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Abstract—When it became clear in early 2020 that COVID-19 was going to
be a major public health threat, politicians and public health officials turned to
academic disease modelers like us for urgent guidance. Academic software
development is typically a slow and haphazard process, and we realized that
business-as-usual would not suffice for dealing with this crisis. Here we describe
the case study of how we built Covasim (covasim.org), an agent-based model
of COVID-19 epidemiology and public health interventions, by using standard
Python libraries like NumPy and Numba, along with less common ones like
Sciris (sciris.org). Covasim was created in a few weeks, an order of magnitude
faster than the typical model development process, and achieves performance
comparable to C++ despite being written in pure Python. It has become one
of the most widely adopted COVID models, and is used by researchers and
policymakers in dozens of countries. Covasim’s rapid development was enabled
not only by leveraging the Python scientific computing ecosystem, but also by
adopting coding practices and workflows that lowered the barriers to entry for
scientific contributors without sacrificing either performance or rigor.

Index Terms—COVID-19, SARS-CoV-2, Epidemiology, Mathematical modeling,
NumPy, Numba, Sciris

Background

For decades, scientists have been concerned about the possibility
of another global pandemic on the scale of the 1918 flu [Gar05].
Despite a number of "close calls" – including SARS in 2002
[AFG+04]; Ebola in 2014-2016 [Tea14]; and flu outbreaks in-
cluding 1957, 1968, and H1N1 in 2009 [SHK16], some of which
led to 1 million or more deaths – the last time we experienced
the emergence of a planetary-scale new pathogen was when HIV
spread globally in the 1980s [CHL+08].

In 2015, Bill Gates gave a TED talk stating that the world was
not ready to deal with another pandemic [Hof20]. While the Bill
& Melinda Gates Foundation (BMGF) has not historically focused
on pandemic preparedness, its expertise in disease surveillance,
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modeling, and drug discovery made it well placed to contribute to
a global pandemic response plan. Founded in 2008, the Institute
for Disease Modeling (IDM) has provided analytical support for
BMGF (which it has been a part of since 2020) and other global
health partners, with a focus on eradicating malaria and polio.
Since its creation, IDM has built up a portfolio of computational
tools to understand, analyze, and predict the dynamics of different
diseases.

When "coronavirus disease 2019" (COVID-19) and the virus
that causes it (SARS-CoV-2) were first identified in late 2019,
our team began summarizing what was known about the virus
[Fam19]. By early February 2020, even though it was more than
a month before the World Health Organization (WHO) declared
a pandemic [Med20], it had become clear that COVID-19 would
become a major public health threat. The outbreak on the Diamond
Princess cruise ship [RSWS20] was the impetus for us to start
modeling COVID in detail. Specifically, we needed a tool to (a)
incorporate new data as soon as it became available, (b) explore
policy scenarios, and (c) predict likely future epidemic trajectories.

The first step was to identify which software tool would form
the best starting point for our new COVID model. Infectious
disease models come in two major types: agent-based models track
the behavior of individual "people" (agents) in the simulation,
with each agent’s behavior represented by a random (probabilis-
tic) process. Compartmental models track populations of people
over time, typically using deterministic difference equations. The
richest modeling framework used by IDM at the time was EMOD,
which is a multi-disease agent-based model written in C++ and
based on JSON configuration files [BGB+18]. We also considered
Atomica, a multi-disease compartmental model written in Python
and based on Excel input files [KAK+19]. However, both of
these options posed significant challenges: as a compartmental
model, Atomica would have been unable to capture the individual-
level detail necessary for modeling the Diamond Princess out-
break (such as passenger-crew interactions); EMOD had sufficient
flexibility, but developing new disease modules had historically
required months rather than days.

As a result, we instead started developing Covasim ("COVID-
19 Agent-based Simulator") [KSM+21] from a nascent agent-
based model written in Python, LEMOD-FP ("Light-EMOD for
Family Planning"). LEMOD-FP was used to model reproductive
health choices of women in Senegal; this model had in turn
been based on an even simpler agent-based model of measles
vaccination programs in Nigeria ("Value-of-Information Simula-
tor" or VoISim). We subsequently applied the lessons we learned
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Fig. 1: Daily reported global COVID-19-related deaths (top;
smoothed with a one-week rolling window), relative to the timing of
known variants of concern (VOCs) and variants of interest (VOIs), as
well as Covasim releases (bottom).

from developing Covasim to turn LEMOD-FP into a new family
planning model, "FPsim", which will be launched later this year
[OVCC+22].

