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Abstract—All physical and astronomical imaging observations are degraded by
the finite angular resolution of the camera and telescope systems. The recovery
of the true image is limited by both how well the instrument characteristics
are known and by the magnitude of measurement noise. In the case of a
high signal to noise ratio data, the image can be sharpened or “deconvolved”
robustly by using established standard methods such as the Richardson-Lucy
method. However, the situation changes for sparse data and the low signal to
noise regime, such as those frequently encountered in X-ray and gamma-ray
astronomy, where deconvolution leads inevitably to an amplification of noise
and poorly reconstructed images. However, the results in this regime can
be improved by making use of physically meaningful prior assumptions and
statistically principled modeling techniques. One proposed method is the LIRA
algorithm, which requires smoothness of the reconstructed image at multiple
scales. In this contribution, we introduce a new python package called Pylira,
which exposes the original C implementation of the LIRA algorithm to Python
users. We briefly describe the package structure, development setup and show
a Chandra as well as Fermi-LAT analysis example.

Index Terms—deconvolution, point spread function, poisson, low counts, X-ray,
gamma-ray

Introduction

Any physical and astronomical imaging process is affected by
the limited angular resolution of the instrument or telescope. In
addition, the quality of the resulting image is also degraded by
background or instrumental measurement noise and non-uniform
exposure. For short wavelengths and associated low intensities of
the signal, the imaging process consists of recording individual
photons (often called "events") originating from a source of
interest. This imaging process is typical for X-ray and gamma-
ray telescopes, but images taken by magnetic resonance imaging
or fluorescence microscopy show Poisson noise too. For each
individual photon, the incident direction, energy and arrival time
is measured. Based on this information, the event can be binned
into two dimensional data structures to form an actual image.

As a consequence of the low intensities associated to the
recording of individual events, the measured signal follows Pois-
son statistics. This imposes a non-linear relationship between the
measured signal and true underlying intensity as well as a coupling
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of the signal intensity to the signal variance. Any statistically
correct post-processing or reconstruction method thus requires a
careful treatment of the Poisson nature of the measured image.

To maximise the scientific use of the data, it is often desired to
correct the degradation introduced by the imaging process. Besides
correction for non-uniform exposure and background noise this
also includes the correction for the "blurring" introduced by the
point spread function (PSF) of the instrument. Where the latter
process is often called "deconvolution". Depending on whether
the PSF of the instrument is known or not, one distinguishes
between the "blind deconvolution" and "non blind deconvolution"
process. For astronomical observations, the PSF can often either
be simulated, given a model of the telescope and detector, or
inferred directly from the data by observing far distant objects,
which appear as a point source to the instrument.

While in other branches of astronomy deconvolution methods
are already part of the standard analysis, such as the CLEAN
algorithm for radio data, developed by [Hog74], this is not the
case for X-ray and gamma-ray astronomy. As any deconvolution
method aims to enhance small-scale structures in an image, it
becomes increasingly hard to solve for the regime of low signal-
to-noise ratio, where small-scale structures are more affected by
noise.

The Deconvolution Problem

Basic Statistical Model

Assuming the data in each pixel di in the recorded counts image
follows a Poisson distribution, the total likelihood of obtaining the
measured image from a model image of the expected counts λi
with N pixels is given by:

L (d|λ ) =
N

∏
i

exp−diλ
di
i

di!
(1)

By taking the logarithm, dropping the constant terms and inverting
the sign one can transform the product into a sum over pixels,
which is also often called the Cash [Cas79] fit statistics:

C (λ |d) =
N

∑
i
(λi−di logλi) (2)

Where the expected counts λi are given by the convolution of the
true underlying flux distribution xi with the PSF pk:

λi = ∑
k

xi pi−k (3)

This operation is often called "forward modelling" or "forward
folding" with the instrument response.
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Richardson Lucy (RL)

To obtain the most likely value of xn given the data, one searches
a maximum of the total likelihood function, or equivalently a of
minimum C . This high dimensional optimization problem can
e.g., be solved by a classic gradient descent approach. Assuming
the pixels values xi of the true image as independent parameters,
one can take the derivative of Eq. 2 with respect to the individual
xi. This way one obtains a rule for how to update the current set
of pixels xn in each iteration of the optimization:

xn+1 = xn−α · ∂C (d|x)
∂xi

(4)

Where α is a factor to define the step size. This method is in
general equivalent to the gradient descent and backpropagation
methods used in modern machine learning techniques. This ba-
sic principle of solving the deconvolution problem for images
with Poisson noise was proposed by [Ric72] and [Luc74]. Their
method, named after the original authors, is often known as the
Richardson & Lucy (RL) method. It was shown by [Ric72] that
this converges to a maximum likelihood solution of Eq. 2. A
Python implementation of the standard RL method is available
e.g. in the Scikit-Image package [vdWSN+14].

