
PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 187

The Geoscience Community Analysis Toolkit: An
Open Development, Community Driven Toolkit in the

Scientific Python Ecosystem

Orhan Eroglu‡∗, Anissa Zacharias‡, Michaela Sizemore‡, Alea Kootz‡, Heather Craker‡, John Clyne‡

https://www.youtube.com/watch?v=34zFGkDwJPc

F

Abstract—The Geoscience Community Analysis Toolkit (GeoCAT) team de-
velops and maintains data analysis and visualization tools on structured and
unstructured grids for the geosciences community in the Scientific Python
Ecosystem (SPE). In response to dealing with increasing geoscientific data
sizes, GeoCAT prioritizes scalability, ensuring its implementations are scalable
from personal laptops to HPC clusters. Another major goal of the GeoCAT
team is to ensure community involvement throughout the whole project lifecycle,
which is realized through an open development mindset by encouraging users
and contributors to get involved in decision-making. With this model, we not
only have our project stack open-sourced but also ensure most of the project
assets that are directly related to the software development lifecycle are publicly
accessible.

Index Terms—data analysis, geocat, geoscience, open development, open
source, scalability, visualization

Introduction

The Geoscience Community Analysis Toolkit (GeoCAT) team,
established in 2019, leads the software engineering efforts of
the National Center for Atmospheric Research (NCAR) “Pivot
to Python” initiative [Geo19]. Before then, NCAR Command
Language (NCL) [BBHH12] was developed by NCAR as an
interpreted, domain-specific language that was aimed to support
the analysis and visualization needs of the global geosciences
community. NCL had been serving several tens of thousands of
users for decades. It is still available for use but has not been
actively developed as it has been in maintenance mode.

The initiative had an initial two-year roadmap with major
milestones being: (1) Replicating NCL’s computational routines in
Python, (2) training and support for transitioning NCL users into
Python, and (3) moving tools into an open development model.
GeoCAT aims to create scalable data analysis and visualization
tools on structured and unstructured grids for the geosciences
community in the SPE. The GeoCAT team is committed to
open development, which helps the team prioritize community
involvement at any level of the project lifecycle alongside having
the whole software stack open-sourced.

* Corresponding author: oero@ucar.edu
‡ National Center for Atmospheric Research

Copyright © 2022 Orhan Eroglu et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

GeoCAT has seven Python tools for geoscientific computation
and visualization. These tools are built upon the Pangeo [HRA18]
ecosystem. In particular, they rely on Xarray [HH17], and Dask
[MR15], as well as they are compatible with Numpy and use
Jupyter Notebooks for demonstration purposes. Dask compatibil-
ity allows the GeoCAT functions to scale from personal laptops
to high performance computing (HPC) systems such as NCAR’s
Casper, Cheyenne, and upcoming Derecho clusters [CKZ+22].
Additionally, GeoCAT also utilizes Numba, an open source just-
in-time (JIT) compiler [LPS15], to translate Python and NumPy
code into machine codes in order to get faster executions wherever
possible. GeoCAT’s visualization components rely on Matplotlib
[Hun07] for most of the plotting functionalities, Cartopy [Met15]
for projections, as well as the Datashader and Holoviews stack
[Anaa] for big data rendering. Figure 1 shows these technologies
with their essential roles around GeoCAT.

Briefly, GeoCAT-comp houses computational operators for
applications ranging from regridding and interpolation, to cli-
matology and meteorology. GeoCAT-examples provides over 140
publication-quality plotting scripts in Python for Earth sciences. It
also houses Jupyter notebooks with high-performance, interactive
plots that enable features such as pan and zoom on fine-resolution,
unstructured geoscience data (e.g. ~3 km data rendered within
a few tens of seconds to a few minutes on personal laptops).
This is achieved by making use of the connectivity information
in the unstructured grid and rendering data via the Datashader
and Holoviews ecosystem [Anaa]. GeoCAT-viz enables higher-
level implementation of Matplotlib and Cartopy plotting capabil-
ities through its variety of easy to use visualization convenience
functions for GeoCAT-examples. GeoCAT also maintains WRF-
Python (Weather Research and Forecasting), which works with
WRF-ARW model output and provides diagnostic and interpola-
tion routines.

