
PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 121

Keeping your Jupyter notebook code quality bar high
(and production ready) with Ploomber

Ido Michael‡∗

F

This paper walks through this interactive tutorial. It is highly
recommended running this interactively so it’s easier to follow and
see the results in real-time. There’s a binder link in there as well,
so you can launch it instantly.

1. Introduction

Notebooks are an excellent environment for data exploration:
they allow us to write code interactively and get visual feedback,
providing an unbeatable experience for understanding our data.

However, this convenience comes at a cost; if we are not
careful about adding and removing code cells, we may have an
irreproducible notebook. Arbitrary execution order is a prevalent
problem: a recent analysis found that about 36% of notebooks on
GitHub did not execute in linear order. To ensure our notebooks
run, we must continuously test them to catch these problems.

A second notable problem is the size of notebooks: the more
cells we have, the more difficult it is to debug since there are more
variables and code involved.

Software engineers typically break down projects into multiple
steps and test continuously to prevent broken and unmaintainable
code. However, applying these ideas for data analysis requires
extra work; multiple notebooks imply we have to ensure the output
from one stage becomes the input for the next one. Furthermore,
we can no longer press “Run all cells” in Jupyter to test our
analysis from start to finish.

Ploomber provides all the necessary tools to build multi-
stage, reproducible pipelines in Jupyter that feel like a single
notebook. Users can easily break down their analysis into multiple
notebooks and execute them all with a single command.

2. Refactoring a legacy notebook

If you already have a python project in a single notebook, you
can use our tool Soorgeon to automatically refactor it into a
Ploomber pipeline. Soorgeon statically analyzes your code, cleans
up unnecessary imports, and makes sure your monolithic notebook
is broken down into smaller components. It does that by scanning
the markdown in the notebook and analyzing the headers; each
H2 header in our example is marking a new self-contained task.

* Corresponding author: ido@ploomber.io
‡ Ploomber

Copyright © 2022 Ido Michael. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: In this pipeline none of the tasks were executed - it’s all red.

In addition, it can transform a notebook to a single-task pipeline
and then the user can split it into smaller tasks as they see fit.

To refactor the notebook, we use the soorgeon refactor
command:

soorgeon refactor nb.ipynb

After running the refactor command, we can take a look at the
local directory and see that we now have multiple python tasks
which that are ready for production:

ls playground

We can see that we have a few new files. pipeline.yaml
contains the pipeline declaration, and tasks/ contains the stages
that Soorgeon identified based on our H2 Markdown headings:

ls playground/tasks

One of the best ways to onboard new people and explain what
each workflow is doing is by plotting the pipeline (note that we’re
now using ploomber, which is the framework for developing
pipelines):

ploomber plot

This command will generate the plot below for us, which will
allow us to stay up to date with changes that are happening in our
pipeline and get the current status of tasks that were executed or
failed to execute.

Soorgeon correctly identified the stages in our
original nb.ipynb notebook. It even detected that
the last two tasks (linear-regression, and
random-forest-regressor) are independent of each
other!

We can also get a summary of the pipeline with ploomber
status:

cd playground
ploomber status

3. The pipeline.yaml file

To develop a pipeline, users create a pipeline.yaml file and
declare the tasks and their outputs as follows:

https://github.com/idomic/ploomber-workshop
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://github.com/ploomber/soorgeon
https://github.com/ploomber/ploomber
mailto:ido@ploomber.io

122 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: In here we can see the status of each of our pipeline’s tasks,
runtime and location.

tasks:
- source: script.py
product:
nb: output/executed.ipynb
data: output/data.csv

more tasks here...

The previous pipeline has a single task (script.py)
and generates two outputs: output/executed.ipynb and
output/data.csv. You may be wondering why we have a
notebook as an output: Ploomber converts scripts to notebooks
before execution; hence, our script is considered the source and the
notebook a byproduct of the execution. Using scripts as sources
(instead of notebooks) makes it simpler to use git. However, this
does not mean you have to give up interactive development since
Ploomber integrates with Jupyter, allowing you to edit scripts as
notebooks.

