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Abstract—Human languages’ semantics and structure constantly change over
time through mediums such as culturally significant events. By viewing the
semantic changes of words during notable events, contexts of existing and
novel words can be predicted for similar, current events. By studying the initial
outbreak of a disease and the associated semantic shifts of select words, we
hope to be able to spot social media trends to prevent future outbreaks faster
than traditional methods. To explore this idea, we generate a temporal word
embedding model that allows us to study word semantics evolving over time.
Using these temporal word embeddings, we use machine learning models to
predict words associated with the disease outbreak.

Index Terms—Natural Language Processing, Word Embeddings, Bioinformat-
ics, Social Media, Disease Prediction

Introduction & Background

Human languages experience continual changes to their semantic
structures. Natural language processing techniques allow us to
examine these semantic alterations through methods such as word
embeddings. Word embeddings provide low dimension numerical
representations of words, mapping lexical meanings into a vector
space. Words that lie close together in this vector space represent
close semantic similarities [MCCD13]. This numerical vector
space allows for quantitative analysis of semantics and contextual
meanings, allowing for more use in machine learning models that
utilize human language.

We hypothesize that disease outbreaks can be predicted faster
than traditional methods by studying word embeddings and their
semantic shifts during past outbreaks. By surveying the context
of select medical terms and other words associated with a disease
during the initial outbreak, we create a generalized model that can
be used to catch future similar outbreaks quickly. By leveraging
social media activity, we predict similar semantic trends can be
found in real time. Additionally, this allows novel terms to be
evaluated in context without requiring a priori knowledge of them,
allowing potential outbreaks to be detected early in their lifespans,
thus minimizing the resultant damage to public health.

Given a corpus spanning a fixed time period, multiple word
embeddings can be created at set temporal intervals, which can
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then be studied to track contextual drift over time. However, a
common issue in these so-called “temporal word embeddings”
is that they are often unaligned — i.e. the embeddings do not
lie within the same embedding space. Past proposed solutions
to aligning temporal word embeddings require multiple separate
alignment problems to be solved, or for “anchor words” – words
that have no contextual shifts between times – to be used for
mapping one time period to the next [HLJ16]. Yao et al. propose a
solution to this alignment issue, shown to produce accurate and
aligned temporal word embeddings, through solving one joint
alignment problem across all time slices, which we utilize here
[YSD+18].

Methodology

Data Collection & Pre-Processing

Our data set is a corpus D of over 7 million tweets collected
from Scott County, Indiana from the dates January 1st, 2014 until
January 17th, 2017. The data was lent to us from Twitter after
a data request, and has not yet been made publicly available.
During this time period, an HIV outbreak was taking place in
Scott County, with an eventual 215 confirmed cases being linked
to the outbreak [PPH+16]. Gonsalves et al. predicts an additional
126 undiagnosed HIV cases were linked to this same outbreak
[GC18]. The state’s response led to questioning if the outbreak
could have been stemmed or further prevented with an earlier
response [Gol17]. Our corpus was selected with a focus on tweets
related to the outbreak. By closely studying the semantic shifts
during this outbreak, we hope to accurately predict similar future
outbreaks before they reach large case numbers, allowing for a
critical earlier response.

To study semantic shifts through time, the corpus was split
into 18 temporal buckets, each spanning a 2 month period. All data
utilized in scripts was handled via the pandas Python package. The
corpus within each bucket is represented by Dt , with t representing
the temporal slice. Within each 2 month period, tweets were split
into 12 pre-processed output csv files. Pre-processing steps first
removed retweets, links, images, emojis, and punctuation. Com-
mon stop words were removed from the tweets using the NLTK
Python package, and each tweet was tokenized. A vocabulary
dictionary was then generated for each of the 18 temporal buckets,
containing each unique word and a count of its occurrences
within its respective bucket. The vocabulary dictionaries for each
bucket were then combined into a global vocabulary dictionary,
containing the total counts for each unique word across all 18
buckets. Our experiments utilized two vocabulary dictionaries: the
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first being the 10,000 most frequently occurring words from the
global vocabulary for ensuring proper generation of embedding
vectors, the second being a combined vocabulary of 15,000 terms,
including our target HIV/AIDS related terms. This combined
vocabulary consisted of the top 10,000 words across D as well
as an additional 473 HIV/AIDS related terms that occurred at
least 8 times within the corpus. The 10,000th most frequent term
in D occurred 39 times, so to ensure results were not influenced
by sparsity in the less frequent HIV/AIDS terms, 4,527 randomly
selected terms with occurrences between 10 and 25 times were
added to the vocabulary, bringing it to a total of 15,000 terms.
The HIV/AIDS related terms came from a list of 1,031 terms we
compiled, primarily coming from the U.S. Department of Veteran
Affairs published list of HIV/AIDS related terms, and other terms
we thought were pertinent to include, such as HIV medications
and terms relating to sexual health [Aff05].