GeoCAT was recently awarded Project Raijin, which is an
NSF EarthCube-funded effort [NSF21] [CEMZ21]. Its goal is to
enhance the open-source analysis and visualization tool landscape
by developing community-owned, sustainable, scalable tools that
facilitate operating on unstructured climate and global weather
data in the SPE. Throughout this three-year project, GeoCAT
will work on the development of data analysis and visualization
functions that operate directly on the native grid as well as
establish an active community of user-contributors.

https://www.youtube.com/watch?v=34zFGkDwJPc
mailto:oero@ucar.edu


188 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: The core Python technologies on which GeoCAT relies on

This paper will provide insights about GeoCAT’s software
stack and current status, team scope and near-term plans, open
development methodology, as well as current pathways of com-
munity involvement.

GeoCAT Software

The GeoCAT team develops and maintains several open-source
software tools. Before describing those tools, it is vital to explain
in detail how the team implements the continuous integration and
continuous delivery/deployment (CI/CD) in consistence for all of
those tools.

Continuous Integration and Continuous Delivery/Deployment
(CI/CD)

GeoCAT employs a continuous delivery model, with a monthly
package release cycle on package management systems and pack-
age indexes such as Conda [Anab] and PyPI [Pyt]. This model
helps the team make new functions available as soon as they are
implemented and address potential errors quickly. To assist this
process, the team utilizes multiple tools throughout GitHub assets
to ensure automation, unit testing and code coverage, as well as
licensing and reproducibility. Figure 2, for example, shows the
set of badges displaying the near real-time status of each CI/CD
implementation in the GitHub repository homepage from one of
our software tools.

CI build tests of our repositories are implemented and au-
tomated (for pushed commits, pull requests, and daily scheduled
execution) via GitHub Actions workflows [Git], with the CI badge
shown in Figure 2 displaying the status (i.e. pass or fail) of
those workflows. Similarly, the CONDA-BUILDS badge shows
if the conda recipe works successfully for the repository. The
Python package "codecov" [cod] analyzes the percentage of code
coverage from unit tests in the repository. Additionally, the overall
results as well as details for each code script can be seen via
the COVERAGE badge. Each of our software repositories has
a corresponding documentation page that is populated mostly-
automatically through the Sphinx Python documentation generator
[Bra21] and published through ReadTheDocs [rea] via an auto-
mated building and versioning schema. The DOCS badge provides
a link to the documentation page along with showing failures, if
any, with the documentation rendering process. Figure 3 shows
the documentation homepage of GeoCAT-comp. The NCAR and

PYPI badges in the Package row shows and links to the latest
versions of the software tool distributed through NCAR’s Conda
channel and PyPI, respectively. The LICENSE badge provides a
link to our software licenses, Apache License version 2.0 [Apa04],
for all of the GeoCAT stack, enabling the redistribution of the
open-source software products on an "as is" basis. Finally, to
provide reproducibility of our software products (either for the
latest or any older version), we publish version-specific Digital
Object Identifiers (DOIs), which can be accessed through the DOI
badge. This allows the end-user to accurately cite the specific
version of the GeoCAT tools they used for science or research
purposes.

Fig. 2: GeoCAT-comp’s badges in the beginning of its README file
(i.e. the home page of the Githug repository) [geob]

GeoCAT-comp (and GeoCAT-f2py)

GeoCAT-comp is the computational component of the GeoCAT
project as can be seen in Figure 4. GeoCAT-comp houses im-
plementations of geoscience data analysis functions. Novel re-
search and development is conducted for analyzing both structured
and unstructured grid data from various research fields such as
climate, weather, atmosphere, ocean, among others. In addition,
some of the functionalities of GeoCAT-comp are inspired or
reimplemented from the NCL in order to address the first goal
of the "Pivot to Python effort. For that purpose, 114 NCL rou-
tines were selected, excluding some functionalities such as date
routines, which could be handled by other packages in the Python
ecosystem today. These functions were ranked by order of website
documentation access from most to least, and prioritization was
made based on those ranks. Today, GeoCAT-comp provides the



THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 189

Fig. 3: GeoCAT-comp documentation homepage built with Sphinx using a theme provided by ReadTheDocs [geoa]

same or similar capabilities of about 39% (44 out of 114) of those
functions.