Parallel to the development of Covasim, other research teams
at IDM developed their own COVID models, including one based
on the EMOD framework [SWC+22], and one based on an earlier
influenza model [COSF20]. However, while both of these models
saw use in academic contexts [KCP+20], neither were able to
incorporate new features quickly enough, or were easy enough to
use, for widespread external adoption in a policy context.

Covasim, by contrast, had immediate real-world impact. The
first version was released on 10 March 2020, and on 12 March
2020, its output was presented by Washington State Governor Jay
Inslee during a press conference as justification for school closures
and social distancing measures [KMS+21].

Since the early days of the pandemic, Covasim releases have
coincided with major events in the pandemic, especially the iden-
tification of new variants of concern (Fig. 1). Covasim was quickly
adopted globally, including applications in the UK regarding
school closures [PGKS+20], Australia regarding outbreak control
[SAK+21], and Vietnam regarding lockdown measures [PSN+21].

To date, Covasim has been downloaded from PyPI over
100,000 times [PeP22], has been used in dozens of academic
studies [KMS+21], and informed decision-making on every con-
tinent (Fig. 2), making it one of the most widely used COVID
models [KSM+21]. We believe key elements of its success include
(a) the simplicity of its architecture; (b) its high performance,
enabled by the use of NumPy arrays and Numba decorators;
and (c) our emphasis on prioritizing usability, including flexible
type handling and careful choices of default settings. In the
remainder of this paper, we outline these principles in more detail,
in the hope that these will provide a useful roadmap for other
groups wanting to quickly develop high-performance, easy-to-use

scientific computing libraries.

Software architecture and implementation

Covasim conceptual design and usage

Covasim is a standard susceptible-exposed-infectious-recovered
(SEIR) model (Fig. 3). As noted above, it is an agent-based model,
meaning that individual people and their interactions with one
another are simulated explicitly (rather than implicitly, as in a
compartmental model).

The fundamental calculation that Covasim performs is to
determine the probability that a given person, on a given time step,
will change from one state to another, such as from susceptible
to exposed (i.e., that person was infected), from undiagnosed to
diagnosed, or from critically ill to dead. Covasim is fully open-
source and available on GitHub (http://covasim.org) and PyPI
(pip install covasim), and comes with comprehensive
documentation, including tutorials (http://docs.covasim.org).

The first principle of Covasim’s design philosophy is that
"Common tasks should be simple" – for example, defining pa-
rameters, running a simulation, and plotting results. The following
example illustrates this principle; it creates a simulation with a
custom parameter value, runs it, and plots the results:
import covasim as cv
cv.Sim(pop_size=100e3).run().plot()

The second principle of Covasim’s design philosophy is "Un-
common tasks can’t always be simple, but they still should be
possible." Examples include writing a custom goodness-of-fit
function or defining a new population structure. To some extent,
the second principle is at odds with the first, since the more
flexibility an interface has, typically the more complex it is as
well.

To illustrate the tension between these two principles, the
following code shows how to run two simulations to determine the
impact of a custom intervention aimed at protecting the elderly in
Japan, with results shown in Fig. 4:
import covasim as cv

# Define a custom intervention
def elderly(sim, old=70):

if sim.t == sim.day('2020-04-01'):
elderly = sim.people.age > old
sim.people.rel_sus[elderly] = 0.0

# Set custom parameters
pars = dict(

pop_type = 'hybrid', # More realistic population
location = 'japan', # Japan's population pyramid
pop_size = 50e3, # Have 50,000 people total
pop_infected = 100, # 100 infected people
n_days = 90, # Run for 90 days

)

# Run multiple sims in parallel and plot key results
label = 'Protect the elderly'
s1 = cv.Sim(pars, label='Default')
s2 = cv.Sim(pars, interventions=elderly, label=label)
msim = cv.parallel(s1, s2)
msim.plot(['cum_deaths', 'cum_infections'])

Similar design philosophies have been articulated by previously,
such as for Grails [AJ09] among others1.