In this case, since we used soorgeon to refactor an existing
notebook, we did not have to write the pipeline.yaml file.

4. Building the pipeline

Let’s build the pipeline (this will take ~30 seconds):
cd playground
ploomber build

We can see which are the tasks that ran during this command, how
long they took to execute, and the contributions of each task to the
overall pipeline execution runtime.

Navigate to playground/output/ and you’ll see all the
outputs: the executed notebooks, data files and trained model.
ls playground/output

In this figure, we can see all of the data that was collected during
the pipeline, any artifacts that might be useful to the user, and some
of the execution history that is saved on the notebook’s context.

5. Testing and quality checks

** Open tasks/train-test-split.py as a notebook by right-clicking
on it and then Open With -> Notebook and add the following
code after the cell with # noqa:

Fig. 3: Here we can see the build outputs

Fig. 4: These are the post build artifacts

Sample data quality checks after loading the raw data
Check nulls
assert not df['HouseAge'].isnull().values.any()

Check a specific range - no outliers
assert df['HouseAge'].between(0,100).any()

Exact expected row count
assert len(df) == 11085

** We’ll do the same for tasks/linear-regression.py, open the file
and add the tests:
Sample tests after the notebook ran
Check task test input exists
assert Path(upstream['train-test-split']['X_test']).exists()

Check task train input exists
assert Path(upstream['train-test-split']['y_train']).exists()

Validating output type
assert 'pkl' in upstream['train-test-split']['X_test']

Adding these snippets will allow us to validate that the data we’re
looking for exists and has the quality we expect. For instance, in
the first test we’re checking there are no missing rows, and that
the data sample we have are for houses up to 100 years old.

KEEPING YOUR JUPYTER NOTEBOOK CODE QUALITY BAR HIGH (AND PRODUCTION READY) WITH PLOOMBER 123

Fig. 5: Now we see an independent new task

In the second snippet, we’re checking that there are train and
test inputs which are crucial for training the model.

6. Maintaining the pipeline

Let’s look again at our pipeline plot:
Image('playground/pipeline.png')

The arrows in the diagram represent input/output dependencies
and depict the execution order. For example, the first task (load)
loads some data, then clean uses such data as input and
processes it, then train-test-split splits our dataset into
training and test sets. Finally, we use those datasets to train a
linear regression and a random forest regressor.

Soorgeon extracted and declared this dependencies for us, but
if we want to modify the existing pipeline, we need to declare
such dependencies. Let’s see how.

We can also see that the pipeline is green, meaning all of the
tasks in it have been executed recently.

7. Adding a new task

Let’s say we want to train another model and decide to try Gradient
Boosting Regressor. First, we modify the pipeline.yaml file
and add a new task:

Open playground/pipeline.yaml and add the follow-
ing lines at the end
- source: tasks/gradient-boosting-regressor.py
product:

nb: output/gradient-boosting-regressor.ipynb

Now, let’s create a base file by executing ploomber
scaffold:
cd playground
ploomber scaffold

This is the output of the command: `
Found spec at 'pipeline.yaml' Adding
/Users/ido/ploomber-workshop/playground/
tasks/ gradient-boosting-regressor.py...
Created 1 new task sources. `

We can see it created the task sources for our new task, we just
have to fill those in right now.

Let’s see how the plot looks now:
cd playground
ploomber plot

You can see that Ploomber recognizes the new file, but it does not
have any dependency, so let’s tell Ploomber that it should execute
after train-test-split:

Open
playground/tasks/gradient-boosting-regressor.py

as a notebook by right-clicking on it and then Open With ->
Notebook:

Fig. 6: lab-open-with-notebook

Fig. 7: The new task is attached to the pipeline

At the top of the notebook, you’ll see the following:
upstream = None

This special variable indicates which tasks should execute before
the notebook we’re currently working on. In this case, we want to
get training data so we can train our new model so we change the
upstream variable:
upstream = ['train-test-split']

