter’s web interface is primarily to offer textboxes for code
entry. Entered code is sent to the server for evaluation and
text/HTML results returned. Visualization in a Jupyter Notebook
is either given by images rendered server-side and returned as
inline image tags, or by JavaScript/HTMLS libraries which have
a corresponding server-side Python library. The Python library
generates HTMLS5/JavaScript code for rendering.

The limiting factor is that the visualization library must be in-
tegrated with the Python backend by a developer, and only a subset
of the rich array of visualization, charting, and mapping libraries
available on the HTMLS5/JavaScript platform is integrated. The
HTML5/JavaScript platform is as rich a client-side visualization
platform as Python is a server-side platform.

Galyleo set out to offer the best of both worlds: Python, R, and
Julia as a scalable analytics platform coupled with an extensible
JavaScript/HTMLS5 visualization and interaction platform. It offers
a no-code client-side environment, for several reasons.

1) The Jupyter analytics community is comfortable with
server-side analytics environments (the 100+ kernels
available in Jupyter, including Python, R and Julia) but
less so with the JavaScript visualization platform.

2) Configuration of graphical objects takes a lot of low-value
configuration code; conversely, it is relatively easy to do
by hand.

These insights lead to a mixed interface, combining a drag-
and-drop interface for the design and configuration of visual
objects, and a coding, server-side interface for analytics programs.

Extension of the widget set was an important consideration. A
widget is a client-side object with a physical component. Galyleo
is designed to be extensible both by adding new visualization
libraries and components and by adding new widgets.

Publication of interactive dashboards has been a further chal-
lenge. A design goal of Galyleo was to offer a simple scheme,
where a dashboard could be published to the web with a single
click.

These then, are the goals of Galyleo:

1) Simple, drag-and-drop design of interactive dashboards in
a visual editor. The visual design of a Galyleo dashboard
should be no more complex than design of a PowerPoint
or Google slide;

2) Radically simplify the dashboard-design interface by cou-
pling it to a powerful, Jupyter back end to do the analytics
work, separating visualization and analytics concerns;

mailto:rick.mcgeer@engageLively.com

|
'
=

smee T e - e =

Fig. 1: Figure 1. A New Galyleo Dashboard

Fig. 2: Figure 2. The Galyleo Dashboard Studio

3) Maximimize extensibility for visualization and widgets
on the client side and analytics libraries, data sources and
hardware resources on the server side;

4) Easy, simple publication;

Using Galyleo

The general usage model of Galyleo is that a Notebook is being
edited and executed in one tab of JupyterLab, and a corresponding
dashboard file is being edited and executed in another; as the
Notebook executes, it uses the Galyleo Client library to send
data to the dashboard file. To JupyterLab, the Galyleo Dashboard
Studio is just another editor; it reads and writes .gd.json files in
the current directory.

The Dashboard Studio

A new Galyleo Dashboard can be launched from the JupyterLab
launcher or from the File>New menu, as shown in Figure 1.

An existing dashboard is saved as a .gd.json file, and is
denoted with the Galyleo star logo. It can be opened in the usual
way, with a double-click.

Once a file is opened, or a new file created, a new Galyleo tab
opens onto it. It resembles a simplified form of a Tableau, Looker,
or PowerBI editor. The collapsible right-hand sidebar offers the
ability to view Tables, and view, edit, or create Views, Filters,
and Charts. The bottom half of the right sidebar gives controls for
styling of text and shapes.

The top bar handles the introduction of decorative and styling
elements to the dashboard: labels and text, simple shapes such as
ellipses, rectangles, polygons, lines, and images. All images are
referenced by URL.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

“—~‘ Widget lé’;:i‘: Controller
Geh;{iecewe Re d}aw

tate

Get Data

‘ View
Filtered View ‘

Data

%{ Table Update

Chart ‘

Get Flltered
Data

‘ Table

Fig. 3: Figure 3. Dataflow in Galyleo

As the user creates and manipulates the visual elements, the
editor continuously saves the table as a JSON file, which can also
be edited with Jupyter’s built-in text editor.

Workflow

The goal of Galyleo is simplicity and transparency. Data prepa-
ration is handled in Jupyter, and the basic abstract item, the
GalyleoTable is generally created and manipulated there, using an
open-source Python library. When a table is ready, the Galyleo-
Client library is invoked to send it to the dashboard, where it
appears in the table tab of the sidebar. The dashboard author
then creates visual elements such as sliders, lists, dropdowns etc.,
which select rows of the table, and uses these filtered lists as
inputs to charts. The general idea is that the author should be
able to seamlessly move between manipulating and creating data
tables in the Notebook, and filtering and visualizing them in the
dashboard.

Data Flow and Conceptual Picture

The Galyleo Data Model and Architecture is discussed in detail
below. The central idea is to have a few, orthogonal, easily-grasped
concepts which make data manipulation easy and intuitive. The
basic concepts are as follows:

1) Table: A Table is a list of records, equivalent to a Pandas
DataFrame [pdt20] [WM10] or a SQL Table. In general,
in Galyleo, a Table is expected to be produced by an
external source, generally a Jupyter Notebook

2) Filter: A Filter is a logical function which applies to a
single column of a Table Table, and selects rows from the
Table. Each Filter corresponds to a widget; widgets set
the values Filter use to select Table rows

3) View A View is a subset of a Table selected by one or
more Filters. To create a view, the user chooses a Table,
and then chooses one or more Tilters to apply to the Table
to select the rows for the View. The user can also statically
select a subset of the columns to include in the View.