1. Other similar philosophical statements include "The manifesto of Mat-
plotlib is: simple and common tasks should be simple to perform; provide
options for more complex tasks" (Data Processing Using Python) and "Simple,
common tasks should be simple to perform; Options should be provided to
enable more complex tasks" (Instrumental).

http://covasim.org
http://docs.covasim.org
https://pt.coursera.org/lecture/python-data-processing/2-fundamentals-of-python-plotting-xMQeE
https://instrumental-lib.readthedocs.io/en/stable/developer.html
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Fig. 2: Locations where Covasim has been used to help produce a paper, report, or policy recommendation.

Fig. 3: Basic Covasim disease model. The blue arrow shows the
process of reinfection.

Simplifications using Sciris

A key component of Covasim’s architecture is heavy reliance
on Sciris (http://sciris.org) [KAH+ng], a library of functions for
scientific computing that provide additional flexibility and ease-
of-use on top of NumPy, SciPy, and Matplotlib, including paral-
lel computing, array operations, and high-performance container
datatypes.

As shown in Fig. 5, Sciris significantly reduces the number
of lines of code required to perform common scientific tasks,
allowing the user to focus on the code’s scientific logic rather than
the low-level implementation. Key Covasim features that rely on
Sciris include: ensuring consistent dictionary, list, and array types
(e.g., allowing the user to provide inputs as either lists or arrays);
referencing ordered dictionary elements by index; handling and
interconverting dates (e.g., allowing the user to provide either a
date string or a datetime object); saving and loading files; and

Fig. 4: Illustrative result of a simulation in Covasim focused on
exploring an intervention for protecting the elderly.

running simulations in parallel.

Array-based architecture

In a typical agent-based simulation, the outermost loop is over
time, while the inner loops iterate over different agents and agent
states. For a simulation like Covasim, with roughly 700 (daily)
timesteps to represent the first two years of the pandemic, tens
or hundreds of thousands of agents, and several dozen states, this
requires on the order of one billion update steps.

However, we can take advantage of the fact that each state
(such as agent age or their infection status) has the same data
type, and thus we can avoid an explicit loop over agents by instead
representing agents as entries in NumPy vectors, and performing
operations on these vectors. These two architectures are shown in

http://sciris.org
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Fig. 5: Comparison of functionally identical code implemented without Sciris (left) and with (right). In this example, tasks that together take
30 lines of code without Sciris can be accomplished in 7 lines with it.
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Fig. 6: The standard object-oriented approach for implementing
agent-based models (top), compared to the array-based approach
used in Covasim (bottom).

Fig. 7: Performance comparison for FPsim from an explicit loop-
based approach compared to an array-based approach, showing a
factor of ~70 speed improvement for large population sizes.

Fig. 6. Compared to the explicitly object-oriented implementation
of an agent-based model, the array-based version is 1-2 orders of
magnitude faster for population sizes larger than 10,000 agents.
The relative performance of these two approaches is shown in
Fig. 7 for FPsim (which, like Covasim, was initially implemented
using an object-oriented approach before being converted to an
array-based approach). To illustrate the difference between object-
based and array-based implementations, the following example
shows how aging and death would be implemented in each:
# Object-based agent simulation

class Person:

def age_person(self):
self.age += 1
return

def check_died(self):
rand = np.random.random()
if rand < self.death_prob:

self.alive = False
return

class Sim:

def run(self):

for t in self.time_vec:
for person in self.people:

if person.alive:
person.age_person()
person.check_died()

# Array-based agent simulation

class People:

def age_people(self, inds):
self.age[inds] += 1
return

def check_died(self, inds):
rands = np.random.rand(len(inds))
died = rands < self.death_probs[inds]:
self.alive[inds[died]] = False
return

class Sim:

def run(self):
for t in self.time_vec:

alive = sc.findinds(self.people.alive)
self.people.age_people(inds=alive)
self.people.check_died(inds=alive)

Numba optimization

Numba is a compiler that translates subsets of Python and NumPy
into machine code [LPS15]. Each low-level numerical function
was tested with and without Numba decoration; in some cases
speed improvements were negligible, while in other cases they
were considerable. For example, the following function is roughly
10 times faster with the Numba decorator than without:
import numpy as np
import numba as nb

@nb.njit((nb.int32, nb.int32), cache=True)
def choose_r(max_n, n):

return np.random.choice(max_n, n, replace=True)

Since Covasim is stochastic, calculations rarely need to be exact;
as a result, most numerical operations are performed as 32-bit
operations.

