
202 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

pyDAMPF: a Python package for modeling
mechanical properties of hygroscopic materials under

interaction with a nanoprobe

Willy Menacho‡§, Gonzalo Marcelo Ramírez-Ávila‡§, Horacio V. Guzman¶‖‡§∗

F

Abstract—pyDAMPF is a tool oriented to the Atomic Force Microscopy (AFM)
community, which allows the simulation of the physical properties of materials
under variable relative humidity (RH). In particular, pyDAMPF is mainly focused
on the mechanical properties of polymeric hygroscopic nanofibers that play an
essential role in designing tissue scaffolds for implants and filtering devices.
Those mechanical properties have been mostly studied from a very coarse
perspective reaching a micrometer scale. However, at the nanoscale, the me-
chanical response of polymeric fibers becomes cumbersome due to both exper-
imental and theoretical limitations. For example, the response of polymeric fibers
to RH demands advanced models that consider sub-nanometric changes in the
local structure of each single polymer chain. From an experimental viewpoint,
choosing the optimal cantilevers to scan the fibers under variable RH is not
trivial.

In this article, we show how to use pyDAMPF to choose one optimal
nanoprobe for planned experiments with a hygroscopic polymer. Along these
lines, We show how to evaluate common and non-trivial operational parame-
ters from an AFM cantilever of different manufacturers. Our results show in a
stepwise approach the most relevant parameters to compare the cantilevers
based on a non-invasive criterion of measurements. The computing engine is
written in Fortran, and wrapped into Python. This aims to reuse physics code
without losing interoperability with high-level packages. We have also introduced
an in-house and transparent method for allowing multi-thread computations to
the users of the pyDAMPF code, which we benchmarked for various comput-
ing architectures (PC, Google Colab and an HPC facility) and results in very
favorable speed-up compared to former AFM simulators.

Index Terms—Materials science, Nanomechanical properties, AFM, f2py, multi-
threading CPUs, numerical simulations, polymers

Introduction and Motivation

This article provides an overview of pyDAMPF, which is a
BSD licensed, Python and Fortran modeling tool that enables
AFM users to simulate the interaction between a probe (can-
tilever) and materials at the nanoscale under diverse environments.
The code is packaged in a bundle and hosted on GitHub at
(https://github.com/govarguz/pyDAMPF).

‡ Instituto de Investigaciones Físicas.
§ Carrera de Física, Universidad Mayor de San Andrés. Campus Universitario
Cota Cota. La Paz, Bolivia
* Corresponding author: horacio.guzman@ijs.si
¶ Department of Theoretical Physics
|| Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Copyright © 2022 Willy Menacho et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Despite the recent open-source availability of dynamic AFM
simulation packages [GGG15], [MHR08], a broad usage for the
assessment and planning of experiments has yet to come. One of
the problems is that it is often hard to simulate several operational
parameters at once. For example, most scientists evaluate differ-
ent AFM cantilevers before starting new experiments. A typical
evaluation criterion is the maximum exerted force that prevents
invasivity of the nanoprobe into the sample. The variety of AFM
cantilevers depends on the geometrical and material characteristics
used for its fabrication. Moreover, manufacturers’ nanofabrication
techniques may change from time to time, according to the
necessities of the experiments, like sharper tips and/or higher
oscillation frequencies. From a simulation perspective, evaluating
observables for reaching optimal results on upcoming experiments
is nowadays possible for tens or hundreds of cantilevers. On top of
other operational parameters in the case of dynamic AFM like the
oscillation amplitude A0, set-point Asp, among other materials ex-
pected properties that may feed simulations and create simulations
batches of easily thousands of cases. Given this context, we focus
this article on choosing a cantilever out of an initial pyDAMPF
database of 30. In fact, many of them are similar in terms of spring
constant kc, cantilever volume Vc and also Tip’s radius RT . Then
we focus on seven archetypical and distinct cases/cantilevers to
understand the characteristics of each of the parameters specified
in the manufacturers’ datasheets, by evaluating the maximum
(peak) forces.

