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Utilizing SciPy and other open source packages to
provide a powerful API for materials manipulation in

the Schrödinger Materials Suite
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Abstract—The use of several open source scientific packages in the
Schrödinger Materials Science Suite will be discussed. A typical workflow for
materials discovery will be described, discussing how open source packages
have been incorporated at every stage. Some recent implementations of ma-
chine learning for materials discovery will be discussed, as well as how open
source packages were leveraged to achieve results faster and more efficiently.

Index Terms—materials, active learning, OLED, deposition, evaporation

Introduction

A common materials discovery practice or workflow is to start
with reading an experimental structure of a material or generating
a structure in silico, computing its properties of interest (e.g.
elastic constants, electrical conductivity), tuning the material by
modifying its structure (e.g. doping) or adding and removing
atoms (deposition, evaporation), and then recomputing the proper-
ties of the modified material (Figure 1). Computational materials
discovery leverages such workflows to empower researchers to
explore vast design spaces and uncover root causes without (or in
conjunction with) laboratory experimentation.

Software tools for computational materials discovery can be
facilitated by utilizing existing libraries that cover the fundamental
mathematics used in the calculations in an optimized fashion. This
use of existing libraries allows developers to devote more time
to developing new features instead of re-inventing established
methods. As a result, such a complementary approach improves
the performance of computational materials software and reduces
overall maintenance.

The Schrödinger Materials Science Suite [LLC22] is a propri-
etary computational chemistry/physics platform that streamlines
materials discovery workflows into a single graphical user inter-
face (Materials Science Maestro). The interface is a single portal
for structure building and enumeration, physics-based modeling
and machine learning, visualization and analysis. Tying together
the various modules are a wide variety of scientific packages, some
of which are proprietary to Schrödinger, Inc., some of which are
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open-source and many of which blend the two to optimize capa-
bilities and efficiency. For example, the main simulation engine
for molecular quantum mechanics is the Jaguar [BHH+13] pro-
prietary code. The proprietary classical molecular dynamics code
Desmond (distributed by Schrödinger, Inc.) [SGB+14] is used to
obtain physical properties of soft materials, surfaces and polymers.
For periodic quantum mechanics, the main simulation engine is
the open source code Quantum ESPRESSO (QE) [GAB+17]. One
of the co-authors of this proceedings (A. Fonari) contributes to
the QE code in order to make integration with the Materials Suite
more seamless and less error-prone. As part of this integration,
support for using the portable XML format for input and output
in QE has been implemented in the open source Python package
qeschema [BDBF].

Figure 2 gives an overview of some of the various products that
compose the Schrödinger Materials Science Suite. The various
workflows are implemented mainly in Python (some of them
described below), calling on proprietary or open-source code
where appropriate, to improve the performance of the software
and reduce overall maintenance.

The materials discovery cycle can be run in a high-throughput
manner, enumerating different structure modifications in a system-
atic fashion, such as doping ratio in a semiconductor or depositing
different adsorbates. As we will detail herein, there are several
open source packages that allow the user to generate a large
number of structures, run calculations in high throughput manner
and analyze the results. For example, the open source package
pymatgen [ORJ+13] facilitates generation and analysis of periodic
structures. It can generate inputs for and read outputs of QE, the
commercial codes VASP and Gaussian, and several other formats.
To run and manage workflow jobs in a high-throughput manner,
open source packages such as Custodian [ORJ+13] and AiiDA
[HZU+20] can be used.

Materials import and generation

For reading and writing of material structures, several open source
packages (e.g. OpenBabel [OBJ+11], RDKit [LTK+22]) have
implemented functionality for working with several commonly
used formats (e.g. CIF, PDB, mol, xyz). Periodic structures
of materials, mainly coming from single crystal X-ray/neutron
diffraction experiments, are distributed in CIF (Crystallographic
Information File), PDB (Protein Data Bank) and lately mmCIF
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Fig. 1: Example of a workflow for computational materials discovery.