Instead of the iterative, gradient descent based optimization it
is also possible to sample from the posterior distribution using a
simple Metropolis-Hastings [Has70] approach and uniform prior.
This is demonstrated in one of the Pylira online tutorials (Intro-
duction to Deconvolution using MCMC Methods).

RL Reconstruction Quality

While technically the RL method converges to a maximum like-
lihood solution, it mostly still results in poorly restored images,
especially if extended emission regions are present in the image.
The problem is illustrated in Fig. 1 using a simulated example
image. While for a low number of iterations, the RL method still
results in a smooth intensity distribution, the structure of the image
decomposes more and more into a set of point-like sources with
growing number of iterations.

Because of the PSF convolution, an extended emission region
can decompose into multiple nearby point sources and still lead
to good model prediction, when compared with the data. Those
almost equally good solutions correspond to many narrow local
minima or "spikes" in the global likelihood surface. Depending on
the start estimate for the reconstructed image x the RL method
will follow the steepest gradient and converge towards the nearest
narrow local minimum. This problem has been described by
multiple authors, such as [PR94] and [FBPW95].

Multi-Scale Prior & LIRA

One solution to this problem was described in [ECKvD04] and
[CSv+11]. First, the simple forward folded model described in
Eq. 3 can be extended by taking into account the non-uniform
exposure ei and an additional known background component bi:

λi = ∑
k
(ei · (xi +bi)) pi−k (5)

The background bi can be more generally understood as a "base-
line" image and thus include known structures, which are not of
interest for the deconvolution process. E.g., a bright point source
to model the core of an AGN while studying its jets.

Second, the authors proposed to extend the Poisson log-
likelihood function (Equation 2) by a log-prior term that controls

Fig. 1: The images show the result of the RL algorithm applied
to a simulated example dataset with varying numbers of iterations.
The image in the upper left shows the simulated counts. Those have
been derived from the ground truth (upper mid) by convolving with a
Gaussian PSF of width σ = 3 pix and applying Poisson noise to it.
The illustration uses the implementation of the RL algorithm from the
Scikit-Image package [vdWSN+14].

the smoothness of the reconstructed image on multiple spatial
scales. Starting from the full resolution, the image pixels xi are
collected into 2 by 2 groups Qk. The four pixel values associated
with each group are divided by their sum to obtain a grid of “split
proportions” with respect to the image down-sized by a factor of
two along both axes. This process is repeated using the down sized
image with pixel values equal to the sums over the 2 by 2 groups
from the full-resolution image, and the process continues until the
resolution of the image is only a single pixel, containing the total
sum of the full-resolution image. This multi-scale representation
is illustrated in Fig. 2.

For each of the 2x2 groups of the re-normalized images a
Dirichlet distribution is introduced as a prior:

φk ∝ Dirichlet(αk,αk,αk,αk) (6)

and multiplied across all 2x2 groups and resolution levels k. For
each resolution level a smoothing parameter αk is introduced.
These hyper-parameters can be interpreted as having an infor-
mation content equivalent of adding αk "hallucinated" counts in
each grouping. This effectively results in a smoothing of the
image at the given resolution level. The distribution of α values
at each resolution level is the further described by a hyper-prior
distribution:

p(αk) = exp(−δα
3/3) (7)

Resulting in a fully hierarchical Bayesian model. A more com-
plete and detailed description of the prior definition is given in
[ECKvD04].

The problem is then solved by using a Gibbs MCMC sampling
approach. After a "burn-in" phase the sampling process typically
reaches convergence and starts sampling from the posterior distri-
bution. The reconstructed image is then computed as the mean of
the posterior samples. As for each pixel a full distribution of its
values is available, the information can also be used to compute
the associated error of the reconstructed value. This is another
main advantage over RL or Maxium A-Postori (MAP) algorithms.

https://pylira.readthedocs.io/en/latest/pylira/user/tutorials/notebooks/mcmc-deconvolution-intro.html
https://pylira.readthedocs.io/en/latest/pylira/user/tutorials/notebooks/mcmc-deconvolution-intro.html
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Fig. 2: The image illustrates the multi-scale decomposition used in
the LIRA prior for a 4x4 pixels example image. Each quadrant of 2x2
sub-images is labelled with QN . The sub-pixels in each quadrant are
labelled Λi j. .