We present four scenarios comparing a total of seven can-
tilevers and the same sample, where we use as a test-case Poly-
Vinyl Acetate (PVA) fiber. The first scenario (Figure 1) illustrates
the difference between air and a moist environment. On the
second one, a cantilever, only very soft and stiff cantilever spring
constants are compared (see Figure :ref:fig1b‘). At the same time,
the different volumes along the 30 cantilevers are depicted in
Figure 3. A final and mostly very common comparison is scenario
4, by comparing one of the most sensitive parameters to the force
of the tip’s radii (see Figure 4).

The quantitative analysis for these four scenarios is presented
and also the advantages of computing several simulation cases
at once with our in-house development. Such a comparison is
performed under the most common computers used in science,
namely, personal computers (PC), cloud (Colab) and supercom-
puting (small Xeon based cluster). We reach a Speed-up of 20
over the former implementation [GGG15].

https://github.com/govarguz/pyDAMPF
mailto:horacio.guzman@ijs.si

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 203

Another novelty of pyDAMPF is the detailed [GS05] calcu-
lation of the environmental-related parameters, like the quality
factor Q.

Here, we summarize the main features of pyDAMPF are:

• Highly efficient structure in terms of time-to-result, at least
one order of magnitude faster than existing approaches.

• Easy to use for scientists without a computing background,
in particular in the use of multi-threads.

• It supports the addition of further AFM cantilevers and
parameters into the code database.

• Allows an interactive analysis, including a graphical and
table-based comparison of results through Jupyter Note-
books.

The results presented in this article are available as Google
Colaboratory notebook, which facilitates to explore pyDAMPF
and these examples.

Methods

Processing inputs

pyDAMPF counts with an initial database of 30 cantilevers,
which can be extended at any time by accessing to the file can-
tilevers_data.txt then, the program inputs_processor.py reads the
cantilever database and asks for further physical and operational
variables, required to start the simulations. This will generate
tempall.txt, which contains all cases e.g. 30 to be simulated with
pyDAMPF

def inputs_processor(variables,data):
a,b = np.shape(data)
final = gran_permutador(variables, data)
f_name = ' tempall.txt'
np.savetxt(f_name,final)
directory = os.getcwd()
shutil.copy(directory+'/tempall.txt',directory+'

/EXECUTE_pyDAMPF/')
shutil.copy(directory+'/tempall.txt',directory+'

/EXECUTE_pyDAMPF/pyDAMPF_BASE/nrun/')

The variables inside the argument of the function inputs_processor
are interactively requested from a shell command line. Then the
file tempall.txt is generated and copied to the folders that will
contain the simulations.

Execute pyDAMPF

For execution in a single or multi-thread way, we require first
to wrap our numeric core from Fortran to Python by using
f2py [Vea20]. Namely, the file pyDAMPF.f90 within the folder
EXECUTE_pyDAMPF.

Compilation with f2py: This step is only required once
and depends on the computer architecture the code for this reads:

f2py -c --fcompiler=gnu95 pyDAMPF.f90 -m mypyDAMPF

This command-line generates mypyDAMPF.so, which will be
automatically located in the simulation folders.

Once we have obtained the numerical code as Python modules,
we need to choose the execution mode, which can be serial or
parallel. Whereby parallel refers to multi-threading capabilities
only within this first version of the code.

Serial method: This method is completely transparent to
the user and will execute all the simulation cases found in the file
tempall.txt by running the script inputs_processor.py. Our in-house
development creates an individual folder for each simulation case,
which can be executed in one thread.

def serial_method(tcases, factor, tempall):
lst = gen_limites(tcases, factor)
change_dir()
for i in range(1,factor+1):

direc = os.getcwd()
direc2 = direc+'/pyDAMPF_BASE/'
direc3 = direc+'/SERIALBASIC_0/'+str(i)+'/'
shutil.copytree (direc2,direc3)

os.chdir (direc+'/SERIALBASIC_0/1/nrun/')
exec(open('generate_cases.py').read())

As arguments, the serial method requires the total number of
simulation cases obtained from tempall.txt. In contrast, the factor
parameter has, in this case,a default value of 1.