4) Chart A Chart is a generic term for an object that displays
data graphically. Its input is a View or a Table. Each Chart
has a single data source.

The data flow is straightforward. A Table is updated from
an external source, or the user manipulates a widget. When this
happens, the affected item signals the dashboard controller that it
has been updated. The controller then signals all charts to redraw
themselves. Each Chart will then request updated data from its

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION

source Table or View. A View then requests its configured filters
for their current logic functions, and passes these to the source
Table with a request to apply the filters and return the rows which
are selected by all the filters (in the future, a more general Boolean
will be applied; the Ul elements to construct this function are
under design). The Table then returns the rows which pass the
filters; the View selects the static subset of columns it supports,
and passes this to its Charts, which then redraw themselves.

Each item in this flow conceptually has a single data source,
but multiple data targets. There can be multiple Views over a
Table, but each View has a single Table as a source. There can
be multiple charts fed by a View, but each Chart has a single Table
or View as a source.

It’s important to note that there are no special cases. There is
no distinction, as there is in most visualization systems, between
a "Dimension" or a "Measure"; there are simply columns of data,
which can be either a value or category axis for any Chart. From
this simplicity, significant generality is achieved. For example,
a filter selects values from any column, whether that column is
providing value or category. Applying a range filter to a category
column gives natural telescoping and zooming on the x-axis of a
chart, without change to the architecture.

Drilldowns

An important operation for any interactive dashboard is drill-
downs: expanding detail for a datapoint on a chart. The user
should be able to click on a chart and see a detailed view of
the data underlying the datapoint. This was naturally implemented
in our system by associating a filter with every chart: every chart
in Galyleo is also a Select Filter, and it can be used as a Filter in
a view, just as any other widget can be.

Publishing The Dashboard

Once the dashboard is complete, it can be published to the
web simply by moving the dashboard file to any place it get
an URL (e.g. a github repo). It can then be viewed by visiting
https://galyleobeta.engagelively.com/public/galyleo/index.html?
dashboard=<url of dashboard file>. The attached figure shows
a published Galyleo Dashboard, which displays Florence
Nightingale’s famous Crimean War dataset. Using the double
sliders underneath the column charts telescope the x axes,
effectively permitting zooming on a range; clicking on a column
shows the detailed death statistics for that month in the pie chart
above the column chart.

No-Code, Low-Code, and Appropriate-Code

Galyleo is an appropriate-code environment, meaning that it offers
efficient creation to developers at every step. It offers What-You-
See-Is-What-You-Get (WYSIWYG) design tools where appro-
priate, low-code where appropriate, and full code creation tools
where appropriate.

No-code and low-code environments, where users construct
applications through a visual interface, are popular for several
reasons. The first is the assumption that coding is time-consuming
and hard, which isn’t always or necessarily true; the second is
the assumption that coding is a skill known to only a small
fraction of the population, which is becoming less true by the
day. 40% of Berkeley undergraduates take Data 8, in which
every assignment involves programming in a Jupyter Notebook.
The third, particularly for graphics code, is that manual design

Florence ngale's

Crimean War Data Set

April 1854 - March 1856

Fig. 4: Figure 4. A Published Galyleo Dashboard

and configuration gives instant feedback and tight control over
appearance. For example, the authors of a LaTeX paper (including
this one) can’t control the placement of figures within the text. The
fourth, which is correct, is that configuration code is more verbose,
error-prone, and time-consuming than manual configuration.

What is less often appreciated is that when operations become
sufficiently complex, coding is a much simpler interface than
manual configuration. For example, building a pivot table in a
spreadsheet using point-and-click operations have "always had a
reputation for being complicated" [Dev]. It’s three lines of code in
Python, even without using the Pandas pivot_table method. Most
analytics procedures are far more easily done in code.

As a result, Galyleo is an appropriate-code environment,
which is an environment which combines a coding interface
for complex, large-scale, or abstract operations and a point-
and-click interface for simple, concrete, small-scale operations.
Galyleo combines broadly powerful Jupyter-based code and low-
code libraries for analytics paired with fast GUI-based design and
configuration for graphical elements and layout.

Galyleo Data Model And Architecture

The Galyleo data Model and architecture closely model the
dashboard architecture discussed in the previous section. They are
based on the idea of a few simple, generalizable structures, which
are largely independent of each other and communicate through
simple interfaces.

The GalyleoTable

A GalyleoTable is the fundamental data structure in Galyleo. It
is a logical, not a physical abstraction; it simply responds to
the GalyleoTable API. A GalyleoTable is a pair (columns, rows),
where columns is a list of pairs (name, type), where type is one
of {string, boolean, number, date}, and rows is a list of lists of
primitive values, where the length of each component list is the
length of the list of columns and the type of the kth entry in each
list is the type specified by the kth column.

