PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

115

Awkward Packaging: building Scikit-HEP

Henry Schreiner®*, Jim Pivarski*, Eduardo Rodrigues®

Abstract—Scikit-HEP has grown rapidly over the last few years, not just to serve
the needs of the High Energy Physics (HEP) community, but in many ways,
the Python ecosystem at large. AwkwardArray, boost-histogram/hist, and iminuit
are examples of libraries that are used beyond the original HEP focus. In this
paper we will look at key packages in the ecosystem, and how the collection of
30+ packages was developed and maintained. Also we will look at some of the
software ecosystem contributions made to packages like cibuildwheel, pybind11,
nox, scikit-build, build, and pipx that support this effort. We will also discuss the
Scikit-HEP developer pages and initial WebAssembly support.

Index Terms—packaging, ecosystem, high energy physics, community project

Introduction

High Energy Physics (HEP) has always had intense computing
needs due to the size and scale of the data collected. The
World Wide Web was invented at the CERN Physics laboratory
in Switzerland in 1989 when scientists in the EU were trying
to communicate results and datasets with scientist in the US,
and vice-versa [LCC"09]. Today, HEP has the largest scientific
machine in the world, at CERN: the Large Hadron Collider (LHC),
27 km in circumference [EBOS8], with multiple experiments with
thousands of collaborators processing over a petabyte of raw data
every day, with 100 petabytes being stored per year at CERN. This
is one of the largest scientific datasets in the world of exabyte scale
[PJ11], which is roughly comparable in order of magnitude to all
of astronomy or YouTube [SLF"15].

In the mid nineties, HEP users were beginning to look for
a new language to replace Fortran. A few HEP scientists started
investigating the use of Python around the release of 1.0.0 in 1994
[Tem22]. A year later, the ROOT project for an analysis toolkit
(and framework) was released, quickly making C++ the main
language for HEP. The ROOT project also needed an interpreted
language to driving analysis code. Python was rejected for this role
due to being "exotic" at the time, and because it was considered too
much to ask physicists to code in two languages. Instead, ROOT
provided a C++ interpreter, called CINT, which later was replaced
with Cling, which is the basis for the clang-repl project in LLVM
today [IVL22].

Python would start showing up in the late 90’s in experiment
frameworks as a configuration language. These frameworks were
primarily written in C++, but were made of many configurable

Corresponding author: henryfs@princeton.edu
£ Princeton University
§ University of Liverpool

Copyright © 2022 Henry Schreiner et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

parts [Lam98]. The glueing together of the system was done in
Python, a model still popular today, though some experiments are
now using Python + Numba as an alternative model, such as for
example the XenonlT experiment [RTA™17], [RS21].

In the early 2000s, the use of Python HEP exploded, heavily
driven by experiments like LHCb developing frameworks and user
tools for scripting. ROOT started providing Python bindings in
2004 [LGMMOS5] that were not considered Pythonic [GTW20],
and still required a complex multi-hour build of ROOT to use'.
Analyses still consisted largely of ROOT, with Python sometimes
showing up.

By the mid 2010’s, a marked change had occurred, driven by
the success of Python in Data Science, especially in education.
Many new students were coming into HEP with little or no
C++ experience, but with existing knowledge of Python and the
growing Python data science ecosystem, like NumPy and Pandas.
Several HEP experiment analyses were performed in, or driven
by, Python, with ROOT only being used for things that were
not available in the Python ecosystem. Some of these were HEP
specific: ROOT is also a data format, so users needed to be able
to read data from ROOT files. Others were less specific: HEP
users have intense histogram requirements due to the data sizes,
large portions of HEP data are "jagged" rather than rectangular;
vector manipulation was important (especially Lorenz Vectors, a
four dimensional relativistic vector with a non-Euclidean metric);
and data fitting was important, especially with complex models
and accurate error estimation.

Beginnings of a scikit

In 2016, the ecosystem for Python in HEP was rather fragmented.
Physicists were developing tools in isolation, without knowing
out the overlaps with other tools, and without making them
interoperable. There were a handful of popular packages that
were useful in HEP spread around among different authors. The
ROOTPy project had several packages that made the ROOT-
Python bridge a little easier than the built-in PyROOT, such as the
root-numpy and related root-pandas packages. The C++ MINUIT
fitting library was integrated into ROOT, but the iminuit package
[Dea20] provided an easy to install standalone Python package
with an extracted copy of MINUIT. Several other specialized
standalone C++ packages had bindings as well. Many of the initial
authors were transitioning to a less-code centric role or leaving
for industry, leaving projects like ROOTPy and iminuit without
maintainers.

