
22 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

USACE Coastal Engineering Toolkit and a Method of
Creating a Web-Based Application

Amanda Catlett‡∗, Theresa R. Coumbe‡, Scott D. Christensen‡, Mary A. Byrant‡

F

Abstract—In the early 1990s the Automated Coastal Engineering Systems,
ACES, was created with the goal of providing state-of-the-art computer-based
tools to increase the accuracy, reliability, and cost-effectiveness of Corps coastal
engineering endeavors. Over the past 30 years, ACES has become less and less
accessible to engineers. An updated version of ACES was necessary for use in
coastal engineering. Our goal was to bring the tools in ACES to a user-friendly
web-based dashboard that would allow a wide range of users to be able to easily
and quickly visualize results. We will discuss how we restructured the code
using class inheritance and the three libraries Param, Panel, and HoloViews to
create an extensible, interactive, graphical user interface. We have created the
USACE Coastal Engineering Toolkit, UCET, which is a web-based application
that contains 20 of the tools in ACES. UCET serves as an outline for the process
of taking a model or set of tools and developing web-based application that can
produce visualizations of the results.

Index Terms—GUI, Param, Panel, HoloViews

Introduction

The Automated Coastal Engineering System (ACES) was devel-
oped in response to the charge by the LTG E. R. Heiberg III,
who was the Chief of Engineers at the time, to provide improved
design capabilities to the Corps coastal specialists. [Leenknecht]
In 1992, ACES was presented as an interactive computer-based
design and analysis system in the field of coastal engineering. The
tools consist of seven functional areas which are: Wave Prediction,
Wave Theory, Structural Design, Wave Runup Transmission and
Overtopping, Littoral Process, and Inlet Processes. These func-
tional areas contain classical theory describing wave motion, to
expressions resulting from tests of structures in wave flumes, and
numerical models describing the exchange of energy from the at-
mosphere to the sea surface. The math behind these uses anything
from simple algebraic expressions, both theoretical and empirical,
to numerically intense algorithms. [Leenknecht][UG][shankar]

Originally, ACES was written in FORTRAN 77 resulting in
a decreased ability to use the tool as technology has evolved. In
2017, the codebase was converted from FORTRAN 77 to MAT-
LAB and Python. This conversion ensured that coastal engineers
using this tool base would not need training in yet another coding
language. In 2020, the Engineered Resilient Systems (ERS) Rapid
Application Development (RAD) team undertook the project with

* Corresponding author: amanda.r.catlett@erdc.dren.mil
‡ ERDC

Copyright © 2022 Amanda Catlett et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the goal of deploying the ACES tools as a web-based application,
and ultimately renamed it to: USACE Coastal Engineering Toolkit
(UCET).

The RAD team focused on updating the Python codebase
utilizing Python’s object-oriented programming and the newly
developed HoloViz ecosystem. The team refactored the code to
implement inheritance so the code is clean, readable, and scalable.
The tools were expanded to a Graphical User Interface (GUI) so
the implementation to a web-app would provide a user-friendly
experience. This was done by using the HoloViz-maintained
libraries: Param, Panel, and Holoviews.

This paper will discuss some of the steps that were taken
by the RAD team to update the Python codebase to create a
panel application of the coastal engineering tools. In particular,
refactoring the input and output variables with the Param library,
the class hierarchy used, and utilization of Panel and HoloViews
for a user-friendly experience.

Refactoring Using Param

Each coastal tool in UCET has two classes, the model class and the
GUI class. The model class holds input and output variables and
the methods needed to run the model. Whereas the GUI class holds
information for GUI visualization. To make implementation of the
GUI more seamless we refactored model variables to utilize the
Param library. Param is a library that has the goal of simplifying
the codebase by letting the programmer explicitly declare the types
and values of parameters accepted by the code. Param can also be
seamlessly used when implementing the GUI through Panel and
HoloViews.

Each UCET tool’s model class declares the input and output
values used in the model as class parameters. Each input and
output variables are declared and given the following metadata
features:

• default: each input variable is defined as a Param with a
default value defined from the 1992 ACES user manual

• bounds: each input variable is defined with range values
defined in the 1992 ACES user manual

• doc or docstrings: input and output variables have the
expected variable and description of the variable defined
as a doc. This is used as a label over the input and
output widgets. Most docstrings follow the pattern of
<variable>:<description of variable [units, if any]>

• constant: the output variables all set constant equal True,
thereby restricting the user’s ability to manipulate the

mailto:amanda.r.catlett@erdc.dren.mil


USACE COASTAL ENGINEERING TOOLKIT AND A METHOD OF CREATING A WEB-BASED APPLICATION 23

value. Note that when calculations are being done they will
need to be inside a with param.edit_constant(self) function

• precedence: input and output variables will use prece-
dence when there are instances where the variable does
not need to be seen.

The following is an example of an input parameter:
H = param.Number(

doc='H: wave height [{distance_unit}]',
default=6.3,
bounds=(0.1, 200)

)

An example of an output variable is:
L = param.Number(

doc='L: Wavelength [{distance_unit}]',
constant=True

)

The model’s main calculation functions mostly remained un-
changed. However, the use of Param eliminated the need for code
that handled type checking and bounds checks.