Some of the functions that are made available through
GeoCAT-comp are listed below, for which the GeoCAT-comp
documentation [geoa] provides signatures and descriptions as well
as links to the usage examples:

• Spherical harmonics (both decomposition and recomposi-
tion as well as area weighting)

• Fourier transforms such as band-block, band-pass, low-
pass, and high-pass

• Meteorological variable computations such as relative hu-
midity, dew-point temperature, heat index, saturation vapor
pressure, and more

• Climatology functions such as climate average over mul-
tiple years, daily/monthly/seasonal averages, as well as
anomalies

• Regridding of curvilinear grid to rectilinear grid, unstruc-
tured grid to rectilinear grid, curvilinear grid to unstruc-
tured grid, and vice versa

• Interpolation methods such as bilinear interpolation of a
rectilinear to another rectilinear grid, hybrid-sigma levels
to isobaric levels, and sigma to hybrid coordinates

• Empirical orthogonal function (EOF) analysis

Many of the computational functions in GeoCAT are im-
plemented in pure Python. However, there are others that were
originally implemented in Fortran but are now wrapped up in
Python with the help of Numpy’s F2PY, Fortran to Python in-
terface generator. This is mostly because re-implementing some
functions would require understanding of complicated algorithm
flows and implementation of extensive unit tests that would end
up taking too much time, compared to wrapping their already-
implemented Fortran routines up in Python. Furthermore, outside
contributors from science background would keep considering to
add new functions to GeoCAT from their older Fortran routines
in the future. To facilitate contribution, the whole GeoCAT-comp
structure is split into two repositories with respect to being
either pure-Python or Python with compiled code (i.e. Fortran)
implementations. Such implementation layers are handled with
the GeoCAT-comp and GeoCAT-f2py repositories, respectively.

GeoCAT-comp code-base does not explicitly contain or require
any compiled code, making it more accessible to the general
Python community at large. In addition, GeoCAT-f2py is auto-
matically installed through GeoCAT-comp installation, and all
functions contained in the "geocat.f2py" package are imported
transparently into the "geocat.comp" namespace. Thus, GeoCAT-
comp serves as a user API to access the entire computational
toolkit even though its GitHub repository itself only contains pure
Python code from the developer’s perspective. Whenever prospec-
tive contributors want to contribute computational functionality in
pure Python, GeoCAT-comp is the only GitHub repository they
need to deal with. Therefore, there is no onus on contributors of
pure Python code to build, compile, or test any compiled code
(e.g. Fortran) at GeoCAT-comp level.

GeoCAT-examples (and GeoCAT-viz)

GeoCAT-examples [geoe] was created to address a few of the
original milestones of NCAR’s "Pivot to Python" initiative: (1)
to provide the geoscience community with well-documented visu-
alization examples for several plotting classes in the SPE, and (2)
to help transition NCL users into the Python ecosystem through
providing such resources. It was born in early 2020 as the result of
a multi-day hackathon event among the GeoCAT team and several
other scientists and developers from various NCAR labs/groups.
It has since grown to house novel visualization examples and
showcase the capabilities of other GeoCAT components, like
GeoCAT-comp, along with newer technologies like interactive
plotting notebooks. Figure 5 illustrates one of the unique GeoCAT-
examples cases that was aimed at exploring the best practices for
data visualization like choosing color blind friendly colormaps.

The GeoCAT-examples [geod] gallery contains over 140 ex-
ample Python plotting scripts, demonstrating functionalities from
Python packages like Matplotlib, Cartopy, Numpy, and Xarray.
The gallery includes plots from a range of visualization categories
such as box plots, contours, meteograms, overlays, projections,
shapefiles, streamlines, and trajectories among others. The plotting
categories and scripts under GeoCAT-examples cover almost all of
the NCL plot types and techniques. In addition, GeoCAT-examples
houses plotting examples for individual GeoCAT-comp analysis
functions.



