
210 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Improving PyDDA’s atmospheric wind retrievals using
automatic differentiation and Augmented Lagrangian

methods
Robert Jackson‡∗, Rebecca Gjini§, Sri Hari Krishna Narayanan‡, Matt Menickelly, Paul Hovland‡, Jan Hückelheim‡,

Scott Collis‡

F

Introduction

Meteorologists require information about the spatiotemporal dis-
tribution of winds in thunderstorms in order to analyze how
physical and dynamical processes govern thunderstorm evolution.
Knowledge of such processes is vital for predicting severe and
hazardous weather events. However, acquiring wind observations
in thunderstorms is a non-trivial task. There are a variety of in-
struments that can measure winds including radars, anemometers,
and vertically pointing wind profilers. The difficulty in acquiring
a three dimensional volume of the 3D wind field from these
sensors is that these sensors typically only measure either point
observations or only the component of the wind field parallel
to the direction of the antenna. Therefore, in order to obtain 3D
wind fields, the weather radar community uses a weak variational
technique that finds a 3D wind field that minimizes a cost function
J.

J(V) = µmJm +µoJo +µvJv +µbJb +µsJs (1)

Here, Jm is how much the wind field V violates the anelastic mass
continuity equation. Jo is how much the wind field is different
from the radar observations. Jv is how much the wind field violates
the vertical vorticity equation. Jb is how much the wind field
differs from a prescribed background. Finally Js is related to
the smoothness of the wind field, quantified as the Laplacian
of the wind field. The scalars µx are weights determining the
relative contribution of each cost function to the total J. The
flexibility in this formulation potentially allows for factoring in
the uncertainties that are inherent in the measurements. This
formulation is expandable to include cost functions related to data
from other sources such as weather forecast models and soundings.
For more specific information on these cost functions, see [SPG09]
and [PSX12].

PyDDA is an open source Python package that implements the
weak variational technique for retrieving winds. It was originally
developed in order to modernize existing codes for the weak
variational retrievals such as CEDRIC [MF98] and Multidop

* Corresponding author: rjackson@anl.gov
‡ Argonne National Laboratory, 9700 Cass Ave., Argonne, IL, 60439
§ University of California at San Diego

Copyright © 2022 Robert Jackson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

[LSKJ17] as detailed in the 2019 SciPy Conference proceedings
(see [JCL+20], [RJSCTL+19]). It provided a much easier to
use and more portable interface for wind retrievals than was
provided by these packages. In PyDDA versions 0.5 and prior,
the implementation of Equation (1) uses NumPy [HMvdW+20]
to calculate J and its gradient. In order to find the wind field
V that minimizes J, PyDDA used the limited memory Broy-
den–Fletcher–Goldfarb–Shanno bounded (L-BFGS-B) from SciPy
[VGO+20]. L-BFGS-B requires gradients of J in order to mini-
mize J. Considering the antiquity of the CEDRIC and Multidop
packages, these first steps provided the transition to Python that
was needed in order to enhance accessibility of wind retrieval
software by the scientific community. For more information
about PyDDA versions 0.5 and prior, consult [RJSCTL+19] and
[JCL+20].

However, there are further improvements that still needed
to be made in order to optimize both the accuracy and speed
of the PyDDA retrievals. For example, the cost functions and
gradients in PyDDA 0.5 are implemented in NumPy which does
not take advantage of GPU architectures for potential speedups
[HMvdW+20]. In addition, the gradients of the cost function that
are required for the weak variational technique are hand-coded
even though packages such as Jax [BFH+18] and TensorFlow
[AAB+15] can automatically calculate these gradients. These
needs motivated new features for the release of PyDDA 1.0. In
PyDDA 1.0, we utilize Jax and TensorFlow’s automatic differen-
tiation capabilities for differentiating J, making these calculations
less prone to human error and more efficient.

Finally, upgrading PyDDA to use Jax and TensorFlow allows it
to take advantage of GPUs, increasing the speed of retrievals. This
paper shows how Jax and TensorFlow are used to automatically
calculate the gradient of J and improve the performance of
PyDDA’s wind retrievals using GPUs.