Parallel method: The parallel method uses more than one
computational thread. It is similar to the serial method; however,
this method distributes the total load along the available threads
and executes in a parallel-fashion. This method comprises two
parts: first, a function that takes care of the bookkeeping of cases
and folders:

def Parallel_method(tcases, factor, tempall):
lst = gen_limites(tcases, factor)
change_dir()
for i in range(1,factor+1):

lim_inferior=lst[i-1][0]
lim_superior=lst[i-1][1]
direc =os.getcwd()
direc2 =direc+'/pyDAMPF_BASE/'
direc3 =direc+'/SERIALBASIC_0/'+str(i)+'/'
shutil.copytree (direc2,direc3)
factorantiguo = ' factor=1'
factornuevo='factor='+str(factor)
rangoantiguo = '(0,paraleliz)'
rangonuevo='('+str(lim_inferior)+','

+str(lim_superior)+')'
os.chdir(direc+'/PARALLELBASIC_0/'+str(i))
pyname =' nrun/generate_cases.py'
newpath=direc+'/PARALLELBASIC_0/'+str(i)+'/'

+pyname
reemplazo(newpath,factorantiguo,factornuevo)
reemplazo(newpath,rangoantiguo,rangonuevo)
os.chdir(direc)

This part generates serial-like folders for each thread’s number of
cases to be executed.

The second part of the parallel method will execute pyDAMPF,
which contains at the same time two scripts. One for executing
pyDAMPF in a common UNIX based desktop or laptop. While the
second is a python script that generated SLURM code to launch
jobs in HPC facilities.

• Execution with SLURM

It runs pyDAMPF in different threads under the SLURM
queuing system.

def cluster(factor):
for i in range(1,factor+1):

with open('jobpyDAMPF'+str(i)+'.x','w')
as ssf :

ssf.write('#/bin/bashl|n ')
ssf.write('#SBATCH--time=23:00:00

\n')
ssf.write('#SBATCH--constraint=

epyc3\n')

https://colab.research.google.com/drive/1ZM_aQsuYWUD2gnhcIhngpypJ6m1MbFxE?usp=sharing
https://colab.research.google.com/drive/1ZM_aQsuYWUD2gnhcIhngpypJ6m1MbFxE?usp=sharing

204 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ssf.write('\n')
ssf.write('ml Anaconda3/2019.10\n')
ssf.write('\n')
ssf.write('ml foss/2018a\n')
ssf.write('\n')
ssf.write('cd/home/$<USER>/pyDAMPF/

EXECUTE_pyDAMPF/PARALLELBASIC_0/'+str(i)+'/nrun
\n')

ssf.write('\n')
ssf.write('echo$pwd\n')
ssf.write('\n')
ssf.write('python3 generate_cases.py

\n')
ssf.close();

os.system(sbatch jobpyDAMPF)'+str(i)+'
.x;')

os.system(rm jobpyDAMPF)'+str(i)+'.x;')

The above script generates SLURM jobs for a chosen set of
threads; after launched, those jobs files are erased in order to
improve bookkeeping.

• Parallel execution with UNIX based Laptops or Desktops

Usually, microscopes (AFM) computers have no SLURM pre-
installed; for such a configuration, we run the following script:

def compute(factor):
direc = os.getcwd()
for i in range(1,factor+1):

os.chdir(direc+'/PARALLELBASIC_0/'+
str(i)+'/nrun')

os.system('python3 generate_cases.py
&')

os.chdir(direc)

This function allows the proper execution of the parallel case
without a queuing system and where a slight delay might appear
from thread to thread execution.