Fig. 2: Some example products that compose the Schrödinger Materials Science Suite.

formats [WF05]. Correctly reading experimental structures is of
significant importance, since the rest of the materials discovery
workflow depends on it. In addition to atom coordinates and
periodic cell information, structural data also contains symme-
try operations (listed explicitly or by the means of providing
a space group) that can be used to decrease the number of
computations required for a particular system by accounting for
symmetry. This can be important, especially when scaling high-
throughput calculations. From file, structure is read in a structure
object through which atomic coordinates (as a NumPy array) and
chemical information of the material can be accessed and updated.
Structure object is similar to the one implemented in open source
packages such as pymatgen [ORJ+13] and ASE [LMB+17]. All
the structure manipulations during the workflows are done by
using structure object interface (see structure deformation example
below). Example of Structure object definition in pymatgen:

class Structure:

def __init__(self, lattice, species, coords, ...):
"""Create a periodic structure."""

One consideration of note is that PDB, CIF and mmCIF structure
formats allow description of the positional disorder (for example,
a solvent molecule without a stable position within the cell
which can be described by multiple sets of coordinates). Another
complication is that experimental data spans an interval of almost
a century: one of the oldest crystal structures deposited in the
Cambridge Structural Database (CSD) [GBLW16] dates to 1924
[HM24]. These nuances and others present nontrivial technical
challenges for developers. Thus, it has been a continuous effort
by Schrödinger, Inc. (at least 39 commits and several weeks of

work went into this project) and others to correctly read and
convert periodic structures in OpenBabel. By version 3.1.1 (the
most recent at writing time), the authors are not aware of any
structures read incorrectly by OpenBabel. In general, non-periodic
molecular formats are simpler to handle because they only contain
atom coordinates but no cell or symmetry information. OpenBabel
has Python bindings but due to the GPL license limitation, it is
called as a subprocess from the Schrödinger Materials Suite.

Another important consideration in structure generation is
modeling of substitutional disorder in solid alloys and materials
with point defects (intermetallics, semiconductors, oxides and
their crystalline surfaces). In such cases, the unit cell and atomic
sites of the crystal or surface slab are well defined while the chem-
ical species occupying the site may vary. In order to simulate sub-
stitutional disorder, one must generate the ensemble of structures
that includes all statistically significant atomic distributions in a
given unit cell. This can be achieved by a brute force enumeration
of all symmetrically unique atomic structures with a given number
of vacancies, impurities or solute atoms. The open source library
enumlib [HF08] implements algorithms for such a systematic
enumeration of periodic structures. The enumlib package consists
of several Fortran binaries and Python scripts that can be run as a
subprocess (no Python bindings). This allows the user to generate
a large set of symmetrically nonequivalent materials with different
compositions (e.g. doping or defect concentration).

Recently, we applied this approach in simultaneous study of
the activity and stability of Pt based core-shell type catalysts for
the oxygen reduction reaction [MGF+19]. We generated a set of
stable doped Pt/transition metal/nitrogen surfaces using periodic
enumeration. Using QE to perform periodic density functional
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Fig. 3: Example of the job submission process.

theory (DFT) calculations, we assessed surface phase diagrams
for Pt alloys and identified the avenues for stabilizing the cost
effective core-shell systems by a judicious choice of the catalyst
core material. Such catalysts may prove critical in electrocatalysis
for fuel cell applications.

Workflow capabilities

In the last section, we briefly described a complete workflow from
structure generation and enumeration to periodic DFT calculations
to analysis. In order to be able to run a massively parallel
screening of materials, a highly scalable and stable queuing system
(job scheduler) is required. We have implemented a job queuing
system on top of the most used queuing systems (LSF, PBS,
SGE, SLURM, TORQUE, UGE) and exposed a Python API to
submit and monitor jobs. In line with technological advancements,
cloud is also supported by means of a virtual cluster configured
with SLURM. This allows the user to submit a large number
of jobs, limited only by SLURM scheduling capabilities and
cloud resources. In order to accommodate job dependencies in
workflows, for each job, a parent job (or multiple parent jobs) can
be defined forming a directed graph of jobs (Figure 3).