Class Hierarchy

UCET has twenty tools from six of the original seven functional
areas of ACES. When we designed our class hierarchy, we focused
on the visualization of the web application rather than functional
areas. Thus, each tool’s class can be categorized into Base-Tool,
Graph-Tool, Water-Tool, or Graph-Water-Tool. The Base-Tool has
the coastal engineering models that do not have any water property
inputs (such as water density) in the calculations and no graphical
output. The Graph-Tool has the coastal engineering models that
do not have any water property inputs in the calculations but have
a graphical output. Water-Tool has the coastal engineering models
that have water property inputs in the calculations and no graphical
output. Graph-Water-Tool has the coastal engineering models that
have water property inputs in the calculations and has a graphical
output. Figure 1 shows a flow of inheritance for each of those
classes.

There are two types of general categories for the classes in
the UCET codebase: utility and tool-specific. Utility classes have
methods and functions that are utilized across more than one tool.
The Utility classes are:

• BaseDriver: holds methods and functions that each tool
needs to collect data, run coastal engineering models, and
print data.

• WaterDriver: has the methods that make water density
and water weight available to the models that need those
inputs for the calculations.

• BaseGui: has the functions and methods for the visualiza-
tion and utilization of all inputs and outputs within each
tool’s GUI.

• WaterTypeGui: has the widget for water selection.
• TabulatorDataGui: holds the functions and methods used

for visualizing plots and the ability to download the data
that is used for plotting.

Each coastal tool in UCET has two classes, the model class and
the GUI class. The model class holds input and output variables
and the methods needed to run the model. The model class either
directly inherits from the BaseDriver or the WaterTypeDriver. The
tool’s GUI class holds information for GUI visualization that is
different from the BaseGui, WaterTypeGUI, and TabulatorDataGui

classes. In figure 1 the model classes are labeled as: Base-Tool
Class, Graph-Tool Class, Water-Tool Class, and Graph-Water-Tool
Class and each has a corresponding GUI class.

Due to the inheritance in UCET, the first two questions that
can be asked when adding a tool are: ‘Does this tool need water
variables for the calculation?’ and ‘Does this tool have a graph?’.
The developer can then add a model class and a GUI class and
inherit based on figure 1. For instance, Linear Wave Theory is
an application that yields first-order approximations for various
parameters of wave motion as predicted by the wave theory. It
provides common items of interest such as water surface elevation,
general wave properties, particle kinematics and pressure as a
function of wave height and period, water depth, and position
in the wave form. This tool uses water density and has multiple
graphs in its output. Therefore, Linear Wave Theory is considered
a Graph-Water-Tool and the model class will inherit from Water-
TypeDriver and the GUI class will inherit the linear wave theory
model class, WaterTypeGui, and TabularDataGui.

GUI Implementation Using Panel and HoloViews

Each UCET tool has a GUI class where the Panel and HoloView
libraries are implemented. Panel is a hierarchical container that
can layout panes, widgets, or other Panels in an arrangement
that forms an app or dashboard. The Pane is used to render any
widget-like object such as Spinner, Tabulator, Buttons, CheckBox,
Indicators, etc. Those widgets are used to gather user input and
run the specific tool’s model.

UCET utilizes the following widgets to gather user input:

• Spinner: single numeric input values
• Tabulator: table input data
• CheckBox: true or false values
• Drop down: items that have a list of pre-selected values,

such as which units to use

UCET utilizes indicators.Number, Tabulator, and graphs to
visualize the outputs of the coastal engineering models. A single
number is shown using indicators.Number and graph data is
displayed using the Tabulator widget to show the data of the graph.
The graphs are created using HoloViews and have tool options
such as pan, zooming, and saving. Buttons are used to calculate,
save the current run, and save the graph data.

All of these widgets are organized into 5 pan-
els: title, options, inputs, outputs, and graph. The
BaseGui/WaterTypeGui/TabularDataGui have methods that
organize the widgets within the 5 panels that most tools follow.
The “options” panel has a row that holds the dropdown selections
for units and water type (if the tool is a Water-Tool). Some tools
have a second row in the “options” panel with other drop-down
options. The input panel has two columns for spinner widgets
with a calculation button at the bottom left. The output panel has
two columns of indicators.Number for the single numeric output
values. At the bottom of the output panel there is a button to “save
the current profile”. The graph panel is tabbed where the first
tab shows the graph and the second tab shows the data provided
within the graph. An visual outline of this can ben seen in the
following figure. Some of the UCET tools have more complicated
input or output visualizations and that tool’s GUI class will add
or modify methods to meet the needs of that tool.

The general outline of a UCET tool for the GUI.



24 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Current State

UCET approaches software development from the perspective of
someone within the field of Research and Development. Each
tool within UCET is not inherently complex from the traditional
software perspective. However, this codebase enables researchers
to execute complex coastal engineering models in a user-friendly
environment by leveraging open-source libraries in the scientific
Python ecosystem such as: Param, Panel, and HoloViews.