Temporally Aligned Vector Generation

Generating word2vec embeddings is typically done through 2
primary methods: continuous bag-of-words (CBOW) and skip-
gram, however many other various models exist [MCCD13]. Our
methods use a CBOW approach at generating embeddings, which
generates a word’s vector embedding based on the context the
word appears in, i.e. the words in a window range surrounding
the target word. Following pre-processing of our corpus, steps
for generating word embeddings were applied to each temporal
bucket. For each time bucket, co-occurrence matrices were first
created, with a window size w = 5. These matrices contained
the total occurrences of each word against every other within a
window range L of 5 words within the corpus at time t. Each
co-occurrence matrix was of dimensions |V |× |V |. Following the
generation of each of these co-occurrence matrices, a |V | × |V |
dimensioned Positive Pointwise Mutual Information matrix was
calculated. The value in each cell was calculated as follows:

PPMI(t,L)w,c = max{PMI(Dt ,L)w,c,0},

where w and c are two words in V. Embeddings generated by
word2vec can be approximated by PMI matrices, where given
embedding vectors utilize the following equation [YSD+18]:

uT
wuc ≈ PMI(D,L)w,c

Each embedding u has a reduced dimensionality d, typically
around 25 - 200. Each PPMI from our data set is created inde-
pendently from each other temporal bucket. After these PPMI
matrices are made, temporal word embeddings can be created
using the method proposed by Yao et al. [YSD+18]. The proposed
solution focuses on the equation:

U(t)U(t)T ≈ PPMI(t,L)

where U is a set of embeddings from time period t. Decomposing
each PPMI(t) will yield embedding U(t), however each U(t) is not
guaranteed to be in the same embedding space. Yao et al. derives
U(t)A = B with the following equation234 [YSD+18]:

A =U(t)TU(t)+(γ +λ +2τ)I,

1. All code used can be found here https://github.com/quinngroup/Twitter-
Embedding-Analysis/

2. γ represents the forcing regularizer. λ represents the Frobenius norm
regularizer. τ represents the smoothing regularizer.

3. Y(t) represents PPMI(t).
4. The original equation uses W(t), but this acts as identical to U(t) in the

code. We replaced it here to improve readability.

B = Y (t)U(t)+ γU(t)+ τ(U(t−1)+U(t +1))

To decompose PPMI(t) in our model, SciPy’s linear algebra
package was utilized to solve for eigendecomposition of each
PPMI(t), and the top 100 terms were kept to generate an em-
bedding of d = 100. The alignment was then applied, yielding
18 temporally aligned word embedding sets of our vocabulary,
with dimensions |V |×d, or 15,000 x 100. These word embedding
sets are aligned spatially and in terms of rotations, however there
appears to be some spatial drift that we hope to remove by tuning
hyperparameters. Following alignment, these vectors are usable
for experimentation and analysis.