There could be several reasons for a job to fail. Depending
on the reason of failure, there are several restart and recovery
mechanisms in place. The lowest level is the restart mechanism
(in SLURM it is called requeue) which is performed by the
queuing system itself. This is triggered when a node goes down.
On the cloud, preemptible instances (nodes) can go offline at any
moment. In addition, workflows implemented in the proprietary
Schrödinger Materials Science Suite have built-in methods for
handling various types of failure. For example, if the simulation
is not converging to a requested energy accuracy, it is wasteful
to blindly restart the calculation without changing some input
parameters. However, in the case of a failure due to full disk
space, it is reasonable to try restart with hopes to get a node with
more empty disk space. If a job fails (and cannot be restarted),
all its children (if any) will not start, thus saving queuing and
computational time.

Having developed robust systems for running calculations, job
queuing and troubleshooting (autonomously, when applicable),
the developed workflows have allowed us and our customers to
perform massive screenings of materials and their properties. For
example, we reported a massive screening of 250,000 charge-
conducting organic materials, totaling approximately 3,619,000
DFT SCF (self-consistent field) single-molecule calculations using

Jaguar that took 457,265 CPU hours (~52 years) [MAS+20]. An-
other similar case study is the high-throughput molecular dynam-
ics simulations (MD) of thermophysical properties of polymers for
various applications [ABG+21]. There, using Desmond we com-
puted the glass transition temperature (Tg) of 315 polymers and
compared the results with experimental measurements [Bic02].
This study took advantage of GPU (graphics processing unit)
support as implemented in Desmond, as well as the job scheduler
API described above.

Other workflows implemented in the Schrödinger Materials
Science Suite utilize open source packages as well. For soft mate-
rials (polymers, organic small molecules and substrates composed
of soft molecules), convex hull and related mathematical methods
are important for finding possible accessible solvent voids (during
submerging or sorption) and adsorbate sites (during molecular
deposition). These methods are conveniently implemented in the
open source SciPy [VGO+20] and NumPy [HMvdW+20] pack-
ages. Thus, we implemented molecular deposition and evaporation
workflows by using the Desmond MD engine as the backend
in tandem with the convex hull functionality. This workflow
enables simulation of the deposition and evaporation of the
small molecules on a substrate. We utilized the aforementioned
deposition workflow in the study of organic light-emitting diodes
(OLEDs), which are fabricated using a stepwise process, where
new layers are deposited on top of previous layers. Both vacuum
and solution deposition processes have been used to prepare these
films, primarily as amorphous thin film active layers lacking
long-range order. Each of these deposition techniques introduces
changes to the film structure and consequently, different charge-
transfer and luminescent properties [WKB+22].

As can be seen from above, a workflow is usually some
sort of structure modification through the structure object with
a subsequent call to a backend code and analysis of its output if
it succeeds. Input for the next iteration depends on the output
of the previous iteration in some workflows. Due to the large
chemical and manipulation space of the materials, sometimes it
very tricky to keep code for all workflows follow the same code
logic. For every workflow and/or functionality in the Materials
Science Suite, some sort of peer reviewed material (publication,
conference presentation) is created where implemented algorithms
are described to facilitate reproducibility.

Data fitting algorithms and use cases

Materials simulation engines for QM, periodic DFT, and classical
MD (referred to herein as backends) are frequently written in
compiled languages with enabled parallelization for CPU or GPU
hardware. These backends are called from Python workflows
using the job queuing systems described above. Meanwhile, pack-
ages such as SciPy and NumPy provide sophisticated numerical
function optimization and fitting capabilities. Here, we describe
examples of how the Schrödinger suite can be used to combine
materials simulations with popular optimization routines in the
SciPy ecosystem.

Recently we implemented convex analysis of
the stress strain curve (as described here [PKD18]).
scipy.optimize.minimize is used for a constrained
minimization with boundary conditions of a function related to
the stress strain curve. The stress strain curve is obtained from a
series of MD simulations on deformed cells (cell deformations
are defined by strain type and deformation step). The pressure
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tensor of a deformed cell is related to stress. This analysis allowed
prediction of elongation at yield for high density polyethylene
polymer. Figure 4 shows obtained calculated yield of 10% vs.
experimental value within 9-18% range [BAS+20].