190 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: GeoCAT project structure with all of the software tools [geoc]

Fig. 5: Comparison between NCL (left) and Python (right) when
choosing a colormap; GeoCAT-examples aiming at choosing color
blind friendly colormaps [SEKZ22]

Despite Matplotlib and Cartopy’s capabilities to reproduce
almost all of NCL plots, there was one significant caveat with
using their low-level implementations against NCL: NCL’s high-
level plotting functions allowed scientists to plot most of the cases
in only tens of lines of codes (LOC) while the Matplotlib and
Cartopy stack required writing a few hundred LOC. In order
to build a higher-level implementation on top of Matplotlib and
Cartopy while recreating the NCL-like plots (from vital plotting
capabilities that were not readily available in the Python ecosystem
at the time such as Taylor diagrams and curly vectors to more
stylistic changes such as font sizes, color schemes, etc. that resem-
ble NCL plots), the GeoCAT-viz library [geof] was implemented.
Use of functions from this library in GeoCAT-examples signifi-
cantly reduces the LOC requirements for most of the visualization
examples to comparable numbers to those of NCL’s. Figure 6
shows Taylor diagram and curly vector examples that have been
created with the help of GeoCAT-viz. To exemplify how GeoCAT-

viz helps keep the LOC comparable to NCL, one of the Taylor
diagrams (i.e. Taylor_6) took 80 LOC in NCL, and its Python
implementation in GeoCAT-examples takes 72 LOC. If many
of the Matplotlib functions (e.g. figure and axes initialization,
adjustment of several axes parameters, call to plotting functions for
Taylor diagram, management of grids, addition of titles, contours,
etc.) used in this example weren’t wrapped up in GeoCAT-viz
[geof], the same visualization would easily end up in around two
hundred LOC.

Fig. 6: Taylor diagram and curly vector examples that created with
the help of GeoCAT-viz

Recently, the GeoCAT team has been focused on interactive
plotting technologies, especially for larger data sets that contain
millions of data points. This effort was centered on unstructured
grid visualization as part of Project Raijin, which is detailed in
a later section in this manuscript. That is because unstructured
meshes are a great research and application field for big data
and interactivity such as zoom in/out for regions of interest. As
a result of this effort, we created a new notebooks gallery under
GeoCAT-examples to house such interactive data visualizations.
The first notebook, a screenshot from which is shown in Figure 7,
in this gallery is implemented via the Datashader and Holoviews



THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 191

ecosystem [Anaa], and it provides a high-performance, interactive
visualization of a Model for Prediction Across Scales (MPAS)
Global Storm-Resolving Model weather simulation dataset. The
interactivity features are pan and zoom to reveal greater data
fidelity globally and regionally. The data used in this work is
the courtesy of the DYAMOND effort [SSA+19] and has varying
resolutions from 30 km to 3.75 km. Our notebook in the gallery
uses the 30 km resolution data for the users to be able to download
and work on it in their local configuration. However, our work
with the 3.75 km resolution data (i.e. about 42 million hexagonal
cells globally) showed that rendering the data took only a few
minutes on a decent laptop, even without any parallelization. The
main reason behind such a high performance was that we used the
cell-to-node connectivity information in the MPAS data to render
the native grid directly (i.e. without remapping to the structured
grid) along with utilizing the Datashader stack. Without using the
connectivity information, it would require to run much costly
Delaunay triangulation. The notebook provides a comparison
between these two approaches as well.

GeoCAT-datafiles

GeoCAT-datafiles is GeoCAT’s small data storage component as
a Github repository. This tool houses many datasets in different
file formats such as NetCDF, which can be used along with other
GeoCAT tools or ad-hoc data needs in any other Python script.
The datasets can be accessed by the end-user through a lightweight
convenience function:
geocat.datafiles.get("folder_name/filename")

GeoCAT-datafiles fetches the file by simply reading from the
local storage, if any, or downloading from the GeoCAT-datafiles
repository, if not in the local storage, with the help of Pooch
framework [USR+20].

WRF-Python

WRF-Python was created in early 2017 in order to replicate NCL’s
Weather Research and Forecasting (WRF) package in the SPE, and
it covers 100% of the routines in that package. About two years
later, NCAR’s “Pivot to Python” initiative was announced, and the
GeoCAT team has taken over development and maintenance of
WRF-Python.