Predictions for Detecting Modern Shifts

Following the generation of temporally aligned word embedding,
they can be used for semantic shift analysis. Using the word
embedding vectors generated for each temporal bucket, 2 new
data sets were created to use for determining patterns in the
semantic shifts surrounding HIV outbreaks. Both of these data
sets were constructed using our second vocabulary of 15,000
terms, including the 473 HIV/AIDS related terms, and each term’s
embedding of d = 100 that were generated by the dynamic
embedding model. The first experimental data set was the shift
in the d = 100 embedding vector between each time bucket and
the one that immediately followed it. These shifts were calculated
by simply subtracting the next temporal and initial vectors from
each other. In addition to the change in the 100 dimensional vector
between each time bucket and its next, the initial and next 10
dimensional embeddings were included from each, which were
generated using the same dynamic embedding model. This yielded
each word having 17 observations and 121 features: {d_vec0 . . .
d_vec99, v_init_0 . . . v_init_9, v_fin_0 . . . v_fin_9, label}. This
data set will be referred to as "data_121". The reasoning to include
these lower dimensional embeddings was so that both the shift
and initial and next positions in the embedding space would be
used in our machine learning algorithms. The other experimental
data set was constructed similarly, but rather than subtracting the
two vectors and including lower dimensions vectors, the initial
and next 100 dimensional vectors were listed as features. This
allowed machine learning algorithms to have access to the full
positional information of each vector alongside the shift between
the two. This yielded each word having 17 observations and 201
features: {vec_init0 . . . vec_init99, vec_fin0 . . . vec_fin99, label}.
This data set will be referred to as "data_201". With the 15,000
terms each having 17 observations, it led to a total of 255,000
observations. It should be noted that in addition to the vector
information, the data sets also listed the number of days since
the outbreak began, the predicted number of cases at that point
in time, from [GC18], and the total magnitude of the shift in the
vector between the corresponding time buckets. All these features
were dropped prior to use within the models, as the magnitude
feature was colinear with the other positional features, and the case
and day data will not be available in predicting modern outbreaks.
Using these data, two machine learning algorithms were applied:
unsupervised k-means clustering and a supervised neural network.

K-means Clustering

To examine any similarities within shifts, k-means clustering was
performed on the data sets at first. Initial attempts at k-means with
the 100 dimensional embeddings yielded extremely large inertial
values and poor results. In an attempt to reduce inertia, features
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for data that k-means would be performed onto were assessed.
K-means was performed on a reduced dimensionality data set,
with embedding vectors of dimensionality d = 10, however this
led to strict convergence and poor results again. The data set
with the change in an embeddings vector, data_121, continued
to contain the changes of vectors between each time bucket and
its next. However, rather than the 10 dimensional position vectors
for both time buckets, 2 dimensional positions were used instead,
generated by UMAP from the 10 dimensioned vectors. The second
data set, data_201, always led to strict convergence on clustering,
even when reduced to just the 10 dimensional representations.
Therefore, k-means was performed explicitly on the data_121
set, with the 2 dimensional representations alongside the 100
dimensional change in the vectors. Separate two dimensional
UMAP representations were generated for use as a feature and
for visual examination. The data set also did not have the term’s
label listed as a feature for clustering.

Inertia at convergence on clustering for k-means was reduced
significantly, as much as 86% after features were reassessed, yield-
ing significantly better results. Following the clustering, the results
were analyzed to determine which clusters contained the higher
than average incidence rates of medical terms and HIV/AIDS
related terms. These clusters can then be considered target clusters,
and large incidences of words being clustered within these can be
flagged as indicative as a possible outbreak.

Neural Network Predictions

In addition to the k-means model, we created a neural network
model for binary classification of our terms. Our target class was
terms that we hypothesized were closely related to the HIV epi-
demic in Scott County, i.e. any word in our HIV terms list. Several
iterations with varying number of layers, activation functions, and
nodes within each layer were attempted to maximize performance.
Each model used an 80% training, 20% testing split on these data,
with two variations performed of this split on training and testing
data. The first was randomly splitting all 255,000 observations,
without care of some observations for a term being in both training
set and some being in the testing set. This split of data will
be referred to as "mixed" data, as the terms are mixed between
the splits. The second split of data split the 15,000 words into
80% training and 20% testing. After the vocabulary was split,
the corresponding observations in the data were split accordingly,
leaving all observations for each term within the same split.
Additionally, we tested a neural network that would accept the
same data as the input, either data_201 or data_121, with the
addition of the label assigned to that observation by the k-means
model as a feature. The goal of these models, in addition was to
correctly identifying terms we classified as related to the outbreak,
was to discover new terms that shift in similar ways to the HIV
terms we labeled.

The neural network model used was four layers, with three
ReLu layers with 128, 256, and 256 neurons, followed by a single
neuron sigmoid output layer. This neural network was constructed
using the Keras module of the TensorFlow library. The main
difference between them was the input data itself. The input data
were data_201 with and without k-means labels, data_121 with
and without k-means labels. On each of these, there were two splits
of the training and testing data, as in the previously mentioned
"mixed" terms. Parameters of the neural network layers were
adjusted, but results did not improve significantly across the data
sets. All models were trained with a varying number of epochs: 50,

100, 150, and 200. Additionally, several certainty thresholds for a
positive classification were tested on each of the models. The best
results from each will be listed in the results section. As we begin
implementation of these models on other HIV outbreak related
data sets, the proper certainty thresholds can be better determined.