Together, these speed optimizations allow Covasim to run at
roughly 5-10 million simulated person-days per second of CPU
time – a speed comparable to agent-based models implemented
purely in C or C++ [HPN+21]. Practically, this means that most
users can run Covasim analyses on their laptops without needing
to use cloud-based or HPC computing resources.

Lessons for scientific software development

Accessible coding and design

Since Covasim was designed to be used by scientists and health
officials, not developers, we made a number of design decisions
that preferenced accessibility to our audience over other principles
of good software design.

First, Covasim is designed to have as flexible of user inputs
as possible. For example, a date can be specified as an integer
number of days from the start of the simulation, as a string (e.g.
'2020-04-04'), or as a datetime object. Similarly, numeric
inputs that can have either one or multiple values (such as the
change in transmission rate following one or multiple lockdowns)
can be provided as a scalar, list, or NumPy array. As long as the
input is unambiguous, we prioritized ease-of-use and simplicity
of the interface over rigorous type checking. Since Covasim is a
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top-level library (i.e., it does not perform low-level functions as
part of other libraries), this prioritization has been welcomed by
its users.

Second, "advanced" Python programming paradigms – such
as method and function decorators, lambda functions, multiple
inheritance, and "dunder" methods – have been avoided where
possible, even when they would otherwise be good coding prac-
tice. This is because a relatively large fraction of Covasim users,
including those with relatively limited Python backgrounds, need
to inspect and modify the source code. A Covasim user coming
from an R programming background, for example, may not have
encountered the NumPy function intersect1d() before, but
they can quickly look it up and understand it as being equivalent
to R’s intersect() function. In contrast, an R user who has
not encountered method decorators before is unlikely to be able to
look them up and understand their meaning (indeed, they may not
even know what terms to search for). While Covasim indeed does
use each of the "advanced" methods listed above (e.g., the Numba
decorators described above), they have been kept to a minimum
and sequestered in particular files the user is less likely to interact
with.

Third, testing for Covasim presented a major challenge. Given
that Covasim was being used to make decisions that affected tens
of millions of people, even the smallest errors could have poten-
tially catastrophic consequences. Furthermore, errors could arise
not only in the software logic, but also in an incorrectly entered
parameter value or a misinterpreted scientific study. Compounding
these challenges, features often had to be developed and used
on a timescale of hours or days to be of use to policymakers,
a speed which was incompatible with traditional software testing
approaches. In addition, the rapidly evolving codebase made it
difficult to write even simple regression tests. Our solution was to
use a hierarchical testing approach: low-level functions were tested
through a standard software unit test approach, while new features
and higher-level outputs were tested extensively by infectious
disease modelers who varied inputs corresponding to realistic
scenarios, and checked the outputs (predominantly in the form
of graphs) against their intuition. We found that these high-level
"sanity checks" were far more effective in catching bugs than
formal software tests, and as a result shifted the emphasis of
our test suite to prioritize the former. Public releases of Covasim
have held up well to extensive scrutiny, both by our external
collaborators and by "COVID skeptics" who were highly critical
of other COVID models [Den20].

Finally, since much of our intended audience has little to
no Python experience, we provided as many alternative ways of
accessing Covasim as possible. For R users, we provide exam-
ples of how to run Covasim using the reticulate package
[AUTE17], which allows Python to be called from within R.
For specific applications, such as our test-trace-quarantine work
(http://ttq-app.covasim.org), we developed bespoke webapps via
Jupyter notebooks [GP21] and Voilà [Qua19]. To help non-experts
gain intuition about COVID epidemic dynamics, we also devel-
oped a generic JavaScript-based webapp interface for Covasim
(http://app.covasim.org), but it does not have sufficient flexibility
to answer real-world policy questions.

Workflow and team management

Covasim was developed by a team of roughly 75 people with
widely disparate backgrounds: from those with 20+ years of
enterprise-level software development experience and no public

health background, through to public health experts with virtually
no prior experience in Python. Roughly 45% of Covasim con-
tributors had significant Python expertise, while 60% had public
health experience; only about half a dozen contributors (<10%)
had significant experience in both areas.

These half-dozen contributors formed a core group (including
the authors of this paper) that oversaw overall Covasim develop-
ment. Using GitHub for both software and project management,
we created issues and assigned them to other contributors based
on urgency and skillset match. All pull requests were reviewed by
at least one person from this group, and often two, prior to merge.
While the danger of accepting changes from contributors with
limited Python experience is self-evident, considerable risks were
also posed by contributors who lacked epidemiological insight.
For example, some of the proposed tests were written based on
assumptions that were true for a given time and place, but which
were not valid for other geographical contexts.