The scipy.optimize package is used for a least-squares
fit of the bulk energies at different cell volumes (compressed
and expanded) in order to obtain the bulk modulus and equation
of state (EOS) of a material. In the Schrödinger suite this was
implemented as a part of an EOS workflow, in which fitting is
performed on the results obtained from a series of QE calculations
performed on the original as well as compressed and expanded
(deformed) cells. An example of deformation applied to a structure
in pymatgen:
from pymatgen.analysis.elasticity import strain
from pymatgen.core import lattice
from pymatgen.core import structure

deform = strain.Deformation([
[1.0, 0.02, 0.02],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]])

latt = lattice.Lattice([
[3.84, 0.00, 0.00],
[1.92, 3.326, 0.00],
[0.00, -2.22, 3.14],

])

st = structure.Structure(
latt,
["Si", "Si"],
[[0, 0, 0], [0.75, 0.5, 0.75]])

strained_st = deform.apply_to_structure(st)

This is also an example of loosely coupled (embarrassingly
parallel) jobs. In particular, calculations of the deformed cells
only depend on the bulk calculation and do not depend on each
other. Thus, all the deformation jobs can be submitted in parallel,
facilitating high-throughput runs.

Structure refinement from powder diffraction experiment is an-
other example where more complex optimization is used. Powder
diffraction is a widely used method in drug discovery to assess
purity of the material and discover known or unknown crystal
polymorphs [KBD+21]. In particular, there is interest in fitting of
the experimental powder diffraction intensity peaks to the indexed
peaks (Pawley refinement) [JPS92]. Here we employed the open
source lmfit package [NSA+16] to perform a minimization of
the multivariable Voigt-like function that represents the entire
diffraction spectrum. This allows the user to refine (optimize) unit
cell parameters coming from the indexing data and as the result,
goodness of fit (R-factor) between experimental and simulated
spectrum is minimized.

Machine learning techniques

Of late, there is great interest in machine learning assisted mate-
rials discovery. There are several components required to perform
machine learning assisted materials discovery. In order to train a
model, benchmark data from simulation and/or experimental data
is required. Besides benchmark data, computation of the relevant
descriptors is required (see below). Finally, a model based on
benchmark data and descriptors is generated that allows prediction
of properties for novel materials. There are several techniques to
generate the model, such as linear or non-linear fitting to neural
networks. Tools include the open source DeepChem [REW+19]

and AutoQSAR [DDS+16] from the Schrödinger suite. Depending
on the type of materials, benchmark data can be obtained using
different codes available in the Schrödinger suite:

• small molecules and finite systems - Jaguar
• periodic systems - Quantum ESPRESSO
• larger polymeric and similar systems - Desmond

Different materials systems require different descriptors for
featurization. For example, for crystalline periodic systems, we
have implemented several sets of tailored descriptors. Genera-
tion of these descriptors again uses a mix of open source and
Schrödinger proprietary tools. Specifically:

• elemental features such as atomic weight, number of
valence electrons in s, p and d-shells, and electronegativity

• structural features such as density, volume per atom, and
packing fraction descriptors implemented in the open
source matminer package [WDF+18]

• intercalation descriptors such as cation and anion counts,
crystal packing fraction, and average neighbor ionicity
[SYC+17] implemented in the Schrödinger suite

• three-dimensional smooth overlap of atomic positions
(SOAP) descriptors implemented in the open source
DScribe package [HJM+20].

We are currently training models that use these descriptors
to predict properties, such as bulk modulus, of a set of Li-
containing battery related compounds [Cha]. Several models will
be compared, such as kernel regression methods (as implemented
in the open source scikit-learn code [PVG+11]) and AutoQSAR.

For isolated small molecules and extended non-periodic sys-
tems, RDKit can be used to generate a large number of atomic and
molecular descriptors. A lot of effort has been devoted to ensure
that RDKit can be used on a wide variety of materials that are
supported by the Schrödinger suite. At the time of writing, the 4th
most active contributor to RDKit is Ricardo Rodriguez-Schmidt
from Schrödinger [RDK].