Results

Analysis of Embeddings

To ensure accuracy in word embeddings generated in this model,
we utilized word2vec (w2v), a proven neural network method of
embeddings [MCCD13]. For each temporal bucket, a static w2v
embedding of d = 100 was generated to compare to the temporal
embedding generated from the same bucket. These vectors were
generated from the same corpus as the ones generated by the
dynamic model. As the vectors do not lie within the same
embedding space, the vectors cannot be directly compared. As
the temporal embeddings generated by the alignment model are
influenced by other temporal buckets, we hypothesize notably
different vectors. Methods for testing quality in [YSD+18] rely
on a semi-supervised approach: the corpus used is an annotated
set of New York Times articles, and the section (Sports, Business,
Politics, etc.) are given alongside the text, and can be used to
assess strength of an embedding. Additionally, the corpus used
spans over 20 years, allowing for metrics such as checking the
closest word to leaders or titles, such as "president" or "NYC
mayor" throughout time. These methods show that this dynamic
word embedding alignment model yields accurate results.

Major differences can be attributed to the word2vec model
only being given a section of the corpus at a time, while our model
had access to the entire corpus across all temporal buckets. Terms
that might not have appeared in the given time bucket might still
appear in the embeddings generated by our model, but not at all
within the word2vec embeddings. For example, most embeddings
generated by the word2vec model did not often have hashtagged
terms in their top 10 closest terms, while embeddings generated
by our model often did. As hashtagged terms are very related to
ongoing events, keeping these terms can give useful information
to this outbreak. Modern hashtagged terms will likely be the most
common novel terms that we have no prior knowledge on, and we
hypothesize that these terms will be relevant to ongoing outbreaks.

Given that our corpus spans a significantly shorter time period
than the New York Times set, and does not have annotations, we
use existing baseline data sets of word similarities. We evaluated
the accuracy of both models’ vectors using a baseline sources
for the semantic similarity of terms. The first source used was
SimLex-999, which contains 999 word pairings, with correspond-
ing human generated similarity scores on a scale of 0-10, where
10 is the highest similarity [HRK15]. Cosine similarities for each
pair of terms in SimLex-999 were calculated for both the w2v
model vectors as well as vectors generated by the dynamic model
for each temporal bucket. Pairs containing terms that were not
present in the model generated vectors were omitted for that
models similarity measurements. The cosine similarities were then
compared to the assigned SimLex scores using the Spearman’s
rank correlation coefficient. The results of this baseline can be seen
in Table 1. The Spearman’s coefficient of both sets of embeddings,
averaged across all 18 temporal buckets, was .151334 for the
w2v vectors and .15506 for the dynamic word embedding (dwe)
vectors. The dwe vectors slightly outperformed the w2v baseline
in this test of word similarities. However, it should be noted that
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Time
Bucket

w2v Score
(MEN)

dwe Score
(MEN)

Difference
(MEN)

w2v
Score
(SL)

dwe
Score
(SL)

Difference
(SL)

0 0.437816 0.567757 0.129941 0.136146 0.169702 0.033556
1 0.421271 0.561996 0.140724 0.131751 0.167809 0.036058
2 0.481644 0.554162 0.072518 0.113067 0.165794 0.052727
3 0.449981 0.543395 0.093413 0.137704 0.163349 0.025645
4 0.360462 0.532634 0.172172 0.169419 0.158774 -0.010645
5 0.353343 0.521376 0.168032 0.133773 0.157173 0.023400
6 0.365653 0.511323 0.145669 0.173503 0.154299 -0.019204
7 0.358100 0.502065 0.143965 0.196332 0.152701 -0.043631
8 0.380266 0.497222 0.116955 0.152287 0.154338 .002051
9 0.405048 0.496563 0.091514 0.149980 0.148919 -0.001061
10 0.403719 0.499463 0.095744 0.145412 0.142114 -0.003298
11 0.381033 0.504986 0.123952 0.181667 0.141901 -0.039766
12 0.378455 0.511041 0.132586 0.159254 0.144187 -0.015067
13 0.391209 0.514521 0.123312 0.145519 0.147816 0.002297
14 0.405100 0.519095 0.113995 0.151422 0.152477 0.001055
15 0.419895 0.522854 0.102959 0.117026 0.154963 0.037937
16 0.400947 0.524462 0.123515 0.158833 0.157687 -0.001146
17 0.321936 0.525109 0.203172 0.170925 0.157068 -0.013857
Average 0.437816 0.567757 0.129941 0.151334 0.155059 0.003725