In addition, a drawback to the weak variational technique
is that the technique requires user specified constants µ . This
therefore creates the possibility that winds retrieved from different
datasets may not be physically consistent with each other, affecting
reproducibility. Therefore, for the PyDDA 1.1 release, this paper
also details a new approach that uses Augmented Lagrangian
solvers in order to place strong constraints on the wind field such
that it satisfies a mass continuity constraint to within a specified
tolerance while minimizing the rest of the cost function. This
new approach also takes advantage of the automatically calculated

mailto:rjackson@anl.gov


IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 211

gradients that are implemented in PyDDA 1.0. This paper will
show that this new approach eliminates the need for user specified
constants, ensuring the reproducibility of the results produced by
PyDDA.

Weak variational technique

This section summarizes the weak variational technique that was
implemented in PyDDA previous to version 1.0 and is currently
the default option for PyDDA 1.1. PyDDA currently uses the
weak variational formulation given by Equation (1). For this
proceedings, we will focus our attention on the mass continuity
Jm and observational cost function Jo. In PyDDA, Jm is given as
the discrete volume integral of the square of the anelastic mass
continuity equation

Jm(u,v,w) = ∑
volume

[
δ (ρsu)

δx
+

δ (ρsv)
δy

+
δ (ρsw)

δ z

]2

, (2)

where u is the zonal component of the wind field and v is the
meridional component of the wind field. ρs is the density of air,
which is approximated in PyDDA as ρs(z) = e−z/10000 where z is
the height in meters. The physical interpretation of this equation is
that a column of air in the atmosphere is only allowed to compress
in order to generate changes in air density in the vertical direction.
Therefore, wind convergence at the surface will generate vertical
air motion. A corollary of this is that divergent winds must occur
in the presence of a downdraft. At the scales of winds observed
by PyDDA, this is a reasonable approximation of the winds in the
atmosphere.

The cost function Jo metricizes how much the wind field is
different from the winds measured by each radar. Since a scanning
radar will scan a storm while pointing at an elevation angle θ and
an azimuth angle φ , the wind field must first be projected to the
radar’s coordinates. After that, PyDDA finds the total square error
between the analysis wind field and the radar observed winds as
done in Equation (3).

Jo(u,v,w) = ∑
volume

(ucosθ sinφ + vcosθ cosφ +(w−wt)sinθ)2

(3)
Here, wt is the terminal velocity of the particles scanned by
the radar volume. This is approximated using empirical relation-
ships between wt and the radar reflectivity Z. PyDDA then uses
the limited memory Broyden–Fletcher–Goldfarb–Shanno bounded
(L-BFGS-B) algorithm (see, e.g., [LN89]) to find the u, v, and w
that solves the optimization problem

min
u,v,w

J(u,v,w), µmJm(u,v,w)+µvJv(u,v,w). (4)

For experiments using the weak variational technique, we run
the optimization until either the Linf norm of the gradient of J
is less than 10−8 or when the maximum change in u, v, and
w between iterations is less than 0.01 m/s as done by [PSX12].
Typically, the second criteria is reached first. Before PyDDA 1.0,
PyDDA utilized SciPy’s L-BFGS-B implementation. However,
as of PyDDA 1.0 one can also use TensorFlow’s L-BFGS-B
implementation, which is used here for the experiments with the
weak variational technique [AAB+15].

Using automatic differentiation

The optimization problem in Equation (4) requires the gradients
of J. In PyDDA 0.5 and prior, the gradients of the cost function

J were calculated by finding the closed form of the gradient
by hand and then coding the closed form in Python. The code
snippet below provides an example of how the cost function Jm is
implemented in PyDDA using NumPy.
def calculate_mass_continuity(u, v, w, z, dx, dy, dz):

dudx = np.gradient(u, dx, axis=2)
dvdy = np.gradient(v, dy, axis=1)
dwdz = np.gradient(w, dz, axis=0)

div = dudx + dvdy + dwdz

return coeff * np.sum(np.square(div)) / 2.0

In order to hand code the gradient of the cost function above, one
has to write the closed form of the derivative into another function
like below.
def calculate_mass_continuity_gradient(u, v, w, z, dx,

dy, dz, coeff):
dudx = np.gradient(u, dx, axis=2)
dvdy = np.gradient(v, dy, axis=1)
dwdz = np.gradient(w, dz, axis=0)

grad_u = -np.gradient(div, dx, axis=2) * coeff
grad_v = -np.gradient(div, dy, axis=1) * coeff
grad_w = -np.gradient(div, dz, axis=0) * coeff

y = np.stack([grad_u, grad_v, grad_w], axis=0)
return y.flatten()