1. Almost 20 years later ROOT’s Python bindings have been rewritten for
easier Pythonizations, and installing ROOT in Conda is now much easier,
thanks in large part to efforts from Scikit-HEP developers.

mailto:henryfs@princeton.edu

116
Ve /
D%Cngiéufge Scikli@(t UPEOI 4“ \»\‘ lI[SH;
numpythia HEP F STJET
pyhepmc nndrone

pykf

Pikelihoods

VE1

hepunits

Vg CﬁDFIJ’

‘\\fg("npe 5

histoprint -

Boost$~
Iﬁ[istogram g

& N matpl&tlib
[)DASK °~ @ python

\
9Numba \ Z T}

Fig. 1: The Scikit-HEP ecosystem and affiliated packages.

Eduardo Rodrigues, a scientist working on the LHCb ex-
periment for the University of Cincinnati, started working on a
package called scikit-hep that would provide a set to tools useful
for physicists working on HEP analysis. The initial version of the
scikit-hep package had a simple vector library, HEP related units
and conversions, several useful statistical tools, and provenance
recording functionality,

He also placed the scikit-hep GitHub repository in a Scikit-
HEP GitHub organization, and asked several of the other HEP
related packages to join. The ROOTPy project was ending, with
the primary author moving on, and so several of the then-popular
packages® that were included in the ROOTPy organization were
happily transferred to Scikit-HEP. Several other existing HEP
libraries, primarily interfacing to existing C++ simulation and
tracking frameworks, also joined, like PyJet and NumPythia. Some
of these libraries have been retired or replaced today, but were an
important part of Scikit-HEP’s initial growth.

First initial success

In 2016, the largest barrier to using Python in HEP in a Pythonic
way was ROOT. It was challenging to compile, had many non-
Python dependencies, was huge compared to most Python li-
braries, and didn’t play well with Python packaging. It was not
Pythonic, meaning it had very little support for Python protocols
like iteration, buffers, keyword arguments, tab completion and
inspect in, dunder methods, didn’t follow conventions for useful
reprs, and Python naming conventions; it was simply a direct on-
demand C++ binding, including pointers. Many Python analyses
started with a "convert data" step using PyROOT to read ROOT
files and convert them to a Python friendly format like HDFS.
Then the bulk of the analysis would use reproducible Python
virtual environments or Conda environments.

This changed when Jim Pivarski introduced the Uproot pack-
age, a pure-Python implementation of a ROOT file reader (and

2. The primary package of the ROOTPy project, also called ROOTPy, was
not transferred, but instead had a final release and then died. It was an
inspiration for the new PyROOT bindings, and influenced later Scikit-HEP
packages like mplhep. The transferred libraries have since been replaced by
integrated ROOT functionality. All these packages required ROOT, which is
not on PyPI, so were not suited for a Python-centric ecosystem.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

later writer) that could remove the initial conversion environment
by simply pip installing a package. It also had a simple, Pythonic
interface and produced outputs Python users could immediately
use, like NumPy arrays, instead of PyROOT’s wrapped C++
pointers.

Uproot needed to do more than just be file format
reader/writer; it needed to provide a way to represent the special
structure and common objects that ROOT files could contain.
This lead to the development of two related packages that would
support uproot. One, uproot-methods, included Pythonic access to
functionality provided by ROOT for its core classes, like spatial
and Lorentz vectors. The other was AwkwardArray, which would
grow to become one of the most important and most general
packages in Scikit-HEP. This package allows NumPy-like idioms
for array-at-a-time manipulation on jagged data structures. A
jagged array is a (possibly structured) array with a variable length
dimension. These are very common and relevant in HEP; events
have a variable number of tracks, tracks have a variable number
of hits in the detector, etc. Many other fields also have jagged
data structures. While there are formats to store such structures,
computations on jagged structures have usually been closer to SQL
queries on multiple tables than direct object manipulation. Pandas
handles this through multiple indexing and a lot of duplication.