Small, public tables may be contained in the dashboard file;
these are called explicit tables. However, explicitly representing
the table in the dashboard file has a number of disadvantages:

1) An explicit table is in the memory of the client viewing
the dashboard; if it is too large, it may cause signifi-

cant performance problems on the dashboard author or
viewer’s device

2) Since the dashboard file is accessible on the web, any
data within it is public

3) The data may be continuously updated from a source,
and it’s inconvenient to re-run the Notebook to update
the data.

Therefore, the GalyleoTable can be of one of three types:

1) A data server that implements the Table REST API

2) A JavaScript object within the dashboard page itself

3) A JavaScript messenger in the page that implements a
messaging version of the API

An explicit table is simply a special case of (2) -- in this case,
the JavaScript object is simply a linear list of rows.

These are not exclusive. The JavaScript messenger case is
designed to support the ability of a containing application within
the browser to handle viewer authentication, shrinking the security
vulnerability footprint and ensuring that the client application
controls the data going to the dashboard. In general, aside from
performing tasks like authentication, the messenger will call an
external data server for the values themselves.

Whether in a Data Server, a containing application, or a
JavaScript object, Tables support three operations:

1) Get all the values for a specific column

2) Get the max/min/increment for a specific numeric column

3) Get the rows which match a boolean function, passed in
as a parameter to the operation

Of course, (3) is the operation that we have seen above, to
populate a view and a chart. (1) and (2) populate widgets on the
dashboard; (1) is designed for a select filter, which is a widget
that lets a user pick a specific set of values for a column; (2) is
an optimization for numeric filters, so that the entire list of values
for the column need not be sent -- rather, only the start and end
values, and the increment between them.

Each type of table specifies a source, additional information
(in the case of a data server, for example, any header variables
that must be specified in order to fetch the data), and, optionally,
a polling interval. The latter is designed to handle live data; the
dashboard will query the data source at each polling interval to
see if the data has changed.

The choice of these three table instantiations (REST,
JavaScript object, messenger) is that they provide the key founda-
tional building block for future extensions; it’s easy to add a SQL
connection on top of a REST interface, or a Python simulator.

Filters

Tables must be filtered in situ. One of the key motivators behind
remote tables is in keeping large amounts of data from hitting the
browser. This is largely defeated if the entire table is sent to the
dashboard and then filtered there. As a result, there is a Filter API
together with the Table API whereever there are tables.

The data flow of the previous section remains unchanged;
it is simply that the filter functions are transmitted to wherever
the tables happen to be. The dataflow in the case of remote
tables (whether messenger-based or REST-based) is shown here,
with operations that are resident where the table is situated and
operations resident on the dashboard clearly shown.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

“—~‘ Widget %ﬁii‘: Controller
Geh;{iecewe Re d}aw
tate

‘ View

Update
'Cpﬁa'r(s' Table Update
Operation on
Dashboard
Ge‘;l'::rm Operation at
Table Source

Get Dala Chart ‘

Non-Local Operation

Fig. 5: Figure 5. Galyleo Dataflow with Remote Tables

Comments

Again, simplicity and orthogonality have shown tremendous bene-
fits here. Though filters conceptually act as selectors on rows, they
may perform a variety of roles in implementations. For example,
a table produced by a simulator may be controlled by a parameter
value given by a Filter function.

Extending Galyleo

Every element of the Galyleo system, whether it is a widget, Chart,
Table Server, or Filter is defined exclusively through a small set
of public APIs. This is done to permit easy extension, by either
the Galyleo team, users, or third parties. A Chart is defined as an
object which has a physical HTML representation, and it supports
four JavaScript methods: redraw (draw the chart), set data (set the
chart’s data), set options (set the chart’s options), and supports
table (a boolean which returns true if and only if the chart can
draw the passed-in data set). In addition, it exports out a defined
JSON structure which indicates what options it supports and the
types of their values; this is used by the Chart Editor to display a
configurator for the chart.

Similarly, the underlying lively.next system supports user
design of new filters. Again, a filter is simply an object with a
physical presence, that the user can design in lively, and supports a
specific API -- broadly, set the choices and hand back the Boolean
function as a JSON object which will be used to filter the data.

lively.next

Any system can be used to extend Galyleo; at the end of the
day, all that need be done is encapsulate a widget or chart in
a snippet of HTML with a JavaScript interface that matches
the Galyleo protocol. This is done most easily and quickly
by using lively.next [SKH21]. lively.next is the latest in a line
of Smalltalk- and Squeak-inspired [IKM*97] JavaScript/HTML
integrated development environments that began with the Lively
Kernel [IPU08] [KIH"09] and continued through the Lively Web
[LKIT12] [IFHT16] [TM17]. Galyleo is an application built in
Lively, following the work done in [HIK " 16].

Lively shares with Jupyter an emphasis on live programming
[KRB18], orwhere a Read-Evaluate-Act Loop (REAL) program-
ming style. It adds to that a combination of visual and text
programming [ABF20], where physical objects are positioned and
configured largely by hand as done with any drawing or design
program (e.g., PowerPoint, Illustrator, DrawPad, Google Draw)
and programmed with a built-in editor and workspace, similar in
concept if not form to a Jupyter Notebook.