The package focuses on creating a Python package that elim-
inates the need to work across multiple software platforms when
using WRF datasets. It contains more than 30 computational
(e.g. diagnostic calculations, several interpolation routines) and
visualization routines that aim at reducing the amount of post-
processing tools necessary to visualize WRF output files.

Even though there is no continuous development in WRF-
Python, as is seen in the rest of the GeoCAT stack, the package is
still maintained with timely responses and bug-fix releases to the
issues reported by the user community.

Project Raijin

“Collaborative Research: EarthCube Capabilities: Raijin: Commu-
nity Geoscience Analysis Tools for Unstructured Mesh Data”, i.e.
Project Raijin, of the consortium between NCAR and Pennsylva-
nia State University has been awarded by NSF 21-515 EarthCube
for an award period of 1 September, 2021 - 31 August, 2024
[NSF21]. Project Raijin aims at developing community-owned,
sustainable, scalable tools that facilitate operating on unstructured
climate and global weather data [rai]. The GeoCAT team is in

charge of the software development of Project Raijin, which
mainly consists of implementing visualization and analysis func-
tions in the SPE to be executed on native grids. While doing so,
GeoCAT is also responsible for establishing an open development
environment, clearly documenting the implementation work, and
aligning deployments with the project milestones as well as SPE
requirements and specifications.

GeoCAT has created the Xarray-based Uxarray package [uxa]
to recognize unstructured grid models through partnership with
geoscience community groups. UXarray is built on top of the
built-in Xarray Dataset functionalities while recognizing several
unstructured grid formats (UGRID, SCRIP, and Exodus for now).
Since there are more unstructured mesh models in the community
than UXarray natively supports, its architecture will also support
addition of new models. Figure 8 shows the regularly structured
“latitude-longitude” grids versus a few unstructured grid models.

The UXarray project has implemented data input/output func-
tions for UGRID, SCRIP, and Exodus, as well as methods for
surface area and integration calculations so far. The team is cur-
rently conducting open discussions (through GitHub Discussions)
with community members, who are interested in unstructured
grids research and development in order to prioritize data analysis
operators to be implemented throughout the project lifecycle.

Scalability

GeoCAT is aware of the fact that today’s geoscientific models
are capable of generating huge sizes of data. Furthermore, these
datasets, such as those produced by global convective-permitting
models, are going to grow even larger in size in the future.
Therefore, computational and visualization functions that are
being developed in the geoscientific research and development
workflows need to be scalable from personal devices (e.g. laptops)
to HPC (e.g. NCAR’s Casper, Cheyenne, and upcoming Derecho
clusters) and cloud platforms (e.g. AWS).

In order to keep up with the scalability objectives, GeoCAT
functions are implemented to operate on Dask arrays in addition
to natively supporting NumPy arrays and Xarray DataArrays.
Therefore, the GeoCAT functions can trivially and transparently be
parallelized to be run on shared-memory and distributed-memory
platforms after having Dask cluster/client properly configured and
functions fed with Dask arrays or Dask-backed Xarray DataArrays
(i.e. chunked Xarray DataArrays that wrap up Dask arrays).

Open Development

To ensure community involvement at every level in the develop-
ment lifecycle, GeoCAT is committed to an open development
model. In order to implement this model, GeoCAT provides all
of its software tools as GitHub repositories with public GitHub
project boards and roadmaps, issue tracking and development re-
viewing, comprehensive documentation for users and contributors
such as Contributor’s Guide [geoc] and toolkit-specific documen-
tation, along with community announcements on the GeoCAT
blog. Furthermore, GeoCAT encourages community feedback and
contribution at any level with inclusive and welcoming language.
As a result of this, community requests and feedback have played
significant role in forming and revising the GeoCAT roadmap and
projects’ scope.