TABLE 1: Spearman’s correlation coefficients for w2v vectors and dynamic word embedding (dwe) vectors for all 18 temporal clusters against
the SimLex word pair data set.

Fig. 1: 2 Dimensional Representation of Embeddings from Time Bucket 0.
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Fig. 2: 2 Dimensional Representation of Embeddings from Time Bucket 17.

these Spearman’s coefficients are very low compared to baselines
such as in [WWC+19], where the average Spearman’s coefficient
amongst common models was .38133 on this data set of words.
These models, however, were trained on corpus generated from
Wikipedia pages — wiki2010. The lower Spearman’s coefficients
can likely be accounted to our corpus. In 2014-2017, when
this corpus was generated, Twitter had a 140 character limit on
tweets. The limited characters have been shown to affect user’s
language within their tweets [BTKSDZ19], possibly affecting our
embeddings. Boot et al. show that Twitter increasing the character
limit to 280 characters in 2017 impacted the language within the
tweets. As we test this pipeline on more Twitter data from various
time intervals, the character increase in 2017 is something to keep
in mind.

The second source of baseline was the MEN Test Collection,
containing 3,000 pairs with similarity scores of 0-50, with 50
being the most similar [BTB14]. Following the same methodology
for assessing the strength of embeddings as we did for the
SimLex-999 set, the Spearman’s coefficients from this set yielded
much better results than from the SimLex-999 set. The average
of the Spearman’s coefficients, across all 18 temporal buckets,
was .39532 for the w2v embeddings and .52278 for the dwe
embeddings. The dwe significantly outperformed the w2v baseline
on this set, but still did not reach the average correlation of
.7306 that other common models achieved in the baseline tests
in [WWC+19].

Two dimensional representations of embeddings, generated by

UMAP, can be seen in Figure 1 and Figure 2. Figure 1 represents
the embedding generated for the first time bucket, while Figure
2 represents the embedding generated for the final time bucket.
These UMAP representations use cosine distance as their metric
over Euclidian distance, leading to more dense clusters and more
accurate representations of nearby terms within the embedding
space. The section of terms outlying from the main grouping
appears to be terms that do not appear often within that temporal
cluster itself, but may appear several times later in a temporal
bucket. Figure 1 contains a zoomed in view of this outlying group,
as well as a subgrouping on the outskirts of the main group,
containing food related terms. The majority of these terms are
ones that would likely be hashtagged frequently during a brief time
period within one temporal bucket. These terms are still relevant
to study, as hashtagged terms that appear frequently for a brief
period of time are most likely extremely attached to an ongoing
event. In future iterations, the length of each temporal bucket will
be decreased, hopefully giving more temporal buckets access to
terms that only appear within one currently.

K-Means Clustering Results

The results of the k-means clustering can be seen below in
Figures 4 and 5. Figure 4 shows the results of k-means clustering
with the corresponding 2 dimensional UMAP positions generated
from the 10 dimensional vector that were used as features in
the clustering. Figure 5 shows the results of k-means clustering
with the corresponding 2 dimensional UMAP representation of the
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Cluster All Words HIV Terms Difference

0 0.173498 0.287048 0.113549
1 0.231063 0.238876 0.007814
2 0.220039 0.205600 -0.014440
3 0.023933 0.000283 -0.023651
4 0.108078 0.105581 -0.002498
5 0.096149 0.084276 -0.011873
6 0.023525 0.031391 0.007866
7 0.123714 0.046946 -0.076768

TABLE 2: Distribution of HIV terms and all terms within k-means
clusters

Fig. 3: Bar graph showing k-means clustering distribution of HIV
terms against all terms.

entire data set used in clustering. The k-means clustering revealed
semantic shifts of HIV related terms being clustered with higher
incidence than other terms in one cluster. Incidence rates for all
terms and HIV terms in each cluster can be seen in Table 2 and
Figure 3. This increased incidence rate of HIV related terms in
certain clusters leads us to hypothesize that semantic shifts of
terms in future datasets can be clustered using the same k-means
model, and analyzed to search for outbreaks. Clustering of terms
in future data sets can be compared to these clustering results, and
similarities between the data can be recognized.