Hand coding these functions can be labor intensive for compli-
cated cost functions. In addition, there is no guarantee that there is
a closed form solution for the gradient. Therefore, we tested using
both Jax and TensorFlow to automatically compute the gradients
of J. Computing the gradients of J using Jax can be done in two
lines of code using jax.vjp:
primals, fun_vjp = jax.vjp(

calculate_radial_vel_cost_function,
vrs, azs, els, u, v, w, wts, rmsVr, weights,
coeff)

_, _, _, p_x1, p_y1, p_z1, _, _, _, _ = fun_vjp(1.0)

Calculating the gradients using automatic differentiation us-
ing TensorFlow is also a simple code snippet using
tf.GradientTape:
with tf.GradientTape() as tape:

tape.watch(u)
tape.watch(v)
tape.watch(w)
loss = calculate_radial_vel_cost_function(

vrs, azs, els, u, v, w,
wts, rmsVr, weights, coeff)

grad = tape.gradient(loss)

As one can see, there is no more need to derive the closed form of
the gradient of the cost function. Rather, the cost function itself is
now the input to a snippet of code that automatically provides the
derivative. In PyDDA 1.0, there are now three different engines
that the user can specify. The classic "scipy" mode uses the
NumPy-based cost function and hand coded gradients used by
versions of PyDDA previous to 1.0. In addition, there are now
TensorFlow and Jax modes that use both cost functions and
automatically generated gradients generated using TensorFlow or
Jax.

Improving performance with GPU capabilities

The implementation of a TensorFlow-based engine provides Py-
DDA the capability to take advantage of CUDA-compatible GPUs.



212 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: The time in seconds of execution of the Hurricane Florence
retrieval example when using the TensorFlow and SciPy engines on
an Intel Core i7 MacBook in CPU mode and on a node of Argonne
National Laboratory’s Lambda cluster, utilizing a single NVIDIA
Tesla A100 GPU for the calculation.

Method 0.5 km 1 km 2.5 km 5.0 km

SciPy Engine ~50 days 5771.2 s 871.5 s 226.9 s
TensorFlow
Engine

7372.5 s 341.5 s 28.1 s 7.0 s

NVIDIA
Tesla A100
GPU

89.4 s 12.0 s 3.5 s 2.6 s

TABLE 1: Run times for each of the benchmarks in Figure 1.

Given that weather radar datasets can span decades and processing
each 10 minute time period of data given by the radar can take
on the order of 1-2 minutes with PyDDA using regular CPU
operations, if this time were reduced to seconds, then processing
winds from years of radar data would become tenable. Therefore,
we used the TensorFlow-based PyDDA using the weak variational
technique on the Hurricane Florence example in the PyDDA
Documentation. On 14 September 2018, Hurricane Florence was
within range of 2 radars from the NEXRAD network: KMHX
stationed in Newport, NC and KLTX stationed in Wilmington,
NC. In addition, the High Resolution Rapid Refresh model runs
provided an additional constraint for the wind retrieval. For more
information on this example, see [RJSCTL+19]. The analysis
domain spans 400 km by 400 km horizontally, and the horizontal
resolution was allowed to vary for different runs in order to com-
pare how both the CPU and GPU-based retrievals’ performance
would be affected by grid resolution. The time of completion of
each of these retrievals is shown in Figure 1.