Analysis

Graphically:

• With static graphics, as shown in Figures 5, 9, 13 and 17.

python3 Graphical_analysis.py

• With interactive graphics, as shown in Figure 18.

pip install plotly

jupyter notebook Graphical_analysis.ipynb

Quantitatively:

• With static data table:

python3 Quantitative_analysis.py

• With interactive tables
Quantitative_analysis.ipynb uses a minimalistic dashboard
application for tabular data visualization tabloo with easy
installation.:

pip install tabloo

jupyter notebook Quantitative_analysis.ipynb

Results and discussions

In Figure 1, we show four scenarios to be tackled in this test-
case for pyDAMPF. As described in the introduction, the first
scenario (Figure 1), compares between air and moist environment,
the second tackles soft and stiff cantilevers(see Figure 2), next
is Figure Figure 3, with the cantilever volume comparison and

Fig. 1: Schematic of the tip-sample interface comparing air at a given
Relative Humidity with air.

Fig. 2: Schematic of the tip-sample interface comparing a hard (stiff)
cantilever with a soft cantilever.

Fig. 3: Schematic of the tip-sample interface comparing a cantilever
with a high volume compared with a cantilever with a small volume.

https://github.com/bluenote10/tabloo

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 205

Fig. 4: Schematic of the tip-sample interface comparing a cantilever
with a wide tip with a cantilever with a sharp tip.

Fig. 5: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to air at a given Relative
Humidity with air. The simulations were performed for Asp/A0 = 0.8
.

the force the tip’s radio (see Figure 4). Further details of the
cantilevers depicted here are included in Table 22.

The AFM is widely used for mechanical properties mapping of
matter [Gar20]. Hence, the first comparison of the four scenarios
points out to the force response versus time according to a
Hertzian interaction [Guz17]. In Figure 5, we see the humid air
(RH = 60.1%) changes the measurement conditions by almost
10%. Using a stiffer cantilever (kc = 2.7[N/m]) will also increase
the force by almost 50% from the softer one (kc = 0.8[N/m]),
see Figure 6. Interestingly, the cantilever’s volume, a smaller
cantilever, results in the highest force by almost doubling the force
by almost five folds of the smallest volume (Figure 7). Finally, the
Tip radius difference between 8 and 20 nm will impact the force
in roughly 40 pN (Figure 8).

Now, if we consider literature values for different
RH [FCK+12], [HLLB09], we can evaluate the Peak or Maximum
Forces. This force in all cases depicted in Figure 9 shows a
monotonically increasing behavior with the higher Young mod-
ulus. Remarkably, the force varies in a range of 25% from dried

Fig. 6: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to a hard (stiff) cantilever with
a soft cantilever. The simulations were performed for Asp/A0 = 0.8 .

Fig. 7: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete os-
cillations are shown corresponding to a cantilever with a high volume
compared with a cantilever with a small volume. The simulations were
performed for Asp/A0 = 0.8 .

Fig. 8: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to a cantilever with a wide tip
with a cantilever with a sharp tip. The simulations were performed
for Asp/A0 = 0.8 .

206 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 9: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding
to air at a given Relative Humidity with air. The simulations were
performed for Asp/A0 = 0.8 .

Fig. 10: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a hard (stiff) cantilever with a soft cantilever. The simulations were
performed for Asp/A0 = 0.8 .

PVA to one at RH = 60.1% (see Figure 9).
In order to properly describe operational parameters in dy-

namic AFM we analyze the peak force dependence with the set-
point amplitude Asp. In Figure 13, we have the comparison of
peak forces for the different cantilevers as a function of Asp. The
sensitivity of the peak force is higher for the type of cantilevers
with varying kc and Vc. Nonetheless, the peak force dependence
given by the Hertzian mechanics has a dependence with the
square root of the tip radius, and for those Radii on Table 22
are not influencing the force much. However, they could strongly
influence resolution [GG13].

Figure 17 shows the dependence of the peak force as a function
of kc, Vc, and RT , respectively, for all the cantilevers listed in
Table 22; constituting a graphical summary of the seven analyzed
cantilevers for completeness of the analysis.