Uproot was a huge hit with incoming HEP students (see Fig 2);
suddenly they could access HEP data using a library installed with
pip or conda and no external compiler or library requirements, and
could easily use tools they already knew that were compatible with
the Python buffer protocol, like NumPy, Pandas and the rapidly
growing machine learning frameworks. There were still some gaps
and pain points in the ecosystem, but an analysis without writing
C++ (interpreted or compiled) and compiling ROOT manually was
finally possible. Scikit-HEP did not and does not intend to replace
ROOT, but it provides alternative solutions that work natively in
the Python "Big Data" ecosystem.

Several other useful HEP libraries were also written. Particle
was written for accessing the Particle Data Group (PDG) particle
data in a simple and Pythonic way. DecayLanguage originally
provided tooling for decay definitions, but was quickly expanded
to include tools to read and validate "DEC" decay files, an existing
text format used to configure simulations in HEP.

Building compiled packages

In 2018, HEP physicist and programmer Hans Dembinski pro-
posed a histogram library to the Boost libraries, the most influen-
tial C++ library collection; many additions to the standard library
are based on Boost. Boost.Histogram provided a histogram-as-
an-object concept from HEP, but was designed around C++14
templating, using composable axes and storage types. It originally
had an initial Python binding, written in Boost::Python. Henry
Schreiner proposed the creation of a standalone binding to be
written with pybind11 in Scikit-HEP. The original bindings were
removed, Boost::Histogram was accepted into the Boost libraries,
and work began on boost-histogram. IRIS-HEP, a multi-institution
project for sustainable HEP software, had just started, which was
providing funding for several developers to work on Scikit-HEP
project packages such as this one. This project would pioneer
standalone C++ library development and deployment for Scikit-
HEP.

There were already a variety of attempts at histogram libraries,
but none of them filled the requirements of HEP physicists:

AWKWARD PACKAGING: BUILDING SCIKIT-HEP

117

ROOT (C++ and Python)
- PyROOT (Python only)
CMSSW configuration

numpy
- matplotlib

250

Scientific
Python

N
o
=3
]
i

—-- pandas
tensorflow
uproot |
--- awkward | 7'

-
I
o

CMSSW config
thon but not data analysis)

-
o
o

Number of repos matching, quarterly

o
=)

ROOT (C++ and PyROOT)

(as a baseline for scale)

2012 2013 2014 2015

2018 2019 2020 2021

Fig. 2: Adoption of scientific Python libraries and Scikit-HEP among members of the CMS experiment (one of the four major LHC experiments).
CMS requires users to fork github: cms—sw/cmssw, which can be used to identify 3484 physicist users, who created 16656 non-fork repos.
This plot quantifies adoption by counting "#include X", "import X", and "from X import" strings in the users’ code to measure

adoption of various libraries (most popular by category are shown).

ROOT histograms

..... YODA .0 i\
=== Plothon EQ JAN
109 —.- SVGFig S '3 i
o . R . 1 1
e mainstream Python adoption gu? AN
o]~ pynistogram in HEP: when many histogram SV
multinist libraries lived and died _f.g
—— matplotlib-hep o~

""" QHist

Physt
Histogrammar
HistBook

Coffea
Boost/hist/mplhep

monthly number of unique committers, smoothed 8 months
o

</ histogra Y stograms
<t YODA s c?ot 7 : i iCoffed
. P s S SN Py . ‘\--_h‘z"”/:\ S VA e
2007 2009 2011 2013 2015 2017 2021

Fig. 3: Developer activity on histogram libraries in HEP: number of unique committers to each library per month, smoothed (derived from git
logs). Illustrates the convergence of a fractured community (around 2017) into a unified one (now).

fills on pre-existing histograms, simple manipulation of multi-
dimensional histograms, competitive performance, and easy to
install in clusters or for students. Any new attempt here would
have to be clearly better than the existing collection of diverse
attempts (see Fig 3). The development of a library with compiled
components intended to be usable everywhere required good
support for building libraries that was lacking both in Scikit-
HEP and to an extent the broader Python ecosystem. Previous
advancements in the packaging ecosystem, such as the wheel
format for distributing binary platform dependent Python packages
and the manylinux specification and docker image that allowed a
single compiled wheel to target many distributions of Linux, but
there still were many challenges to making a library redistributable
on all platforms.