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION

4D e

» ¥ Layout
» © Master Component

Fig. 6: Figure 6. The lively.next environment

Lively abstracts away HTML and CSS tags in graphical
objects called "Morphs". Morphs [MS95] were invented as the
user interface layer for Self [US87], and have been used as
the foundation of the graphics system in Squeak and Scratch
[MRR"10]. In this UI, every physical object is a Morph; these
can be as simple as a simple polygon or text string to a full
application. Morphs are combined via composition, similar to the
way that objects are grouped in a presentation or drawing program.
The composition is simply another Morph, which in turn can be
composed with other Morphs. In this manner, complex Morphs
can be built up from collections of simpler ones. For example,
a slider is simply the composition of a circle (the knob) with a
thin, long rectangle (the bar). Each Morph can be individually
programmed as a JavaScript object, or can inherit base level
behavior and extend it.

In lively.next, each morph turns into a snippet of HTML, CSS,
and JavaScript code and the entire application turns into a web
page. The programmer doesn’t see the HTML and CSS code
directly; these are auto-generated. Instead, the programmer writes
JavaScript code for both logic and configuration (to the extent that
the configuration isn’t done by hand). The code is bundled with
the object and integrated in the web page.

Morphs can be set as reusable components by a simple
declaration. They can then be reused in any lively design.

Incorporating New Libraries

Libraries are typically incorporated into lively.next by attaching
them to a convenient physical object, importing the library from a
package manager such as npm, and then writing a small amount
of code to expose the object’s API. The simplest form of this is to
assign the module to an instance variable so it has an addressable
name, but typically a few convenience methods are written as well.
In this way, a large number of libraries have been incorporated
as reusable components in lively.next, including Google Maps,
Google Charts [goo], Chartjs [cha], D3 [BOHI11], Leaflet.js [lea],
OpenLayers [ope], cytoscape:ono and many more.

Extending Galyleo’s Charting and Visualization capabilities

A Galyleo Chart is anything that changes its display based on
tabular data from a Galyleo Table or Galyleo View. It responds to
a specific API, which includes two principal methods:

1) drawChart: redraw the chart using the current tabular data
from the input or view

17

2) acceptsDataset(<Table or View>) returns a boolean de-
pending on whether this chart can draw the data in this
view. For example, a Table Chart can draw any tabular
data; a Geo Chart typically requires that the first column
be a place specifier.

In addition, it has a read-only property:

1) optionSpec: A JSON structure describing the options for
the chart. This is a dictionary, which specifies the name of
each option, and its type (color, number, string, boolean,
or enum with values given). Each type corresponds to a
specific UI widget that the chart editor uses.

And two read write properties:

1) options: The current options, as a JSON dictionary. This
matches exactly the JSON dictionary in optionSpec, with
values in place of the types.

2) dataSource: a string, the name of the current Galyleo
Table or Galyleo View

Typically, an extension to Galyleo’s charting capabilities is
done by incorporating the library as described in the previous
section, implementing the API given in this section, and then
publishing the result as a component

Extending Galyleo’s Widget Set

A widget is a graphical item used to filter data. It operates on a
single column on any table in the current data set. It is either a
range filter (which selects a range of numeric values) or a select
filter (which selects a specific value, or a set of specific values).
The API that is implemented consists only of properties.

1) valueChanged: a signal, which is fired whenever the
value of the widget is changed

2) value: read-write. The current value of the widget

3) filter: read-only. The current filter function, as a JSON
structure

4) allValues: read-write, select filters only.

5) column: read-only. The name of the column of this
widget. Set when the widget is created

6) numericSpec: read-write. A dictionary containing the
numeric specification for a numeric or date filter

Widgets are typically designed as a standard Lively graphical
component, much as the slider described above.

Integration into Jupyter Lab: The Galyleo Extension

Galyleo is a standalone web application that is integrated into
JupyterLab using an iframe inside a JupyterLab tab for physical
design. A small JupyterLab extension was built that implements
the JupyterLab editor API. The JupyterLab extension has two
major functions: to handle read/write/undo requests from the
JupyterLab menus and file browser, and receive and transmit
messages from the running Jupyter kernels to update tables on
the Dashboard Studio, and to handle the reverse messages where
the studio requests data from the kernel.

Standard Jupyter and browser mechanisms are used. File sys-
tem requests come to the extension from the standard Jupyter API,
exactly the same requests and mechanisms that are sent to a Mark-
down or Notebook editor. The extension receives them, and then
uses standard browser-based messaging (window.postMessage) to
signal the standalone web app. Similarly, when the extension

Iframe

JupyterLab Bror Based
API Calls Messaging

Studio

;

Extension

/

Ju p’her
g

Jupyier
Messaging

]

Serves Studio
Page

Server

Kernel | Galyleo Client

e Server

‘ File system

Fig. 7: Figure 7. Galyleo Extension Architecture

makes a request of JupyterLab, it does so through this mechanism
and a receiver in the extension gets it and makes the appropriate
method calls within JupyterLab to achieve the objective.

When a kernel makes a request through the Galyleo Client,
this is handled exactly the same way. A Jupyter messaging server
within the extension receives the message from the kernel, and
then uses browser messaging to contact the application with the
request, and does the reverse on a Galyleo message to the kernel.

This is a highly efficient method of interaction, since browser-
based messaging is in-memory transactions on the client machine.