Another way to summarize the results in AFM simulations
if to show the Force vs. Distance curves (see Fig. 18), which in
these case show exactly how for example a stiffer cantilever may
penetrate more into the sample by simple checking the distance
cantilever e reaches. On the other hand, it also jumps into the

Fig. 11: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a cantilever with a high volume compared with a cantilever with a
small volume. The simulations were performed for Asp/A0 = 0.8 .

Fig. 12: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a cantilever with a wide tip with a cantilever with a sharp tip. The
simulations were performed for Asp/A0 = 0.8 .

Fig. 13: Dependence of the maximum force on the set-point amplitude
corresponding to air at a given Relative Humidity with air.

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 207

Fig. 14: Dependence of the maximum force on the set-point amplitude
corresponding to a hard (stiff) cantilever with a soft cantilever.

Fig. 15: Dependence of the maximum force on the set-point amplitude
corresponding to a cantilever with a high volume compared with a
cantilever with a small volume.

Fig. 16: Dependence of the maximum force on the set-point amplitude
corresponding to a cantilever with a wide tip with a cantilever with a
sharp tip.

Fig. 17: Dependence of the maximum force with the most important
characteristics of each cantilever, filtering the cantilevers used for the
scenarios , the figure shows maximum force dependent on the: (a)
force constant k, (b) cantilever tip radius, and (c) cantilever volume,
respectively. The simulations were performed for A_{sp}/A_{0} =
0.8.

Fig. 18: Three-dimensional plots of the various cantilevers provided
by the manufacturer and those in the pyDAMPF database that
establish a given maximum force at a given distance between the
tip and the sample for a PVA polymer subjected to RH= 0% with E =
930 [MPa].

eyes that a cantilever with small volume f has less damping from
the environment and thus it also indents more than the ones with
higher volume. Although these type of plots are the easiest to
make, they carry lots of experimental information. In addition,
pyDAMPF can plot such 3D figures interactively that enables a
detailed comparison of those curves.

As we aim a massive use of pyDAMPF, we also perform the
corresponding benchmarks on four different computing platforms,
where two of them resembles the standard PC or Laptop found
at the labs, and the other two aim to cloud and HPC facilities,

208 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 19: Three-dimensional plots of the various cantilevers provided
by the manufacturer and those in the pyDAMPF database that
establish a given maximum force at a given distance between the
tip and the sample for a PVA polymer subjected to RH = 60.1% with
E = 248.8 [MPa].

Fig. 20: Comparison of times taken by both the parallel method and
the serial method.

respectively (see Table 23 for details).
Figure 20 shows the average run time for the serial and parallel

implementation. Despite a slightly higher performance for the case
of the HPC cluster nodes, a high-end computer (PC 2) may also
reach similar values, which is our current goal. Another striking
aspect observed by looking at the speed-up, is the maximum
and minimum run times, which notoriously show the on-demand
character of cloud services. As their maxima and minima show the
highest variations.

To calculate the speed up we use the following equation:

S =
ttotal

tthread

Where S is the speed up , tT hread is the execution time of a
computational thread, and tTotal is the sum of times, shown in
the table 24. For our calculations we used the highest, the average
and the lowest execution time per thread.

Fig. 21: Speed up parallel method.

Fig. 22: Data used for Figs. 5, 9 and 13 with an A0 = 10[nm] . Observe
that the quality factor and Young’s modulus have three different values
respectively for RH1 = 29.5%, RH2 = 39.9% y RH3 = 60.1%. ∗∗
The values presented for Quality Factor Q were calculated at Google
Colaboratory notebook Q calculation, using the method proposed by
[GS05], [Sad98].

Fig. 23: Computers used to run pyDAMPF and Former work
[GGG15], ∗ the free version of Colab provides this capability, there
are two paid versions which provide much greater capacity, these
versions known as Colab Pro and Colab Pro+ are only available in
some countries.