Neural Network Results

Neural network models we generated showed promising results
on classification of HIV related terms. The goal of the models
was to identify and discover terms surrounding the HIV outbreak.
Therefore we were not concerned about the rate of false positive
terms. False positive terms likely had semantic shifts very similar
to the HIV related terms, and therefore can be related to the
outbreak. These terms can be labeled as potentially HIV related
while studying future data sets, which can aid the identifying of
if an outbreak is ongoing during the time tweets in the corpus
were tweeted. We looked for a balance of finding false positive
terms without lowering our certainty threshold to include too many
terms. Results of the testing data for data_201 set can be seen in
3, and results of the testing data for data_121 set can be seen in 4.
The certainty threshold for the unmixed split in both sets was .01,

Fig. 4: Results of k-means clustering shown over the 2 dimensional
UMAP representation of the 10 dimensional embeddings.

Fig. 5: Results of k-means clustering shown over the 2 dimensional
UMAP representation of the full data set.

and .1 for the mixed split in both sets. The difference in certainty
thresholds was due to any mixed term data set having an extremely
large number of false positives on .01, but more reasonable results
on .1.

These results show that classification of terms surrounding
the Scott County HIV outbreak is achievable, but the model will
need to be refined on more data. It can be seen that the mixed
term split of data led to a high rate of true positives, however
it quickly became much more specific to terms outside of our
target class on higher epochs, with false positives dropping to
lower rates. Additionally, accuracy on data_201 begins to increase
between 150 and 200 epoch models for the unmixed split, so
even higher epoch models might improve results further for the
unmixed split. Outliers, such as in the true positives in data_121
with 100 epochs without k-means labels, can be explained by
the certainty threshold. If the certainty threshold was .05 for that
model, there would have been 86 true positives, and 1,129 false
positives. A precise certainty threshold can be found as we test this
model on other HIV related data sets and control data sets. With
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With K-Means Label Without K-Means Label

Epochs Accuracy Precision Recall TP FP TN FN Accuracy Precision Recall TP FP TN FN
50 0.9589 0.0513 0.0041 8 148 48897 1947 0.9571 0.1538 0.0266 52 286 48759 1903
100 0.9589 0.0824 0.0072 14 156 48889 1941 0.9608 0.0893 0.0026 5 51 48994 1950
150 0.6915 0.0535 0.4220 825 14602 34443 1130 0.7187 0.0451 0.3141 614 13006 36039 1341
200 0.7397 0.0388 0.2435 476 11797 37248 1479 0.7566 0.0399 0.2317 453 10912 38133 1502
50Mix 0.9881 0.9107 0.7967 1724 169 48667 440 0.9811 0.9417 0.5901 1277 79 48757 887
100Mix 0.9814 0.9418 0.5980 1294 80 48756 870 0.9823 0.9090 0.6465 1399 140 48696 765
150Mix 0.9798 0.9595 0.5471 1184 50 48786 980 0.9752 0.9934 0.4191 907 6 48830 1257
200Mix 0.9736 0.9846 0.3835 830 13 48823 1334 0.9770 0.9834 0.4658 1008 17 48819 1156

TABLE 3: Results of the neural network run on the data_201 set. The epochs column shows the number of training epochs on the models, as
well as if the words were mixed between the training and testing data, denoted by "Mix".

With K-Means Label Without K-Means Label

Epochs Accuracy Precision Recall TP FP TN FN Accuracy Precision Recall TP FP TN FN
50 0.9049 0.0461 0.0752 147 3041 46004 1808 0.9350 0.0652 0.0522 102 1463 47582 1853
100 0.9555 0.1133 0.0235 46 360 48685 1909 0.8251 0.0834 0.3565 697 7663 41382 1258
150 0.9554 0.0897 0.0179 35 355 48690 1920 0.9572 0.0957 0.0138 27 255 48790 1928
200 0.9496 0.0335 0.0113 22 635 48410 1933 0.9525 0.0906 0.0266 52 522 48523 1903
50Mix 0.9285 0.2973 0.5018 1086 2567 46269 1078 0.9487 0.4062 0.4501 974 1424 47412 1190
100Mix 0.9475 0.3949 0.4464 966 1480 47356 1198 0.9492 0.4192 0.5134 1111 1539 47297 1053
150Mix 0.9344 0.3112 0.4496 973 2154 46682 1191 0.9514 0.4291 0.4390 950 1264 47572 1214
200Mix 0.9449 0.3779 0.4635 1003 1651 47185 1161 0.9500 0.4156 0.4395 951 1337 47499 1213