It’s important to note that there is nothing Galyleo-specific
about the extension: the Galyleo Extension is a general method
for any standalone web editor (e.g., a slide or drawing editor) to
be integrated into JupyterLab. The JupyterLab connection is a few
tens of lines of code in the Galyleo Dashboard. The extension is
slightly more complex, but it can be configured for a different
application with a simple data structure which specifies the URL
of the application, file type and extension to be manipulated, and
message list.

The Jupyter Computer

The implications of the Galyleo Extension go well beyond vi-
sualization and dashboards and easy publication in JupyterLab.
JupyterLab is billed as the next-generation integrated Develop-
ment Environment for Jupyter, but in fact it is substantially more
than that. It is the user interface and windowing system for Cloud-
based personal computing. Inspired by previous extensions such
as the Vega Extension, the Galyleo Extensions seeks to provide
the final piece of the puzzle.

Consider a Jupyter server in the Cloud, served from a Jupyter-
Hub such as the Berkeley Data Hub. It’s built from a base
Ubuntu image, with the standard Jupyter libraries installed and,
importantly, a UI that includes a Linux terminal interface. Any
Linux executable can be installed in the Jupyter server image, as
can any Jupyter kernel, and any collection of libraries. The Jupyter
server has per-user persistent storage, which is organized in a
standard Linux filesystem. This makes the Jupyter server a curated
execution environment with a Linux command-line interface and
a Notebook interface for Jupyter execution.

A JupyterHub similar to Berkeley Data Hub (essentially,
anything built from Zero 2 Jupyter Hub or Q-Hub) comes with a
number of "environments". The user chooses the environment on
startup. Each environment comes with a built-in set of libraries and
executables designed for a specific task or set of tasks. The number

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

of environments hosted by a server is arbitrary, and the cost is only
the cost of maintaining the Dockerfile for each environment.

An environment is easy to design for a specific class, project,
or task; it’s simply adding libraries and executables to a base
Dockerfile. It must be tested, of course, but everything must be.
And once it is tested, the burden of software maintenance and
installation is removed from the user; the user is already in a task-
customized, curated environment. Of course, the usual installation
tools (apt, pip, conda, easy_install) can be pre-loaded (they’re just
executables) so if the environment designer missed something it
can be added by the end user.

Though a user can only be in one environment at a time,
persistent storage is shared across all environments, meaning
switching environments is simply a question of swapping one
environment out and starting another.

Viewed in this light, a JupyterHub is a multi-purpose computer
in the Cloud, with an easy-to-use UI that presents through a
browser. JupyterLab isn’t simply an IDE; it’s the window system
and user interface for this computer. The JupyterLab launcher is
the desktop for this computer (and it changes what’s presented,
depending on the environment); the file browser is the computer’s
file browser, and the JupyterLab API is the equivalent of the Win-
dows or MacOS desktop APIs and window system that permits
third parties to build applications for this.

This Jupyter Computer has a large number of advantages over
a standard desktop or laptop computer. It can be accessed from any
device, anywhere on Earth with an Internet connection. Software
installation and maintenance issues are nonexistent. Data loss due
to hardware failure is extremely unlikely; backups are still required
to prevent accidental data loss (e.g., erroneous file deletion), but
they are far easier to do in a Cloud environment. Hardware
resources such as disk, RAM, and CPU can be added rapidly,
on a permanent or temporary basis. Relatively exotic resources
(e.g., GPUs) can also be added, again on an on-demand, temporary
basis.

The advantages go still further than that. Any resource that
can be accessed over a network connection can be added to
the Jupyter Computer simply by adding the appropriate accessor
library to an environment’s Dockerfile. For example, a database
solution such as Snowflake, BigQuery, or Amazon Aurora (or
one of many others) can be "installed" by adding the relevant
library module to the environment. Of course, the user will need
to order the database service from the relevant provider, and obtain
authentication tokens, and so on -- but this is far less troublesome
than even maintaining the library on the desktop.

However, to date the Jupyter Computer only supports a few
window-based applications, and adding a new application is a
time-consuming development task. The applications supported are
familiar and easy to enumerate: a Notebook editor, of course; a
Markdown Viewer; a CSV Viewer; a JSON Viewer (not inline
editor), and a text editor that is generally used for everything from
Python files to Markdown to CSV.

This is a small subset of the rich range of JavaScript/HTMLS5
applications which have significant value for Jupyter Computer
users. For example, the Ace Code Editor supports over 110
languages and has the functionality of popular desktop editors
such as Vim and Sublime Text. There are over 1100 open-source
drawing applications on the JavaScript/HTMLS5 platform; multiple
spreadsheet applications, the most notable being jExcel, and many
more.

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION

Iframe

Browser-Based
Messaging

Messaging |JavaScript_
Client API

HTML5/JavaScript
Application

Extension

Fig. 8: Figure 8. Galyleo Extension Application-Side messaging

Up until now, adding a new application to JupyterLab involved
writing a hand-coded extension in Typescript, and compiling
it into JupyterLab. However, the Galyleo Extension has been
designed so that any HTML5/JavaScript application can be added
easily, simply by configuring the Galyleo Extension with a small
JSON file.