The boost-histogram library only depended on header-only
components of the Boost libraries, and the header-only pybind11
package, so it was able to avoid a separate compile step or
linking to external dependencies, which simplified the initial build
process. All needed files were collected from git submodules and
packed into a source distribution (SDist), and everything was built
using only setuptools, making build-from-source simple on any
system supporting C++14. This did not include RHEL 7, a popular
platform in HEP at the time, and on any platform building could
take several minutes and required several gigabytes of memory
to resolve the heavy C++ templating in the Boost libraries and

pybindl11.

The first stand-alone development was azure-wheel-helpers, a
set of files that helped produce wheels on the new Azure Pipelines
platform. Building redistributable wheels requires a variety of
techniques, even without shared libraries, that vary dramatically
between platforms and were/are poorly documented. On Linux,
everything needs to be built inside a controlled manylinux image,
and post-processed by the auditwheel tool. On macOS, this in-
cludes downloading an official CPython binary for Python to allow
older versions of macOS to be targeted (10.9+), several special
environment variables, especially when cross compiling to Apple
Silicon, and post processing with the develwheel tool. Windows is
the simplest, as most versions of CPython work identically there.
azure-wheel-helpers worked well, and was quickly adapted for
the other packages in Scikit-HEP that included non-ROOT binary
components. Work here would eventually be merged into the
existing and general cibuildwheel package, which would become
the build tool for all non-ROOT binary packages in Scikit-HEP, as
well as over 600 other packages like matplotlib and numpy, and
was accepted into the PyPA (Python Packaging Authority).

The second major development was the upstreaming of CI
and build system developments to pybind11. Pybindl1 is a C++
API for Python designed for writing a binding to C++, and
provided significant benefits to our packages over (mis)-using
Cython for bindings; Cython was designed to transpile a Python-

118

like language to C (or C++), and just happened to support bindings
since you can call C and C++ from it, but it was not what it
was designed for. Benefits of pybindl1 included reduced code
complexity and duplication, no pre-process step (cythonize), no
need to pin NumPy when building, and a cross-package API. The
iMinuit package was later moved from Cython to pybindl1 as
well, and pybind11 became the Scikit-HEP recommended binding
tool. We contributed a variety of fixes and features to pybindl1,
including positional-only and keyword-only arguments, the option
to prepend to the overload chain, and an API for type access
and manipulation. We also completely redesigned CMake inte-
gration, added a new pure-Setuptools helpers file, and completely
redesigned the CI using GitHub Actions, running over 70 jobs on
a variety of systems and compilers. We also helped modernize and
improve all the example projects with simpler builds, new CI, and
cibuildwheel support.

This example of a project with binary components being
usable everywhere then encouraged the development of Awkward
1.0, a rewrite of AwkwardArray replacing the Python-only code
with compiled code using pybindl11, fixing some long-standing
limitations, like an inability to slice past two dimensions or select
"n choose k" for k > 5; these simply could not be expressed
using Awkward 0’s NumPy expressions, but can be solved with
custom compiled kernels. This also enabled further developments
in backends [PEL20].

Broader ecosystem

Scikit-HEP had become a "toolset" for HEP analysis in Python, a
collection of packages that worked together, instead of a "toolkit"
like ROOT, which is one monopackage that tries to provide every-
thing [R720]. A toolset is more natural in the Python ecosystem,
where we have good packaging tools and many existing libraries.
Scikit-HEP only needed to fill existing gaps, instead of covering
every possible aspect of an analysis like ROOT did. The original
scikit-hep package had its functionality pulled out into existing or
new separate packages such as HEPUnits and Vector, and the core
scikit-hep package instead became a metapackage with no unique
functionality on its own. Instead, it installs a useful subset of our
libraries for a physicist wanting to quickly get started on a new
analysis.

Scikit-HEP was quickly becoming the center of HEP specific
Python software (see Fig. 1). Several other projects or packages
joined Scikit-HEP iMinuit, a popular HEP and astrophysics fitting
library, was probably the most widely used single package to
have joined. PyHF and cabinetry also joined; these were larger
frameworks that could drive a significant part of an analysis
internally using other Scikit-HEP tools.