Fig. 24: Execution times per computational thread, for each computer.
Note that each Thread consists of 9 simulation cases, with a sum time
showing the total of 90 cases for evaluating 3 different Young moduli
and 30 cantilevers at the same time.

https://colab.research.google.com/drive/1O1xjLfmMoL6J4EwVods95zfelzr8GDUQ?usp=sharing
https://colab.research.google.com/drive/1O1xjLfmMoL6J4EwVods95zfelzr8GDUQ?usp=sharing

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 209

Limitations

The main limitation of dynamic AFM simulators based in con-
tinuum modeling is that sometimes a molecular behavior is over-
looked. Such a limitation comes from the multiple time and length
scales behind the physics of complex systems, as it is the case
of polymers and biopolymers. In this regard, several efforts on
the multiscale modeling of materials have been proposed, joining
mainly efforts to stretch the multiscale gap [GTK+19]. We also
plan to do so, within a current project, for modeling the polymeric
fibers as molecular chains and providing "feedback" between mod-
els from a top-down strategy. Code-wise, the implementation will
be also gradually improved. Nonetheless, to maintain scientific
code is a challenging task. In particular without the support for
our students once they finish their thesis. In this respect, we will
seek software funding and more community contributions.

Future work

There are several improvements that are planned for pyDAMPF.

• We plan to include a link to molecular dynamics simula-
tions of polymer chains in a multiscale like approach.

• We plan to use experimental values with less uncertainty
to boost semi-empirical models based on pyDAMPF.

• The code is still not very clean and some internal cleanup
is necessary. This is especially true for the Python backend
which may require a refactoring.

• Some AI optimization was also envisioned, particularly for
optimizing criteria and comparing operational parameters.

Conclusions

In summary, pyDAMPF is a highly efficient and adaptable simu-
lation tool aimed at analyzing, planning and interpreting dynamic
AFM experiments.

It is important to keep in mind that pyDAMPF uses cantilever
manufacturers information to analyze, evaluate and choose a
certain nanoprobe that fulfills experimental criteria. If this will
not be the case, it will advise the experimentalists on what to
expect from their measurements and the response a material may
have. We currently support multi-thread execution using in-house
development. However, in our outlook, we plan to extend the
code to GPU by using transpiling tools, like compyle [Ram20],
as the availability of GPUs also increases in standard worksta-
tions. In addition, we have shown how to reuse a widely tested
Fortran code [GPG13] and wrap it as a python module to profit
from pythonic libraries and interactivity via Jupyter notebooks.
Implementing new interaction forces for the simulator is straight-
forward. However, this code includes the state-of-the-art contact,
viscous, van der Waals, capillarity and electrostatic forces used for
physics at the interfaces. Moreover, we plan to implement soon
semi-empirical analysis and multiscale modeling with molecular
dynamics simulations.

Acknowledgments

H.V.G thanks the financial support by the Slovenian Research
Agency (Funding No. P1-0055). We gratefully acknowledge the
fruitful discussions with Tomas Corrales and our joint Fondecyt
Regular project 1211901.

REFERENCES

[FCK+12] Kathrin Friedemann, Tomas Corrales, Michael Kappl, Katharina
Landfester, and Daniel Crespy. Facile and large-scale fabrication
of anisometric particles from fibers synthesized by colloid elec-
trospinning. Small, 8:144–153, 2012. doi:10.1002/smll.
201101247.

[Gar20] Ricardo Garcia. Nanomechanical mapping of soft materials with
the atomic force microscope: methods, theory and applications.
The Royal Society of Chemistry, 49:5850–5884, 2020. doi:10.
1039/d0cs00318b.

[GG13] Horacio V. Guzman and Ricardo Garcia. Peak forces and lateral
resolution in amplitude modulation force microscopy in liquid.
Beilstein Journal of Nanotechnology, 4:852–859, 2013. doi:
10.3762/bjnano.4.96.