One surprising outcome was that even though Covasim is
largely a software project, after the initial phase of development
(i.e., the first 4-8 weeks), we found that relatively few tasks could
be assigned to the developers as opposed to the epidemiologists
and infectious disease modelers on the project. We believe there
are several reasons for this. First, epidemiologists tended to be
much more aware of knowledge they were missing (e.g., what
a particular NumPy function did), and were more readily able
to fill that gap (e.g., look it up in the documentation or on
Stack Overflow). By contrast, developers without expertise in
epidemiology were less able to identify gaps in their knowledge
and address them (e.g., by finding a study on Google Scholar).
As a consequence, many of the epidemiologists’ software skills
improved markedly over the first few months, while the develop-
ers’ epidemiology knowledge increased more slowly. Second, and
more importantly, we found that once transparent and performant
coding practices had been implemented, epidemiologists were able
to successfully adapt them to new contexts even without complete
understanding of the code. Thus, for developing a scientific
software tool, we propose that a successful staffing plan would
consist of a roughly equal ratio of developers and domain experts
during the early development phase, followed by a rapid (on a
timescale of weeks) ramp-down of developers and ramp-up of
domain experts.

Acknowledging that Covasim’s potential user base includes
many people who have limited coding skills, we developed a three-
tiered support model to maximize Covasim’s real-world policy
impact (Fig. 8). For "mode 1" engagements, we perform the anal-
yses using Covasim ourselves. While this mode typically ensures
high quality and efficiency, it is highly resource-constrained and
thus used only for our highest-profile engagements, such as with
the Vietnam Ministry of Health [PSN+21] and Washington State
Department of Health [KMS+21]. For "mode 2" engagements, we
offer our partners training on how to use Covasim, and let them
lead analyses with our feedback. This is our preferred mode of
engagement, since it balances efficiency and sustainability, and has
been used for contexts including the United Kingdom [PGKS+20]
and Australia [SLSS+22]. Finally, "mode 3" partnerships, in
which Covasim is downloaded and used without our direct input,
are of course the default approach in the open-source software
ecosystem, including for Python. While this mode is by far the
most scalable, in practice, relatively few health departments or
ministries of health have the time and internal technical capacity to
use this mode; instead, most of the mode 3 uptake of Covasim has

http://ttq-app.covasim.org
http://app.covasim.org
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been by academic groups [LG+21]. Thus, we provide mode 1 and
mode 2 partnerships to make Covasim’s impact more immediate
and direct than would be possible via mode 3 alone.

Future directions

While the need for COVID modeling is hopefully starting to
decrease, we and our collaborators are continuing development
of Covasim by updating parameters with the latest scientific
evidence, implementing new immune dynamics [CSN+21], and
providing other usability and bug-fix updates. We also continue
to provide support and training workshops (including in-person
workshops, which were not possible earlier in the pandemic).

We are using what we learned during the development of
Covasim to build a broader suite of Python-based disease mod-
eling tools (tentatively named "*-sim" or "Starsim"). The suite
of Starsim tools under development includes models for family
planning [OVCC+22], polio, respiratory syncytial virus (RSV),
and human papillomavirus (HPV). To date, each tool in this
suite uses an independent codebase, and is related to Covasim
only through the shared design principles described above, and
by having used the Covasim codebase as the starting point for
development.

A major open question is whether the disease dynamics im-
plemented in Covasim and these related models have sufficient
overlap to be refactored into a single disease-agnostic modeling
library, which the disease-specific modeling libraries would then
import. This "core and specialization" approach was adopted by
EMOD and Atomica, and while both frameworks continue to be
used, no multi-disease modeling library has yet seen widespread
adoption within the disease modeling community. The alternative
approach, currently used by the Starsim suite, is for each disease
model to be a self-contained library. A shared library would
reduce code duplication, and allow new features and bug fixes
to be immediately rolled out to multiple models simultaneously.
However, it would also increase interdependencies that would have
the effect of increasing code complexity, increasing the risk of
introducing subtle bugs. Which of these two options is preferable
likely depends on the speed with which new disease models need
to be implemented. We hope that for the foreseeable future, none
will need to be implemented as quickly as Covasim.
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