Figure 1 and Table 1 show that, in general, the retrievals took
anywhere from 10 to 100 fold less time on the GPU compared to
the CPU. The discrepancy in performance between the GPU and

CPU-based retrievals increases as resolution decreases, demon-
strating the importance of the GPU for conducting high-resolution
wind retrievals. In Table 1, using a GPU to retrieve the Hurricane
Florence example at 1 km resolution reduces the run time from 341
s to 12 s. Therefore, these performance improvements show that
PyDDA’s TensorFlow-based engine now enables it to handle both
spatial scales of hundreds of kms at a 1 km resolution. For a day
of data at this resolution, assuming five minutes between scans, an
entire day of data can be processed in 57 minutes. With the use of
multi-GPU clusters and selecting for cases where precipitation is
present, this enables the ability to process winds from multi-year
radar datasets within days instead of months.

In addition, simply using TensorFlow’s implementation of
L-BFGS-B as well as the TensorFlow calculated cost function
and gradients provides a significant performance improvement
compared to the original "scipy" engine in PyDDA 0.5, being up
to a factor of 30 faster. In fact, running PyDDA’s original "scipy"
engine on the 0.5 km resolution data for the Hurricane Florence
example would have likely taken 50 days to complete on an Intel
Core i7-based MacBook laptop. Therefore, that particular run was
not tenable to do and therefore not shown in Figure 1. In any case,
this shows that upgrading the calculations to use TensorFlow’s
automatically generated gradients and L-BFGS-B implementation
provides a very significant speedup to the processing time.

Augmented Lagrangian method

The release of PyDDA 1.0 focused on improving its performance
and gradient accuracy by using automatic differentiation for cal-
culating the gradient. For PyDDA 1.1, the PyDDA development
team focused on implementing a technique that enables the user to
automatically determine the weight coefficients µ . This technique
builds upon the automatic differentiation work done for PyDDA
1.0 by using the automatically generated gradients. In this work,
we consider a constrained reformulation of Equation (4) that
requires wind fields returned by PyDDA to (approximately) satisfy
mass continuity constraints. That is, we focus on the constrained
optimization problem

min
u,v,w

Jv(u,v,w)

s. to Jm(u,v,w) = 0,
(5)

where we now interpret Jm as a vector mapping that outputs, at
each grid point in the discretized volume δ (ρsu)

δx + δ (ρsv)
δy + δ (ρsw)

δ z .
Notice that the formulation in Equation (5) has no dependencies
on scalars µ .

To solve the optimization problem in Equation (5), we im-
plemented an augmented Lagrangian method with a filter mech-
anism inspired by [LV20]. An augmented Lagrangian method
considers the Lagrangian associated with an equality-constrained
optimization problem, in this case L0(u,v,w,λ ) = Jv(u,v,w)−
λ>Jm(u,v,w), where λ is a vector of Lagrange multipliers of
the same length as the number of grid points in the discretized
volume. The Lagrangian is then augmented with an additional
squared-penalty term on the constraints to yield Lµ(u,v,w,λ ) =
L0(u,v,w,λ )+

µ

2 ‖Jm(u,v,w)‖2, where we have intentionally used
µ > 0 as the scalar in the penalty term to make comparisons
with Equation (4) transparent. It is well known (see, for instance,
Theorem 17.5 of [NW06]) that under some not overly restrictive
conditions there exists a finite µ̄ such that if µ ≥ µ̄ , then each local
solution of Equation (5) corresponds to a strict local minimizer



IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 213

of Lµ(u,v,w,λ ∗) for a suitable choice of multipliers λ ∗. Essen-
tially, augmented Lagrangian methods solve a short sequence of
unconstrained problems Lµ(u,v,w,λ ), with different values of µ

until a solution is returned that is a local, feasible solution to
Equation (5). In our implementation of an augmented Lagrangian
method, the coarse minimization of Lµ(u,v,w,λ ) is performed
by the Scipy implementation of LBFGS-B with the TensorFlow
implementation of the cost function and gradients. Additionally, in
our implementation, we employ a filter mechanism (see a survey
in [FLT06]) recently proposed for augmented Lagrangian methods
in [LV20] in order to guarantee convergence. We defer details
to that paper, but note that the feasibility restoration phase (the
minimization of a squared constraint violation) required by such
a filter method is also performed by the SciPy implementation of
LBFGS-B.