Currently, UCET is only deployed using a command line
interface panel serve command. UCET is awaiting the Security
Technical Implementation Guide process before it can be launched
as a website. As part of this security vetting process we plan to
leverage continuous integration/continuous development (CI/CD)
tools to automate the deployment process. While this process is
happening, we have started to get feedback from coastal engineers
to update the tools usability, accuracy, and adding suggested
features. To minimize the amount of computer science knowledge
the coastal engineers need, our team created a batch script. This
script creates a conda environment, activates and runs the panel
serve command to launch the app on a local host. The user only
needs to click on the batch script for this to take place.

Other tests are being created to ensure the accuracy of the
tools using a testing framework to compare output from UCET
with that of the FORTRAN original code. The biggest barrier to
this testing strategy is getting data from the FORTRAN to compare
with Python. Currently, there are tests for most of the tools that
read a CSV file of input and output results from FORTRAN and
compare with what the Python code is calculating.

Our team has also compiled an updated user guide on how to
use the tool, what to expect from the tool, and a deeper description
on any warning messages that might appear as the user adds input
values. An example of a warning message would be, if a user
chooses input values that make it so the application does not make
physical sense, a warning message will appear under the output
header and replace all output values. For a more concrete example:
Linear Wave Theory has a vertical coordinate (z) and the water
depth (d) as input values and when those values sum is less than

zero the point is outside the waveform. Therefore, if a user makes
a combination where the sum is less than zero, UCET will post
a warning to tell the user that the point is outside the waveform.
See the below figure for an example The developers have been
documenting this project using GitHub and JIRA.

An example of a warning message based on chosen inputs.

Results

Linear Wave Theory was described in the class hierarchy example.
This Graph-Water-Tool utilizes most of the BaseGui methods. The
biggest difference is instead of having three graphs in the graph
panel there is a plot selector drop down where the user can select
which graph they want to see.

Windspeed Adjustment and Wave Growth provides a quick
and simple estimate for wave growth over open-water and re-
stricted fetches in deep and shallow water. This is a Base-Tool
as there are no graphs and no water variables for the calculations.
This tool has four additional options in the options panel where
the user can select the wind observation type, fetch type, wave
equation type, and if knots are being used. Based on the selection
of these options, the input and output variables will change so only
what is used or calculated for those selections are seen.

Conclusion and Future Work

Thirty years ago, ACES was developed to provide improved
design capabilities to Corps coastal specialists and while these
tools are still used today, it became more and more difficult for
users to access them. Five years ago, there was a push to update
the code base to one that coastal specialists would be more familiar
with: MATLAB and Python. Within the last two years the RAD
team was able to finalize the update so that the user can access
these tools without having years of programming experience. We
were able to do this by utilizing classes, inheritance, and the
Param, Panel, and HoloViews libraries. The use of inheritance
has allowed for shorter code-bases and also has made it so new
tools can be added to the toolkit. Param, Panel, and HoloViews
work cohesively together to not only run the models but make a
simple interface.

Future work will involve expanding UCET to include current
coastal engineering models, and completing the security vetting



USACE COASTAL ENGINEERING TOOLKIT AND A METHOD OF CREATING A WEB-BASED APPLICATION 25

Fig. 1: Screen shot of Linear Wave Theory

Fig. 2: Screen shot of Windspeed Adjustment and Wave Growth

process to deploy to a publicly accessible website. We plan to
incorporate an automated CI/CD to ensure smooth deployment
of future versions. We also will continue to incorporate feedback
from users and refine the code to ensure the application provides
a quality user experience.

REFERENCES

[Leenknecht] David A. Leenknecht, Andre Szuwalski, and Ann R. Sherlock.
1992. Automated Coastal Engineering System -Technical Refer-
ence. Technical report. https://usace.contentdm.oclc.org/digital/
collection/p266001coll1/id/2321/

[panel] “Panel: A High-Level App and Dashboarding Solution for
Python.” Panel 0.12.6 Documentation, Panel Contributors,
2019, https://panel.holoviz.org/.

[holoviz] “High-Level Tools to Simplify Visualization in Python.”
HoloViz 0.13.0 Documentation, HoloViz Authors, 2017, https:
//holoviz.org.

[UG] David A. Leenknecht, et al. “Automated Tools for Coastal
Engineering.” Journal of Coastal Research, vol. 11, no.
4, Coastal Education & Research Foundation, Inc., 1995,
pp. 1108-24. https://usace.contentdm.oclc.org/digital/collection/
p266001coll1/id/2321/

[shankar] N.J. Shankar, M.P.R. Jayaratne, Wave run-up and overtopping
on smooth and rough slopes of coastal structures, Ocean Engi-
neering, Volume 30, Issue 2, 2003, Pages 221-238, ISSN 0029-
8018, https://doi.org/10.1016/S0029-8018(02)00016-1

https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/2321/
https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/2321/
https://panel.holoviz.org/
https://holoviz.org
https://holoviz.org
https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/2321/
https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/2321/
https://doi.org/10.1016/S0029-8018(02)00016-1

	Introduction
	Refactoring Using Param
	Class Hierarchy
	GUI Implementation Using Panel and HoloViews
	Current State
	Results
	Conclusion and Future Work
	References