The promise of the Galyleo Extension is that it can be adapted
to any open-source JavaScript/HTMLS application very easily.
The Galyleo Extension merely needs the:

o URL of the application

« File extension that the application reads/writes
« URL of an image for the launcher

« Name of the application for the file menu

The application must implement a small messaging client,
using the standard JavaScript messaging interface, and implement
the calls the Galyleo Extension makes. The conceptual picture is
shown im Figure 8.

And it must support (at a minimum) messages to read and
write the file being edited.

The Third Generation of Network Computing

The World-Wide Web and email comprised the first generation
of Internet computing (the Internet had been around for a decade
before the Web, and earlier networks dated from the sixties, but
the Web and email were the first mass-market applications on
the network), and they were very simple -- both were document-
exchange applications, using slightly different protocols. The
second generation of Network applications were the siloed pro-
ductivity applications, where standard desktop applications moved
to the Cloud. The most famous example is of course GSuite
and Office 365, but there were and are many others -- Canva,
Loom, Picasa, as well as a large number of social/chat/social
media applications. What they all had in common was that they
were siloed applications which, with the exception of the office
suites, didn’t even share a common store. In many ways, this
second generation of network applications recapitulates the era
immediately prior to the introduction of the personal computer.
That era was dominated by single-application computers such as
word processors, which were simply computers with a hardcoded
program loaded into ROM.

The Word Processor era was due to technological limitations
-- the processing power and memory to run multiple programs
simply wasn’t available on low-end hardware, and PC operating
systems didn’t yet exist. In some sense, the current second genera-
tion of Internet Computing suffers from similar technological con-
straints. The "Operating System" for Internet Computing doesn’t
yet exist. The Jupyter Computer can provide it.

To see the difference that this can make, consider LaTeX (per-
haps preceded by Docutils, as is the case for SciPy) preparation of
a document. On a personal computer, it’s fairly straightforward;

Jupyter Computer

Online Online
Collaborative Collaborative
Applications Applications
(GSuite) (GSuite)
Web, Email ‘Web, Email
Generation [: Generation |I: Generation III:
Basic Shared Computing as a
Communication Applications Service

Fig. 9: Figure 9. Generations of Internet Computing

the user uses any of a wide variety of text editors to prepare the
document, any of a wide variety of productivity and illustrator
programs to prepare the images, runs this through a local sequence
of commands (e.g., pdflatex paper; bibtex paper; pdflatex paper.
Usually Github or another repository is used for storage and
collaboration.

In a Cloud service, this is another matter. There is at most
one editor, selected by the service, on the site. There is no
image editing or illustrator program that reads and writes files
on the site. Auxiliary tools, such as a bib searcher, aren’t present
or aren’t customizable. The service has its own siloed storage,
its own text editor, and its own document-preparation pipeline.
The tools (aside from the core document-preparation program)
are primitive. The online service has two advantages over the
personal-device service. Collaboration is generally built-in, with
multiple people having access to the project, and the software need
not be maintained. Aside from that, the personal-device experience
is generally superior. In particular, the user is free to pick their own
editor, and doesn’t have to orchestrate multiple downloads and
uploads from various websites. The usual collection of command-
line utilities are available to small touchups.

The third generation of Internet Computing represented by the
Jupyter Computer. This offers a Cloud experience similar to the
personal computer, but with the scalability, reliability, and ease of
collaboration of the Cloud.

Conclusion and Further Work

The vision of the Jupyter Computer, bringing the power of the
Cloud to the personal computing experience has been started
with Galyleo. It will not end there. At the heart of it is a
composition of two broadly popular platforms: HTMLS5/JavaScript
for presentation and interaction, and the various Jupyter kernels
for server-side analytics. Galyleo is a start at seamless interaction
of these two platforms. Continuing and extending this is further
development of narrow-waist protocols to permit maximal inde-
pendent development and extension.

Acknowledgements

The authors wish to thank Alex Yang, Diptorup Deb, and for
their insightful comments, and Meghann Agarwal for stewardship.
We have received invaluable help from Robert Krahn, Marko
Roder, Jens Lincke and Linus Hagemann. We thank the en-
gageLively team for all of their support and help: Tim Braman,
Patrick Scaglia, Leighton Smith, Sharon Zehavi, Igor Zhukovsky,
Deepak Gupta, Steve King, Rick Rasmussen, Patrick McCue,
Jeff Wade, Tim Gibson. The JupyterLab development commu-
nity has been helpful and supportive; we want to thank Tony
Fast, Jason Grout, Mehmet Bektas, Isabela Presedo-Floyd, Brian