TABLE 4: Results of the neural network on the data_121 set. The epochs column shows the number of training epochs on the models, as well
as if the words were mixed between the training and testing data, denoted by "Mix".

enough experimentation and data, a set can be run through our
pipeline and a certainty of there being a potential HIV outbreak in
the region the data originated from can be generated by a future
model.

Conclusion

Our results prove promising, with high accuracy and decent recall
on classification of HIV/AIDS related terms, as well as potentially
discovering new terms related to the outbreak. Given more HIV
related data sets and control data sets, we could begin examining
and generating thresholds of what might be indicative of an
outbreak. To improve results, metrics for our word2vec baseline
model and statistical analysis could be further explored, as well as
exploring previously mentioned noise and biases from our data.
Additionally, sparsity of data in earlier temporal buckets may
lead to some loss of accuracy. Fine tuning hyperparameters of
the alignment model through grid searching would likely even
further improve these results. We predict that given more data sets
containing tweets from areas and times that had similar HIV/AIDS
outbreaks to Scott County, as well as control data sets that are
not directly related to an HIV outbreak, we could determine
a threshold of words that would define a county as potentially
undergoing an HIV outbreak. With a refined pipeline and model
such as this, we hope to be able to begin biosurveillance to try to
prevent future outbreaks.

Future Work

Case studies of previous datasets related to other diseases and
collection of more modern tweets could not only provide critical

insight into relevant medical activity, but also further strengthen
and expand our model and its credibility. There is a large source
of data potentially related to HIV/AIDS on Twitter, so finding
and collecting this data would be a crucial first step. One potent
example of data could be from the 220 United States counties
determined by the CDC to be considered vulnerable to HIV and/or
viral hepatitis outbreaks due to injection drug use, similar to the
outbreak that occurred in Scott County [VHRH+16]. Our next
data set that is being studied is tweets from Cabell County, West
Virginia, from January of 2018 through 2020. During this time
an HIV outbreak similar to the one that took place in Scott
County in 2014 occurred [AMK20]. The end goal is to create
a pipeline that can perform live semantic shift analysis at set
intervals of time within these counties, and classify these shifts
as they happen. A future model can predict whether or not the
number of terms classified as HIV related is indicative of an
outbreak. If enough terms classified by our model as potentially
indicative of an outbreak become detected, or if this future model
predicts a possible outbreak, public health officials can be notified
and the severity of a possible outbreak can be mitigated if properly
handled.

Expansion into other social media platforms would increase
the variety of data our model has access to, and therefore what
our model is able to respond to. With the foundational model
established, we will be able to focus on converting the data and
addressing the differences between social networks (e.g. audience
and online etiquette). Reddit and Instagram are two points of
interest due to their increasing prevalence, as well as vastness of
available data.

An idea for future implementation following the generation
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of a generalized model would be creating a web application. The
ideal audience would be medical officials and organizations, but
even public or research use for trend prediction could be potent.
The application would give users the ability to pick from a given
glossary of medical terms, defining their own set of significant
words to run our model on. Our model would then expose any
potential trends or insight for the given terms in contemporary
data, allowing for quicker responses to activity. Customization of
the data pool could also be a feature, where tweets and other
social media posts are filtered to specified geographic regions or
time windows, yielding more specific results.

Additionally, we would like to reassess our embedding model
to try and improve embeddings generated and our understanding
of the semantic shifts. This project has been ongoing for several
years, and new models, such as the use of bidirectional encoders,
as in BERT [DCLT18], have proven to have high performance.
BERT based models have also been used for temporal embedding
studies, such as in [LMD+19], a study focused on clinical corpora.
We predict that updating our pipeline to match more modern
methodology can lead to more effective disease detection.
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