The Pylira Package

Dependencies & Development

The Pylira package is a thin Python wrapper around the original
LIRA implementation provided by the authors of [CSv+11]. The
original algorithm was implemented in C and made available as a
package for the R Language [R C20]. Thus the implementation de-
pends on the RMath library, which is still a required dependency of
Pylira. The Python wrapper was built using the Pybind11 [JRM17]
package, which allows to reduce the code overhead introduced by
the wrapper to a minimum. For the data handling, Pylira relies on
Numpy [HMvdW+20] arrays for the serialisation to the FITS data
format on Astropy [Col18]. The (interactive) plotting functionality
is achieved via Matplotlib [Hun07] and Ipywidgets [wc15], which
are both optional dependencies. Pylira is openly developed on
Github at https://github.com/astrostat/pylira. It relies on GitHub
Actions as a continuous integration service and uses the Read
the Docs service to build and deploy the documentation. The on-
line documentation can be found on https://pylira.readthedocs.io.
Pylira implements a set of unit tests to assure compatibility
and reproducibility of the results with different versions of the
dependencies and across different platforms. As Pylira relies on
random sampling for the MCMC process an exact reproducibility
of results is hard to achieve on different platforms; however the
agreement of results is at least guaranteed in the statistical limit of
drawing many samples.

Installation

Pylira is available via the Python package index (pypi.org),
currently at version 0.1. As Pylira still depends on the RMath
library, it is required to install this first. So the recommended way
to install Pylira is on MacOS is:
1 $ brew install r
2 $ pip install pylira

On Linux the RMath dependency can be installed using standard
package managers. For example on Ubuntu, one would do

1 $ sudo apt-get install r-base-dev r-base r-mathlib
2 $ pip install pylira

For more detailed instructions see Pylira installation instructions.

API & Subpackages

Pylira is structured in multiple sub-packages. The pylira.src
module contains the original C implementation and the Pybind11
wrapper code. The pylira.core sub-package contains the
main Python API, pylira.utils includes utility functions
for plotting and serialisation. And pylira.data implements
multiple pre-defined datasets for testing and tutorials.

Analysis Examples

Simple Point Source

Pylira was designed to offer a simple Python class based user
interface, which allows for a short learning curve of using the
package for users who are familiar with Python in general and
more specifically with Numpy. A typical complete usage example
of the Pylira package is shown in the following:
1 import numpy as np
2 from pylira import LIRADeconvolver
3 from pylira.data import point_source_gauss_psf
4

5 # create example dataset
6 data = point_source_gauss_psf()
7

8 # define initial flux image
9 data["flux_init"] = data["flux"]

10

11 deconvolve = LIRADeconvolver(
12 n_iter_max=3_000,
13 n_burn_in=500,
14 alpha_init=np.ones(5)
15 )
16

17 result = deconvolve.run(data=data)
18

19 # plot pixel traces, result shown in Figure 3
20 result.plot_pixel_traces_region(
21 center_pix=(16, 16), radius_pix=3
22 )
23

24 # plot pixel traces, result shown in Figure 4
25 result.plot_parameter_traces()
26

27 # finally serialise the result
28 result.write("result.fits")

The main interface is exposed via the LIRADeconvolver
class, which takes the configuration of the algorithm on initial-
isation. Typical configuration parameters include the total num-
ber of iterations n_iter_max and the number of "burn-in"
iterations, to be excluded from the posterior mean computation.
The data, represented by a simple Python dict data structure,
contains a "counts", "psf" and optionally "exposure"
and "background" array. The dataset is then passed to the
LIRADeconvolver.run() method to execute the deconvolu-
tion. The result is a LIRADeconvolverResult object, which
features the possibility to write the result as a FITS file, as well
as to inspect the result with diagnostic plots. The result of the
computation is shown in the left panel of Fig. 3.

Diagnostic Plots

To validate the quality of the results Pylira provides many built-
in diagnostic plots. One of these diagnostic plot is shown in the
right panel of Fig. 3. The plot shows the image sampling trace

https://github.com/astrostat/pylira
https://pylira.readthedocs.io
https://pypi.org/project/pylira/
https://pylira.readthedocs.io/en/latest/pylira/index.html#installation
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Fig. 3: The curves show the traces of value the pixel of interest for a simulated point source and its neighboring pixels (see code example).
The image on the left shows the posterior mean. The white circle in the image shows the circular region defining the neighboring pixels. The
blue line on the right plot shows the trace of the pixel of interest. The solid horizontal orange line shows the mean value (excluding burn-in)
of the pixel across all iterations and the shaded orange area the 1 σ error region. The burn in phase is shown in transparent blue and ignored
while computing the mean. The shaded gray lines show the traces of the neighboring pixels.

for a single pixel of interest and its surrounding circular region of
interest. This visualisation allows the user to assess the stability
of a small region in the image e.g. an astronomical point source
during the MCMC sampling process. Due to the correlation with
neighbouring pixels, the actual value of a pixel might vary in the
sampling process, which appears as "dips" in the trace of the pixel
of interest and anti-correlated "peaks" in the one or mutiple of
the surrounding pixels. In the example a stable state of the pixels
of interest is reached after approximately 1000 iterations. This
suggests that the number of burn-in iterations, which was defined
beforehand, should be increased.