20

Granger, and Michal Krassowski. The engageLively Technology
Advisory Board has helped shape these ideas: Ani Mardurkar,
Priya Joseph, David Peterson, Sunil Joshi, Michael Czahor, Isha
Oke, Petrus Zwart, Larry Rowe, Glenn Ricart, Sunil Joshi, Antony
Ng. We want to thank the people from the AWS team that have
helped us tremendously: Matt Vail, Omar Valle, Pat Santora.
Galyleo has been dramatically improved with the assistance of our
Japanese colleagues at KCT and Pacific Rim Technologies: Yoshio
Nakamura, Ted Okasaki, Ryder Saint, Yoshikazu Tokushige, and
Naoyuki Shimazaki. Our undestanding of Jupyter in an academic
context came from our colleagues and friends at Berkeley, the
University of Victoria, and UBC: Shawna Dark, Hausi Miiller,
Ulrike Stege, James Colliander, Chris Holdgraf, Nitesh Mor. Use
of Jupyter in a research context was emphasized by Andrew
Weidlea, Eli Dart, Jeff D’ Ambrogia. We benefitted enormously
from the CITRIS Foundry: Alic Chen, Jing Ge, Peter Minor, Kyle
Clark, Julie Sammons, Kira Gardner. The Alchemist Accelerator
was central to making this product: Ravi Belani, Arianna Haider,
Jasmine Sunga, Mia Scott, Kenn So, Aaron Kalb, Adam Frankl.
Kris Singh was a constant source of inspiration and help. Larry
Singer gave us tremendous help early on. Vibhu Mittal more
than anyone inspired us to pursue this road. Ken Lutz has been
a constant sounding board and inspiration, and worked hand-in-
hand with us to develop this product. Our early customers and
partners have been and continue to be a source of inspiration,
support, and experience that is absolutely invaluable: Jonathan
Tan, Roger Basu, Jason Koeller, Steve Schwab, Michael Collins,
Alefiya Hussain, Geoff Lawler, Jim Chimiak, Frauké Tillman,
Andy Bavier, Andy Milburn, Augustine Bui. All of our customers
are really partners, none moreso than the fantastic teams at Tanjo
Al and Ultisim: Bjorn Nordwall, Ken Lane, Jay Sanders, Eric
Smith, Miguel Matos, Linda Bernard, Kevin Clark, and Richard
Boyd. We want to especially thank our investors, who bet on this
technology and company.

REFERENCES

[ABF20] Leif Andersen, Michael Ballantyne, and Matthias Felleisen.
Adding interactive visual syntax to textual code. Proc. ACM
Program. Lang., 4(OOPSLA), nov 2020. URL: https://doi.org/
10.1145/3428290, doi1:10.1145/3428290.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-
driven documents. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):2301-2309, dec 2011. URL: https://doi.
org/10.1109/TVCG.2011.185, doi:10.1109/TVCG.2011.
185.

Chart.js. URL: https://www.chartjs.org/.

D. Crockford. The application/json media type for javascript
object notation (json). RFC 4627, RFC Editor, July 2006. http://
www.rfc-editor.org/rfc/rfc4627.txt. URL: http://www.rfc-editor.
org/rfc/rfc4627.txt, doi:10.17487/rfcd627.

Erik Devaney. How to create a pivot table in excel: A step-by-
step tutorial. URL: https://blog.hubspot.com/marketing/how-to-
create-pivot-table-tutorial-ht.

Marcello D’Agostino, Dov M Gabbay, Reiner Hihnle, and
Joachim Posegga. Handbook of tableau methods. Springer
Science & Business Media, 2013.

Charts: google developers. URL: https://developers.google.com/
chart/.

Matthew Hemmings, Daniel Ingalls, Robert Krahn, Rick
McGeer, Glenn Ricart, Marko Roder, and Ulrike Stege. Livetalk:
A framework for collaborative browser-based replicated-
computation applications. In 2016 28th International Tele-
traffic Congress (ITC 28), volume 01, pages 270-277, 2016.
doi:10.1109/ITC-28.2016.144.

High-level tools to simplify visualization in python, Apr 2022.
URL: https://holoviz.org/.

[BOH11]

[cha]
[Cro06]

[Dev]

[DGHP13]

[goo]

[HIK* 16]

[hol22a]

[hol22b]

[IFH*16]

[IKM197]

[IPUT08]

[jup]

[KIH"09]

[KRB18]

[KRKP™ 16]

[lea]

[LKI*12]

[loo]
[LS10]

[mdn]

[MRR*10]

[MS95]

[ope]
[pan22]
[pdt20]

[plo]
[SKH21]

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Installation - holoviews v1.14.9, May 2022.
//holoviews.org/.

Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert
Krahn, Jens Lincke, Marko Rdder, Antero Taivalsaari, and
Tommi Mikkonen. A world of active objects for work and play:
The first ten years of lively. In Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2016, page
238-249, New York, NY, USA, 2016. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/2986012.2986029,
doi:10.1145/2986012.2986029.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of squeak, a prac-
tical smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA °97, page
318-326, New York, NY, USA, 1997. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/263698.263754,
doi:10.1145/263698.263754.

Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taival-
saari, and Tommi Mikkonen. The lively kernel a self-supporting
system on a web page. In Workshop on Self-sustaining Systems,
pages 31-50. Springer, 2008. doi:10.1007/978-3-540-
89275-5_2.

Jupyterlab documentation. URL.: https:/jupyterlab.readthedocs.
io/en/stable/.

Robert Krahn, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and
Krzysztof Palacz. Lively wiki a development environment for
creating and sharing active web content. In Proceedings of the
5th International Symposium on Wikis and Open Collaboration,
WikiSym ’09, New York, NY, USA, 2009. Association for
Computing Machinery. URL: https://doi.org/10.1145/1641309.
1641324, doi:10.1145/1641309.1641324.