Recently, active learning (AL) combined with DFT has re-
ceived much attention to address the challenge of leveraging
exhaustive libraries in materials informatics [VPB21], [SPA+19].
On our side, we have implemented a workflow that employs active
learning (AL) for intelligent and iterative identification of promis-
ing materials candidates within a large dataset. In the framework of
AL, the predicted value with associated uncertainty is considered
to decide what materials to be added in each iteration, aiming to
improve the model performance in the next iteration (Figure 5).

Since it could be important to consider multiple properties
simultaneously in material discovery, multiple property optimiza-
tion (MPO) has also been implemented as a part of the AL work-
flow [KAG+22]. MPO allows scaling and combining multiple
properties into a single score. We employed the AL workflow
to determine the top candidates for hole (positively charged
carrier) transport layer (HTL) by evaluating 550 molecules in 10
iterations using DFT calculations for a dataset of ~9,000 molecules
[AKA+22]. Resulting model was validated by randomly picking
a molecule from the dataset, computing properties with DFT and
comparing those to the predicted values. According to the semi-
classical Marcus equation [Mar93], high rates of hole transfer are
inversely proportional to hole reorganization energies. Thus, MPO
scores were computed based on minimizing hole reorganization
energy and targeting oxidation potential to an appropriate level to
ensure a low energy barrier for hole injection from the anode
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Fig. 4: Left: The uniaxial stress/strain curve of a polymer calculated using Desmond through the stress strain workflow. The dark grey band
indicates an inflection that marks the yield point. Right: Constant strain simulation with convex analysis indicates elongation at yield. The red
curve shows simulated stress versus strain. The blue curve shows convex analysis.

Fig. 5: Active learning workflow for the design and discovery of novel optoelectronics molecules.

into the emissive layer. In this workflow, we used RDKit to
compute descriptors for the chemical structures. These descriptors
generated on the initial subset of structures are given as vectors to
an algorithm based on Random Forest Regressor as implemented
in scikit-learn. Bayesian optimization is employed to tune the
hyperparameters of the model. In each iteration, a trained model
is applied for making predictions on the remaining materials in
the dataset. Figure 6 (A) displays MPO scores for the HTL dataset
estimated by AL as a function of hole reorganization energies that
are separately calculated for all the materials. This figure indicates
that there are many materials in the dataset with desired low hole
reorganization energies but are not suitable for HTL due to their
improper oxidation potentials, suggesting that MPO is important
to evaluate the optoelectronic performance of the materials. Figure
6 (B) presents MPO scores of the materials used in the training
dataset of AL, demonstrating that the feedback loop in the AL
workflow efficiently guides the data collection as the size of the
training set increases.

To appreciate the computational efficiency of such an ap-
proach, it is worth noting that performing DFT calculations for
all of the 9,000 molecules in the dataset would increase the
computational cost by a factor of 15 versus the AL workflow. It
seems that AL approach can be useful in the cases where problem
space is broad (like chemical space), but there are many clusters

of similar items (similar molecules). In this case, benchmark data
is only needed for few representatives of each cluster. We are
currently working on applying this approach to train models for
predicting physical properties of soft materials (polymers).

Conclusions

We present several examples of how Schrödinger Materials Suite
integrates open source software packages. There is a wide range
of applications in materials science that can benefit from already
existing open source code. Where possible, we report issues to
the package authors and submit improvements and bug fixes in
the form of the pull requests. We are thankful to all who have
contributed to open source libraries, and have made it possible for
us to develop a platform for accelerating innovation in materials
and drug discovery. We will continue contributing to these projects
and we hope to further give back to the scientific community by
facilitating research in both academia and industry. We hope that
this report will inspire other scientific companies to give back to
the open source community in order to improve the computational
materials field and make science more reproducible.
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Fig. 6: A: MPO score of all materials in the HTL dataset. B: Those used in the training set as a function of the hole reorganization energy (
λh ).
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