[GGG15] Horacio V. Guzman, Pablo D. Garcia, and Ricardo Garcia. Dy-
namic force microscopy simulator (dforce): A tool for planning
and understanding tapping and bimodal afm experiments. Beilstein
Journal of Nanotechnology, 6:369–379, 2015. doi:10.3762/
bjnano.6.36.

[GPG13] Horacio V. Guzman, Alma P. Perrino, and Ricardo Garcia. Peak
forces in high-resolution imaging of soft matter in liquid. ACS
Nano, 7:3198–3204, 2013. doi:10.1021/nn4012835.

[GS05] Christopher P. Green and John E. Sader. Frequency response of
cantilever beams immersed in viscous fluids near a solid surface
with applications to the atomic force microscope. Journal of Ap-
plied Physics, 98:114913, 2005. doi:10.1063/1.2136418.

[GTK+19] Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C.
Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt
Kremer, and Torsten Stuehn. Espresso++ 2.0: Advanced methods
for multiscale molecular simulation. Computer Physics Communi-
cations, 238:66–76, 2019. doi:10.1016/j.cpc.2018.12.
017.

[Guz17] Horacio V. Guzman. Scaling law to determine peak forces
in tapping-mode afm experiments on finite elastic soft matter
systems. Beilstein Journal of Nanotechnology, 8:968–974, 2017.
doi:10.3762/bjnano.8.98.

[HLLB09] Fei Hang, Dun Lu, Shuang Wu Li, and Asa H. Barber. Stress-strain
behavior of individual electrospun polymer fibers using combina-
tion afm and sem. Materials Research Society, 1185:1185–II07–
10, 2009. doi:10.1557/PROC-1185-II07-10.

[MHR08] John Melcher, Shuiqing Hu, and Arvind Raman. Veda: A
web-based virtual environment for dynamic atomic force mi-
croscopy. Review of Scientific Instruments, 79:061301, 2008.
doi:10.1063/1.2938864.

[Ram20] Prabhu Ramachandran. Compyle: a Python package for paral-
lel computing. In Meghann Agarwal, Chris Calloway, Dillon
Niederhut, and David Shupe, editors, Proceedings of the 19th
Python in Science Conference, pages 32 – 39, 2020. doi:
10.25080/majora-342d178e-005.

[Sad98] John E. Sader. Frequency response of cantilever beams immersed
in viscous fluids with applications to the atomic force microscope.
Journal of Applied Physics, 84:64–76, 1998. doi:10.1063/1.
368002.

[Vea20] Pauli Virtanen and et al. Scipy 1.0: fundamental algorithms for
scientific computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

http://dx.doi.org/10.1002/smll.201101247
http://dx.doi.org/10.1002/smll.201101247
http://dx.doi.org/10.1039/d0cs00318b
http://dx.doi.org/10.1039/d0cs00318b
http://dx.doi.org/10.3762/bjnano.4.96
http://dx.doi.org/10.3762/bjnano.4.96
http://dx.doi.org/10.3762/bjnano.6.36
http://dx.doi.org/10.3762/bjnano.6.36
http://dx.doi.org/10.1021/nn4012835
http://dx.doi.org/10.1063/1.2136418
http://dx.doi.org/10.1016/j.cpc.2018.12.017
http://dx.doi.org/10.1016/j.cpc.2018.12.017
http://dx.doi.org/10.3762/bjnano.8.98
http://dx.doi.org/10.1557/PROC-1185-II07-10
http://dx.doi.org/10.1063/1.2938864
http://dx.doi.org/10.25080/majora-342d178e-005
http://dx.doi.org/10.25080/majora-342d178e-005
http://dx.doi.org/10.1063/1.368002
http://dx.doi.org/10.1063/1.368002
http://dx.doi.org/10.1038/s41592-019-0686-2

	Introduction and Motivation
	Methods
	Processing inputs
	Execute pyDAMPF
	Analysis

	Results and discussions
	Limitations
	Future work
	Conclusions
	Acknowledgments
	References