192 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7: The interactive plot interface from the MPAS visualization notebook in GeoCAT-examples

Fig. 8: Regular grid (left) vs MPAS-A & CAM-SE grids

Community engagement

To further promote engagement with the geoscience community,
GeoCAT organizes and attends various community events. First
of all, scientific conferences and meetings are great venues for
such a scientific software engineering project to share updates
and progress with the community. For instance, the American
Meteorological Society (AMS) Annual Meeting and American
Geophysical Union (AGU) Fall Meeting are two significant sci-
entific events that the GeoCAT team presented one or multiple
publications every year since its birth to inform the community.
The annual Scientific Computing with Python (SciPy) conference
is another great fit to showcase what GeoCAT has been conducting
in geoscience. The team also attended The International Confer-
ence for High Performance Computing, Networking, Storage, and
Analysis (SC) a few times to keep up-to-date with the industry
state-of-the-arts in these technologies.

Creating internship projects is another way of improving com-
munity interactions as it triggers collaboration through GeoCAT,
institutions, students, and university in general. The GeoCAT
team, thus,encourages undergraduate and graduate student engage-
ment in the Python ecosystem through participation in NCAR’s
Summer Internships in Parallel Computational Science (SIParCS).
Such programs are quite beneficial for both students and scientific
software development teams. To exemplify, GeoCAT-examples

and GeoCAT-viz in particular has received significant contribu-
tions through SIParCS in 2020 and 2021 summers (i.e. tens
of visualization examples as well as important infrastructural
changes were made available by our interns) [CKZ+22] [LLZ+21]
[CFS21]. Furthermore, the team has created three essential and
one collaboration project through SIParCS 2022 summer through
which advanced geoscientific visualization, unstructured grid vi-
sualization and data analysis, Fortran to Python algorithm and
code development, as well as GPU optimization for GeoCAT-
comp routines will be investigated.

Project Pythia

The GeoCAT effort is also a part of the NSF funded Project
Pythia. Project Pythia aims to provide a public, web-accessible
training resource that could help educate earth scientists to more
effectively use the SPE and cloud computing for dealing with
big data in geosciences. GeoCAT helps with Pythia development
through content creation and infrastructure contributions. GeoCAT
has also contributed several Python tutorials (such as Numpy, Mat-
plotlib, Cartopy, etc.) to the educational resources created through
Project Pythia. These materials consist of live tutorial sessions,
interactive Jupyter notebook demonstrations, Q&A sessions, as
well as published video recording of the event on Pythia’s Youtube
channel. As a result, it helps us engage with the community
through multiple channels.

Future directions

GeoCAT aims to keep increasing the number of data analysis and
visualization functionalities in both structured and unstructured
meshes with the same pace as has been done so far. The team will
continue prioritizing scalability and open development in future
development and maintenance of its software tools landscape. To
achieve the goals with scalability of our tools, we will ensure our
implementations are compatible with the state-of-the-art and up-
to-date with the best practices of the technology we are using, e.g.



THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 193

Dask. To enhance the community involvement in our open devel-
opment model, we will continue interacting with the community
members through significant events such as Pangeo community
meetings, scientific conferences, tutorials and workshops of Geo-
CAT’s own as well as other community members; we will keep
our timely communication with the stakeholders through GitHub
assets and other communication channels.

REFERENCES

[Anaa] Anaconda. Datashader. https://datashader.org/. Online; accessed 29
June 2022.

[Anab] Anaconda, Inc. Conda package manager. https://docs.conda.io/en/
latest/. Online; accessed 18 May 2022.

[Apa04] Apache Software Foundation. Apache License, version 2.0. https:
//www.apache.org/licenses/LICENSE-2.0, 2004. Online; accessed
18 May 2022.

[BBHH12] David Brown, Rick Brownrigg, Mary Haley, and Wei Huang.
NCAR Command Language (ncl), 2012. doi:http://dx.doi.
org/10.5065/D6WD3XH5.

[Bra21] Georg Brandl. Sphinx documentation. URL http://sphinx-doc.
org/sphinx. pdf, 2021.

[CEMZ21] John Clyne, Orhan Eroglu, Brian Medeiros, and Colin M Zarzy-
cki. Project raijin: Community geoscience analysis tools for unstruc-
tured grids. In AGU Fall Meeting 2021. AGU, 2021.

[CFS21] Heather Rose Craker, Claire Anne Fiorino, and Michaela Victoria
Sizemore. Rebuilding the ncl visualization gallery in python. In
101nd American Meteorological Society Annual Meeting. AMS,
2021.