Let’s generate the plot again:
cd playground
ploomber plot

Ploomber now recognizes our dependency declaration!
Open

playground/tasks/gradient-boosting-regressor.py

as a notebook by right-clicking on it and then Open With ->
Notebook and add the following code:
from pathlib import Path
import pickle

import seaborn as sns
from sklearn.ensemble import GradientBoostingRegressor

y_train = pickle.loads(Path(
upstream['train-test-split']['y_train']).read_bytes())

y_test = pickle.loads(Path(
upstream['train-test-split']['y_test']).read_bytes())

X_test = pickle.loads(Path(
upstream['train-test-split']['X_test']).read_bytes())

X_train = pickle.loads(Path(
upstream['train-test-split']['X_train']).read_bytes())

gbr = GradientBoostingRegressor()
gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)
sns.scatterplot(x=y_test, y=y_pred)

8. Incremental builds

Data workflows require a lot of iteration. For example, you may
want to generate a new feature or model. However, it’s wasteful
to re-execute every task with every minor change. Therefore,
one of Ploomber’s core features is incremental builds, which
automatically skip tasks whose source code hasn’t changed.

Run the pipeline again:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor

124 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 8: We can see this pipeline has multiple new tasks.

cd playground
ploomber build

You can see that only the gradient-boosting-regressor
task ran!

Incremental builds allow us to iterate faster without keeping
track of task changes.

Check out playground/output/
gradient-boosting-regressor.ipynb,

which contains the output notebooks with the model evaluation
plot.

9. Parallel execution and Ploomber cloud execution

This section can run locally or on the cloud. To setup the cloud
we’ll need to register for an api key

Ploomber cloud allows you to scale your experiments into the
cloud without provisioning machines and without dealing with
infrastrucutres.

Open playground/pipeline.yaml and add the following code
instead of the source task:
- source: tasks/random-forest-regressor.py

This is how your task should look like in the end
- source: tasks/random-forest-regressor.py

name: random-forest-
product:

nb: output/random-forest-regressor.ipynb
grid:

creates 4 tasks (2 * 2)
n_estimators: [5, 10]
criterion: [gini, entropy]

In addition, we’ll need to add a flag to tell the pipeline to execute
in parallel. Open playground/pipeline.yaml and add the following
code above the -tasks section (line 1):

yaml
Execute independent tasks in parallel executor: parallel

ploomber plot

ploomber build

10. Execution in the cloud

When working with datasets that fit in memory, running your
pipeline is simple enough, but sometimes you may need more
computing power for your analysis. Ploomber makes it simple
to execute your code in a distributed environment without code
changes.

Check out Soopervisor, the package that implements exporting
Ploomber projects in the cloud with support for:

• Kubernetes (Argo Workflows)
• AWS Batch
• Airflow

11. Resources

Thanks for taking the time to go through this tutorial! We hope
you consider using Ploomber for your next project. If you have
any questions or need help, please reach out to us! (contact info
below).

Here are a few resources to dig deeper:

• GitHub
• Documentation
• Code examples
• JupyterCon 2020 talk
• Argo Community Meeting talk
• Pangeo Showcase talk (AWS Batch demo)
• Jupyter project

10. Contact

• Twitter
• Join us on Slack
• E-mail us

https://docs.ploomber.io/en/latest/cloud/index.html
https://soopervisor.readthedocs.io
https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html
https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html
https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html
https://github.com/ploomber/ploomber
https://ploomber.readthedocs.io/
https://github.com/ploomber/projects
https://www.youtube.com/watch?v=M6mtgPfsA3M
https://youtu.be/FnpXyg-5W_c
https://youtu.be/XCgX1AszVF4
https://jupyter.org/
https://twitter.com/ploomber
http://ploomber.io/community
mailto:contact@ploomber.io

	1. Introduction
	2. Refactoring a legacy notebook
	3. The pipeline.yaml file
	4. Building the pipeline
	5. Testing and quality checks
	6. Maintaining the pipeline
	7. Adding a new task
	8. Incremental builds
	9. Parallel execution and Ploomber cloud execution
	10. Execution in the cloud
	11. Resources
	10. Contact