Other packages, like GooFit, Coffea, and zFit, were not added,
but were built on Scikit-HEP packages and had developers work-
ing closely with Scikit-HEP maintainers. Scikit-HEP introduced
an "affiliated" classification for these packages, which allowed
an external package to be listed on the Scikit-HEP website
and encouraged collaboration. Coffea had a strong influence
on histogram design, and zFit has contributed code to Scikit-
HEP. Currently all affiliated packages have at least one Scikit-
HEP developer as a maintainer, though that is currently not a
requirement. An affiliated package fills a particular need for the
community. Scikit-HEP doesn’t have to, or need to, attempt to
develop a package that others are providing, but rather tries to
ensure that the externally provided package works well with the

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Boost::Histogram

Qwrapper

boost-histogram

Qy featured

o hist
plotting in
Matplotlib
mplhep plotting in
terminal

histoprint

Fig. 4: The collection of histogram packages and related packages in
Scikit-HEP.

broader HEP ecosystem. The affiliated classification is also used
on broader ecosystem packages like pybind11 and cibuildwheel
that we recommend and share maintainers with.

Histogramming was designed to be a collection of specialized
packages (see Fig. 4) with carefully defined interoperability;
boost-histogram for manipulation and filling, Hist for a user-
friendly interface and simple plotting tools, histoprint for display-
ing histograms, and the existing mplhep and uproot packages also
needed to be able to work with histograms. This ecosystem was
built and is held together with UHI, which is a formal specification
agreed upon by several developers of different libraries, backed by
a statically typed Protocol, for a PlottableHistogram object. Pro-
ducers of histograms, like boost-histogram/hist and uproot provide
objects that follow this specification, and users of histograms,
such as mplhep and histoprint take any object that follows this
specification. The UHI library is not required at runtime, though it
does also provide a few simple utilities to help a library also accept
ROOT histograms, which do not (currently) follow the Protocol, so
several libraries have decided to include it at runtime too. By using
a static type checker like MyPy to statically enforce a Protocol,
libraries that can communicate without depending on each other
or on a shared runtime dependency and class inheritance. This has
been a great success story for Scikit-HEP, and We expect Protocols
to continue to be used in more places in the ecosystem.

The design for Scikit-HEP as a toolset is of many parts that
all work well together. One example of a package pulling together
many components is uproot-browser, a tool that combines uproot,
Hist, and Python libraries like textual and plotext to provide a
terminal browser for ROOT files.

Scikit-HEP’s external contributions continued to grow. One of
the most notable ones was our work on cibuildwheel. This was
a Python package that supported building redistributable wheels
on multiple CI systems. Unlike our own azure-wheel-helpers or
the competing multibuild package, it was written in Python, so
good practices in Python package design could apply, like unit
and integration tests, static checks, and it was easy to remain
independent of the underlying CI system. Building wheels on
Linux requires a docker image, macOS requires the python.org
Python, and Windows can use any copy of Python - cibuildwheel
uses this to supply Python in all cases, which keeps it from

AWKWARD PACKAGING: BUILDING SCIKIT-HEP

depending on the CI's support for a particular Python version. We
merged our improvements to cibuildwheel, like better Windows
support, VCS versioning support, and better PEP 518 support.
We dropped azure-wheel-helpers, and eventually a scikit-build
maintainer joined the cibuildwheel project. cibuildwheel would
go on to join the PyPA, and is now in use in over 600 packages,
including numpy, matplotlib, mypy, and scikit-learn.

Our continued contributions to cibuildwheel included a
TOML-based configuration system for cibuildwheel 2.0, an over-
ride system to make supporting multiple manylinux and musllinux
targets easier, a way to build directly from SDists, an option to use
build instead of pip, the automatic detection of Python version
requirements, and better globbing support for build specifiers. We
also helped improve the code quality in various ways, including
fully statically typing the codebase, applying various checks and
style controls, automating CI processes, and improving support for
special platforms like CPython 3.8 on macOS Apple Silicon.

We also have helped with build, nox, pyodide, and many other
packages, improving the tooling we depend on to develop scikit-
build and giving back to the community.