[CKZ+22] Heather Craker, Alea Kootz, Anissa Zacharias, Michaela Size-
more, and Orhan Eroglu. NCAR’s GeoCAT Announcement of
Computational Tools. In 102nd American Meteorological Society
Annual Meeting. AMS, 2022.

[cod] Codecov. https://about.codecov.io/. Online; accessed 18 May 2022.
[geoa] GeoCAT-comp documentation page. https://geocat-

comp.readthedocs.io/en/latest/index.html. Online; accessed 20
May 2022. doi:doi:10.5281/zenodo.6607205.

[geob] GeoCAT-comp GitHub repository. https://github.com/NCAR/
geocat-comp. Online; accessed 20 May 2022. doi:doi:10.
5281/zenodo.6607205.

[geoc] GeoCAT Contributor’s Guide. https://geocat.ucar.edu/pages/
contributing.html. Online; accessed 20 May 2022. doi:10.5065/
a8pp-4358.

[geod] GeoCAT-examples documentation page. https://geocat-examples.
readthedocs.io/en/latest/index.html. Online; accessed 20 May 2022.
doi:10.5281/zenodo.6678258.

[geoe] GeoCAT-examples GitHub repository. https://github.com/NCAR/
geocat-examples. Online; accessed 20 May 2022. doi:10.5281/
zenodo.6678258.

[geof] GeoCAT-viz GitHub repository. https://github.com/NCAR/geocat-
viz. Online; accessed 20 May 2022. doi:10.5281/zenodo.
6678345.

[Geo19] GeoCAT. The future of NCL and the Pivot to Python. https:
//www.ncl.ucar.edu/Document/Pivot_to_Python, 2019. Online; ac-
cessed 17 May 2022. doi:http://dx.doi.org/10.5065/
D6WD3XH5.

[Git] GitHub. Github Actions. https://docs.github.com/en/actions. Online;
accessed 18 May 2022.

[HH17] Stephan Hoyer and Joseph Hamman. xarray: N-D labeled arrays
and datasets in Python. Journal of Open Research Software, 5(1):10,
2017. doi:http://doi.org/10.5334/jors.148.

[HRA18] Joseph Hamman, Matthew Rocklin, and Ryan Abernathy. Pangeo:
A big-data ecosystem for scalable earth system science. EGU
General Assembly Conference Abstracts, 2018.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007. doi:10.1109/MCSE.
2007.55.

[LLZ+21] Erin Lincoln, Jiaqi Li, Anissa Zacharias, Michaela Sizemore,
Orhan Eroglu, and Julia Kent. Expanding and strengthening the
transition from NCL to Python visualizations. In AGU Fall Meeting
2021. AGU, 2021.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Work-
shop on the LLVM Compiler Infrastructure in HPC, pages 1–6, 2015.
doi:https://doi.org/10.1145/2833157.2833162.

[Met15] Met Office. Cartopy: a cartographic python library with a matplotlib
interface. Exeter, Devon, 2010 - 2015. URL: http://scitools.org.uk/
cartopy.

[MR15] Matthew Rocklin. Dask: Parallel Computation with Blocked algo-
rithms and Task Scheduling. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Conference, pages
126 – 132, 2015. doi:10.25080/Majora-7b98e3ed-013.

[NSF21] NSF. Collaborative research: Earthcube capabilities: Raijin:
Community geoscience analysis tools for unstructured mesh
data. https://nsf.gov/awardsearch/showAward?AWD_ID=2126458&
HistoricalAwards=false, 2021. Online; accessed 17 May 2022.

[Pyt] Python Software Foundation. The Python Package Index - PyPI.
https://pypi.org/. Online; accessed 18 May 2022.

[rai] Raijin homepage. https://raijin.ucar.edu/. Online; accessed 21 May
2022.

[rea] ReadTheDocs. https://readthedocs.org/. Online; accessed 18 May
2022.

[SEKZ22] Michaela Sizemore, Orhan Eroglu, Alea Kootz, and Anissa
Zacharias. Pivoting to Python: Lessons Learned in Recreating the
NCAR Command Language in Python. 102nd American Meteoro-
logical Society Annual Meeting, 2022.