Juraj Kubelka, Romain Robbes, and Alexandre Bergel. The road
to live programming: Insights from the practice. In Proceedings
of the 40th International Conference on Software Engineering,
ICSE ’18, page 1090-1101, New York, NY, USA, 2018. Associ-
ation for Computing Machinery. URL: https://doi.org/10.1145/
3180155.3180200, doi:10.1145/3180155.3180200.
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damidn Avila, Safia Abdalla, Carol Willing, and Jupyter
development team. Jupyter Notebooks - a publishing format for
reproducible computational workflows. 10S Press, 2016. URL:
https://eprints.soton.ac.uk/403913/.

An open-source javascript library for interactive maps. URL:
https://leafletjs.com/.

Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and
Robert Hirschfeld. The lively partsbin—a cloud-based repository
for collaborative development of active web content. In 2012
45th Hawaii International Conference on System Sciences, pages
693-701, 2012. do1:10.1109/HICSS.2012.42.

Looker. URL: https://looker.com/.

Bruce Lawson and Remy Sharp. Introducing HTML5. New
Riders Publishing, USA, Ist edition, 2010.
Window.postmessage() - web apis: Mdn. URL: https://developer.
mozilla.org/en-US/docs/Web/API/Window/postMessage.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman,
and Evelyn Eastmond. The scratch programming language
and environment. ACM Transactions on Computing Educa-
tion (TOCE), 10(4):1-15, 2010. URL: https://doi.org/10.1145/
1868358.1868363, doi:10.1145/1868358.1868363.
John H Maloney and Randall B Smith. Directness and liveness in
the morphic user interface construction environment. In Proceed-
ings of the Sth annual ACM symposium on User interface and
software technology, pages 21-28, 1995. URL: https://doi.org/
10.1145/215585.215636, doi1:10.1145/215585.215636.
Openlayers. URL: https://openlayers.org/.

Panel, May 2022. URL.: https://panel.holoviz.org/.

The pandas development team. pandas-dev/pandas: Pandas,
February 2020. URL: https://doi.org/10.5281/zenodo.3509134,
doi:10.5281/zenodo.3509134.

Dash overview. URL: https://plotly.com/dash/.
Robin Schrieber, Robert Krahn, and Linus
lively.next, 2021.

URL: https:

Hagemann.

https://doi.org/10.1145/3428290
https://doi.org/10.1145/3428290
http://dx.doi.org/10.1145/3428290
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
https://www.chartjs.org/
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.rfc-editor.org/rfc/rfc4627.txt
http://dx.doi.org/10.17487/rfc4627
https://blog.hubspot.com/marketing/how-to-create-pivot-table-tutorial-ht
https://blog.hubspot.com/marketing/how-to-create-pivot-table-tutorial-ht
https://developers.google.com/chart/
https://developers.google.com/chart/
http://dx.doi.org/10.1109/ITC-28.2016.144
https://holoviz.org/
https://holoviews.org/
https://holoviews.org/
https://doi.org/10.1145/2986012.2986029
http://dx.doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/263698.263754
http://dx.doi.org/10.1145/263698.263754
http://dx.doi.org/10.1007/978-3-540-89275-5_2
http://dx.doi.org/10.1007/978-3-540-89275-5_2
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/
https://doi.org/10.1145/1641309.1641324
https://doi.org/10.1145/1641309.1641324
http://dx.doi.org/10.1145/1641309.1641324
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1145/3180155.3180200
http://dx.doi.org/10.1145/3180155.3180200
https://eprints.soton.ac.uk/403913/
https://leafletjs.com/
http://dx.doi.org/10.1109/HICSS.2012.42
https://looker.com/
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
http://dx.doi.org/10.1145/215585.215636
https://openlayers.org/
https://panel.holoviz.org/
https://doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
https://plotly.com/dash/

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION

[TM17]

[US87]

[WM10]

Antero Taivalsaari and Tommi Mikkonen. The web as a software
platform: Ten years later. In International Conference on Web
Information Systems and Technologies, volume 2, pages 41-50.
SCITEPRESS, 2017. doi:10.5220/0006234800410050.
David Ungar and Randall B. Smith. Self: The power of simplic-
ity. volume 22, page 227-242, New York, NY, USA, dec 1987.
Association for Computing Machinery. URL: https://doi.org/10.
1145/38807.38828, doi:10.1145/38807.38828.

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56
—61,2010. doi:10.25080/Majora-92b£f1922-00a.

21

http://dx.doi.org/10.5220/0006234800410050
https://doi.org/10.1145/38807.38828
https://doi.org/10.1145/38807.38828
http://dx.doi.org/10.1145/38807.38828
http://dx.doi.org/10.25080/Majora-92bf1922-00a

	Introduction
	Using Galyleo
	The Dashboard Studio
	Workflow
	Data Flow and Conceptual Picture
	Drilldowns
	Publishing The Dashboard

	No-Code, Low-Code, and Appropriate-Code
	Galyleo Data Model And Architecture
	The GalyleoTable
	Filters
	Comments

	Extending Galyleo
	lively.next
	Incorporating New Libraries
	Extending Galyleo's Charting and Visualization capabilities
	Extending Galyleo's Widget Set

	Integration into Jupyter Lab: The Galyleo Extension
	The Jupyter Computer
	The Third Generation of Network Computing

	Conclusion and Further Work
	Acknowledgements
	References