The Scikit-HEP Developer Pages

A variety of packaging best practices were coming out of the
boost-histogram work, supporting both ease of installation for
users as well as various static checks and styling to keep the
package easy to maintain and reduce bugs. These techniques
would also be useful apply to Scikit-HEP’s nearly thirty other
packages, but applying them one-by-one was not scalable. The
development and adoption of azure-wheel-helpers included a se-
ries of blog posts that covered the Azure Pipelines platform and
wheel building details. This ended up serving as the inspiration
for a new set of pages on the Scikit-HEP website for developers
interested in making Python packages. Unlike blog posts, these
would be continuously maintained and extended over the years,
serving as a template and guide for updating and adding packages
to Scikit-HEP, and educating new developers.

These pages grew to describe the best practices for developing
and maintaining a package, covering recommended configuration,
style checking, testing, continuous integration setup, task runners,
and more. Shortly after the introduction of the developer pages,
Scikit-HEP developers started asking for a template to quickly
produce new packages following the guidelines. This was eventu-
ally produced; the "cookiecutter" based template is kept in sync
with the developer pages; any new addition to one is also added
to the other. The developer pages are also kept up to date using a
CI job that bumps any GitHub Actions or pre-commit versions to
the most recent versions weekly. Some portions of the developer
pages have been contributed to packaging.python.org, as well.

The cookie cutter was developed to be able to support multiple
build backends; the original design was to target both pure Python
and Pybind11 based binary builds. This has expanded to include
11 different backends by mid 2022, including Rust extensions,
many PEP 621 based backends, and a Scikit-Build based backend
for pybindl1 in addition to the classic Setuptools one. This has
helped work out bugs and influence the design of several PEP
621 packages, including helping with the addition of PEP 621 to
Setuptools.

The most recent addition to the pages was based on a new
repo-review package which evaluates and existing repository to
see what parts of the guidelines are being followed. This was

119

helpful for monitoring adoption of the developer pages, especially
newer additions, across the Scikit-HEP packages. This package
was then implemented directly into the Scikit-HEP pages, using
Pyodide to run Python in WebAssembly directly inside a user’s
browser. Now anyone visiting the page can enter their repository
and branch, and see the adoption report in a couple of seconds.

Working toward the future

Scikit-HEP is looking toward the future in several different areas.
We have been working with the Pyodide developers to support
WebAssembly; boost-histogram is compiled into Pyodide 0.20,
and Pyodide’s support for pybind11 packages is significantly bet-
ter due to that work, including adding support for C++ exception
handling. PyHF’s documentation includes a live Pyodide kernel,
and a try-pyhf site (based on the repo-review tool) lets users run
a model without installing anything - it can even be saved as a
webapp on mobile devices.

We have also been working with Scikit-Build to try to provide
a modern build experience in Python using CMake. This project
is just starting, but we expect over the next year or two that
the usage of CMake as a first class build tool for binaries in
Python will be possible using modern developments and avoiding
distutils/setuptools hacks.

Summary

The Scikit-HEP project started in Autumn 2016 and has grown
to be a core component in many HEP analyses. It has also
provided packages that are growing in usage outside of HEP, like
AwkwardArray, boost-histogram/Hist, and iMinuit. The tooling
developed and improved by Scikit-HEP has helped Scikit-HEP
developers as well as the broader Python community.

REFERENCES

[Dea20] Hans Dembinski and Piti Ongmongkolkul et al. scikit-
hep/iminuit. Dec 2020. URL: https://doi.org/10.5281/zenodo.
3949207, doi:10.5281/zenodo.3949207.
Lyndon Evans and Philip Bryant. Lhc machine.
instrumentation, 3(08):S08001, 2008.

Galli, Massimiliano, Tejedor, Enric, and Wunsch, Stefan. "a new
pyroot: Modern, interoperable and more pythonic". EPJ Web
Conf., 245:06004, 2020. URL: https://doi.org/10.1051/epjconf/
202024506004, doi:10.1051/epjconf/202024506004.
Toana Ifrim, Vassil Vassilev, and David J Lange. GPU Ac-
celerated Automatic Differentiation With Clad. arXiv preprint
arXiv:2203.06139, 2022.