[SSA+19] Bjorn Stevens, Masaki Satoh, Ludovic Auger, Joachim Bier-
camp, Christopher S Bretherton, Xi Chen, Peter Düben, Falko
Judt, Marat Khairoutdinov, Daniel Klocke, et al. DYAMOND:
the DYnamics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains. Progress in Earth and Planetary
Science, 6(1):1–17, 2019. doi:https://doi.org/10.1186/
s40645-019-0304-z.

[USR+20] Leonardo Uieda, Santiago Rubén Soler, Rémi Rampin, Hugo
Van Kemenade, Matthew Turk, Daniel Shapero, Anderson Bani-
hirwe, and John Leeman. Pooch: A friend to fetch your data
files. Journal of Open Source Software, 5(45):1943, 2020. doi:
10.21105/joss.01943.

[uxa] UXarray GitHub repository. https://github.com/UXARRAY/uxarray.
Online; accessed 20 May 2022. doi:10.5281/zenodo.
5655065.

https://datashader.org/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://dx.doi.org/http://dx.doi.org/10.5065/D6WD3XH5
http://dx.doi.org/http://dx.doi.org/10.5065/D6WD3XH5
https://about.codecov.io/
https://geocat-comp.readthedocs.io/en/latest/index.html
https://geocat-comp.readthedocs.io/en/latest/index.html
http://dx.doi.org/doi:10.5281/zenodo.6607205
https://github.com/NCAR/geocat-comp
https://github.com/NCAR/geocat-comp
http://dx.doi.org/doi:10.5281/zenodo.6607205
http://dx.doi.org/doi:10.5281/zenodo.6607205
https://geocat.ucar.edu/pages/contributing.html
https://geocat.ucar.edu/pages/contributing.html
http://dx.doi.org/10.5065/a8pp-4358
http://dx.doi.org/10.5065/a8pp-4358
https://geocat-examples.readthedocs.io/en/latest/index.html
https://geocat-examples.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.5281/zenodo.6678258
https://github.com/NCAR/geocat-examples
https://github.com/NCAR/geocat-examples
http://dx.doi.org/10.5281/zenodo.6678258
http://dx.doi.org/10.5281/zenodo.6678258
https://github.com/NCAR/geocat-viz
https://github.com/NCAR/geocat-viz
http://dx.doi.org/10.5281/zenodo.6678345
http://dx.doi.org/10.5281/zenodo.6678345
https://www.ncl.ucar.edu/Document/Pivot_to_Python
https://www.ncl.ucar.edu/Document/Pivot_to_Python
http://dx.doi.org/http://dx.doi.org/10.5065/D6WD3XH5
http://dx.doi.org/http://dx.doi.org/10.5065/D6WD3XH5
https://docs.github.com/en/actions
http://dx.doi.org/http://doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/https://doi.org/10.1145/2833157.2833162
http://scitools.org.uk/cartopy
http://scitools.org.uk/cartopy
http://dx.doi.org/10.25080/Majora-7b98e3ed-013
https://nsf.gov/awardsearch/showAward?AWD_ID=2126458&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2126458&HistoricalAwards=false
https://pypi.org/
https://raijin.ucar.edu/
https://readthedocs.org/
http://dx.doi.org/https://doi.org/10.1186/s40645-019-0304-z
http://dx.doi.org/https://doi.org/10.1186/s40645-019-0304-z
http://dx.doi.org/10.21105/joss.01943
http://dx.doi.org/10.21105/joss.01943
https://github.com/UXARRAY/uxarray
http://dx.doi.org/10.5281/zenodo.5655065
http://dx.doi.org/10.5281/zenodo.5655065

	Introduction
	GeoCAT Software
	Continuous Integration and Continuous Delivery/Deployment (CI/CD)
	GeoCAT-comp (and GeoCAT-f2py)
	GeoCAT-examples (and GeoCAT-viz)
	GeoCAT-datafiles
	WRF-Python

	Project Raijin
	Scalability
	Open Development
	Community engagement
	Project Pythia

	Future directions
	References