Pylira relies on an MCMC sampling approach to sample
a series of reconstructed images from the posterior likelihood
defined by Eq. 2. Along with the sampling, it marginalises over
the smoothing hyper-parameters and optimizes them in the same
process. To diagnose the validity of the results it is important to
visualise the sampling traces of both the sampled images as well
as hyper-parameters.

Figure 4 shows another typical diagnostic plot created by the
code example above. In a multi-panel figure, the user can inspect
the traces of the total log-posterior as well as the traces of the
smoothing parameters. Each panel corresponds to the smoothing
hyper parameter introduced for each level of the multi-scale
representation of the reconstructed image. The figure also shows
the mean value along with the 1 σ error region. In this case,
the algorithm shows stable convergence after a burn-in phase of
approximately 200 iterations for the log-posterior as well as all of
the multi-scale smoothing parameters.

Astronomical Analysis Examples

Both in the X-ray as well as in the gamma-ray regime, the Galactic
Center is a complex emission region. It shows point sources,
extended sources, as well as underlying diffuse emission and thus
represents a challenge for any astronomical data analysis.

Chandra is a space-based X-ray observatory, which has been
in operation since 1999. It consists of nested cylindrical paraboloid
and hyperboloid surfaces, which form an imaging optical system
for X-rays. In the focal plane, it has multiple instruments for dif-
ferent scientific purposes. This includes a high-resolution camera
(HRC) and an Advanced CCD Imaging Spectrometer (ACIS). The
typical angular resolution is 0.5 arcsecond and the covered energy
ranges from 0.1 - 10 keV.

Figure 5 shows the result of the Pylira algorithm applied to
Chandra data of the Galactic Center region between 0.5 and 7 keV.
The PSF was obtained from simulations using the simulate_psf
tool from the official Chandra science tools ciao 4.14 [FMA+06].
The algorithm achieves both an improved spatial resolution as well
as a reduced noise level and higher contrast of the image in the
right panel compared to the unprocessed counts data shown in the
left panel.

As a second example, we use data from the Fermi Large Area
Telescope (LAT). The Fermi-LAT is a satellite-based imaging
gamma-ray detector, which covers an energy range of 20 MeV
to >300 GeV. The angular resolution varies strongly with energy
and ranges from 0.1 to >10 degree1.

Figure 6 shows the result of the Pylira algorithm applied to
Fermi-LAT data above 1 GeV to the region around the Galactic
Center. The PSF was obtained from simulations using the gtpsf
tool from the official Fermitools v2.0.19 [Fer19]. First, one can
see that the algorithm achieves again a considerable improvement
in the spatial resolution compared to the raw counts. It clearly
resolves multiple point sources left to the bright Galactic Center
source.

Summary & Outlook

The Pylira package provides Python wrappers for the LIRA al-
gorithm. It allows the deconvolution of low-counts data following

1. https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.
htm

https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
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Fig. 4: The curves show the traces of the log posterior value as well as traces of the values of the prior parameter values. The SmoothingparamN
parameters correspond to the smoothing parameters αN per multi-scale level. The solid horizontal orange lines show the mean value, the shaded
orange area the 1 σ error region. The burn in phase is shown transparent and ignored while estimating the mean.
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Fig. 5: Pylira applied to Chandra ACIS data of the Galactic Center region, using the observation IDs 4684 and 4684. The image on the left
shows the raw observed counts between 0.5 and 7 keV. The image on the right shows the deconvolved version. The LIRA hyperprior values
were chosen as ms_al_kap1=1, ms_al_kap2=0.02, ms_al_kap3=1. No baseline background model was included.
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Fig. 6: Pylira applied to Fermi-LAT data from the Galactic Center region. The image on the left shows the raw measured counts between
5 and 1000 GeV. The image on the right shows the deconvolved version. The LIRA hyperprior values were chosen as ms_al_kap1=1,
ms_al_kap2=0.02, ms_al_kap3=1. No baseline background model was included.

Poisson statistics using a Bayesian sampling approach and a multi-
scale smoothing prior assumption. The results can be easily written
to FITS files and inspected by plotting the trace of the sampling
process. This allows users to check for general convergence as
well as pixel to pixel correlations for selected regions of interest.
The package is openly developed on GitHub and includes tests
and documentation, such that it can be maintained and improved
in the future, while ensuring consistency of the results. It comes
with multiple built-in test datasets and explanatory tutorials in
the form of Jupyter notebooks. Future plans include the support
for parallelisation or distributed computing, more flexible prior
definitions and the possibility to account for systematic errors on
the PSF during the sampling process.
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