Stephan Lammel. Computing models of cdf and d@
in run ii. Computer Physics Communications, 110(1):32—
37, 1998. URL: https://www.sciencedirect.com/science/article/
pii/S0010465597001501, doi:10.1016/s0010-4655(97)
00150-1.

Barry M Leiner, Vinton G Cerf, David D Clark, Robert E
Kahn, Leonard Kleinrock, Daniel C Lynch, Jon Postel, Larry G
Roberts, and Stephen Wolff. A brief history of the internet.
ACM SIGCOMM Computer Communication Review, 39(5):22—
31, 2009.

[LGMMOS5] W Lavrijsen, J Generowicz, M Marino, and P Mato. Reflection-
Based Python-C++ Bindings. 2005. URL: https://cds.cern.ch/
record/865620, doi:10.5170/CERN-2005-002.441.

Jim Pivarski, Peter Elmer, and David Lange. Awkward arrays
in python, c++, and numba. In EPJ Web of Conferences,
volume 245, page 05023. EDP Sciences, 2020. doi:10.1051/
epjconf/202024505023.

Andreas J Peters and Lukasz Janyst. Exabyte scale storage at
CERN. In Journal of Physics: Conference Series, volume 331,
page 052015. IOP Publishing, 2011. doi:10.1088/1742-
6596/331/5/052015.

[EBOS] Journal of

[GTW20]

[IVL22]

[Lam98]

[LCCT09]

[PEL20]

[PJ11]

https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.5281/zenodo.3949207
http://dx.doi.org/10.5281/zenodo.3949207
https://doi.org/10.1051/epjconf/202024506004
https://doi.org/10.1051/epjconf/202024506004
http://dx.doi.org/10.1051/epjconf/202024506004
https://www.sciencedirect.com/science/article/pii/S0010465597001501
https://www.sciencedirect.com/science/article/pii/S0010465597001501
http://dx.doi.org/10.1016/s0010-4655(97)00150-1
http://dx.doi.org/10.1016/s0010-4655(97)00150-1
https://cds.cern.ch/record/865620
https://cds.cern.ch/record/865620
http://dx.doi.org/10.5170/CERN-2005-002.441
http://dx.doi.org/10.1051/epjconf/202024505023
http://dx.doi.org/10.1051/epjconf/202024505023
http://dx.doi.org/10.1088/1742-6596/331/5/052015
http://dx.doi.org/10.1088/1742-6596/331/5/052015

120

[R*20]

[RS21]

[RTAT17]

[SLF*15]

[Tem22]

Eduardo Rodrigues et al. The Scikit HEP Project — overview and
prospects. EPJ Web of Conferences, 245:06028, 2020. arXiv:
2007.03577,doi1:10.1051/epjconf/202024506028.
Olivier Rousselle and Tom Sykora. Fast simulation of Time-
of-Flight detectors at the LHC. In EPJ Web of Conferences,
volume 251, page 03027. EDP Sciences, 2021. doi:10.1051/
epjconf/202125103027.

D Remenska, C Tunnell, J Aalbers, S Verhoeven, J] Maassen, and
J Templon. Giving pandas ROOT to chew on: experiences with
the XENONIT Dark Matter experiment. In Journal of Physics:
Conference Series, volume 898, page 042003. IOP Publishing,
2017.

Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H
Campbell, Chengxiang Zhai, Miles J Efron, Ravishankar Iyer,
Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big
data: astronomical or genomical? PLoS biology, 13(7):¢1002195,
2015.

Jeffrey Templon. Reflections on the uptake of the Python pro-
gramming language in Nuclear and High-Energy Physics, March
2022. None. URL: https://doi.org/10.5281/zenodo.6353621,
doi:10.5281/zenodo.6353621.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

http://arxiv.org/abs/2007.03577
http://arxiv.org/abs/2007.03577
http://dx.doi.org/10.1051/epjconf/202024506028
http://dx.doi.org/10.1051/epjconf/202125103027
http://dx.doi.org/10.1051/epjconf/202125103027
https://doi.org/10.5281/zenodo.6353621
http://dx.doi.org/10.5281/zenodo.6353621

	Introduction
	Beginnings of a scikit
	First initial success
	Building compiled packages
	Broader ecosystem
	The Scikit-HEP Developer Pages
	Working toward the future
	Summary
	References