The PyDDA documentation contains an example of a
mesoscale convective system (MCS) that was sampled by a C-
band Polarization Radar (CPOL) and a Bureau of Meteorology
Australia radar on 20 Jan 2006 in Darwin, Australia. For more
details on this storm and the radar network configuration, see
[CPMW13]. For more information about the CPOL radar dataset,
see [JCL+18]. This example with its data is included in the
PyDDA Documentation as the "Example of retrieving and plotting
winds."

Figure 2 shows the winds retrieved by the Augmented La-
grangian technique with µ = 1 and from the weak variational
technique with µ = 1 on the right. Figure 2 shows that both tech-
niques are capturing similar horizontal wind fields in this storm.
However, the Augmented Lagrangian technique is resolving an
updraft that is not present in the wind field generated by the weak
variational technique. Since there is horizontal wind convergence
in this region, we expect there to be an updraft present in this
box in order for the solution to be physically realistic. Therefore,
for µ = 1, the Augmented Lagrangian technique is doing a better
job at resolving the updrafts present in the storm than the weak
variational technique is. This shows that adjusting µ is required in
order for the weak variational technique to resolve the updraft.

We solve the unconstrained formulation (4) using the imple-
mentation of L-BFGS-B currently employed in PyDDA; we fix
the value µv = 1 and vary µm = 2 j : j = 0,1,2, . . . ,16. We also
solve the constrained formulation (5) using our implementation
of a filter Augmented Lagrangian method, and instead vary the
initial guess of penalty parameter µ = 2 j : j = 0,1,2, . . . ,16. For
the initial state, we use the wind profile from the weather balloon
launch at 00 UTC 20 Jan 2006 from Darwin and apply it to
the whole analysis domain. A summary of results is shown in
Figures 3 and 4. We applied a maximum constraint violation
tolerance of 10−3 to the filter Augmented Lagrangian method.
This is a tolerance that assumes that the winds do not violate
the mass continuity constraint by more than 0.001 m2s−2. Notice
that such a tolerance is impossible to supply to the weak vari-
ational method, highlighting the key advantage of employing a
constrained method. Notice that in this example, only 5 settings of
µm lead to sufficiently feasible solutions returned by the variational
technique.

Finally, a variable of interest to atmospheric scientists for
winds inside MCSes is the vertical wind velocity. It provides a
measure of the intensity of the storm by demonstrating the amount
of upscale growth contributing to intensification. Figure 5 shows
the mean updraft velocities inside the box in Figure 2 as a function
of height for each of the runs of the TensorFlow L-BFGS-B and

Fig. 2: The PyDDA retrieved winds overlaid over reflectivity from the
C-band Polarization Radar for the MCS that passed over Darwin,
Australia on 20 Jan 2006. The winds were retrieved using the weak
variational technique with µ = 1 (a) and the Augmented Lagrangian
technique with µ = 1 (b). The contours represent vertical velocities at
3.05 km altitude. The boxed region shows the updrafts that generated
the heavy precipitation.



214 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: The x-axis shows, on a logarithmic scale, the maximum
constraint violation in the units of divergence of the wind field and
the y-axis shows the value of the data-fitting term Jv at the optimal
solution. The legend lists the number of function/gradient calls made
by the filter Augmented Lagrangian Method, which is the dominant
cost of both approaches. The dashed line at 10−3 denotes the tolerance
on the maximum constraint violation that was supplied to the filter
Augmented Lagrangian method.

Fig. 4: As 3, but for the weak variational technique that uses L-BFGS-
B.

Augmented Lagrangian techniques. Table 2 summarizes the mean
and spread of the solutions in Figure 5. For the updraft velocities
produced by the Augmented Lagrangian technique, there is a 1 m/s
spread of velocities produced for given values of µ at altitudes
< 7.5 km in Table 2. At an altitude of 10 km, this spread is
1.9 m/s. This is likely due to the reduced spatial coverage of
the radars at higher altitudes. However, for the weak variational
technique, the sensitivity of the retrieval to µ is much more
pronounced, with up to 2.8 m/s differences between retrievals.
Therefore, using the Augmented Lagrangian technique makes the
vertical velocities less sensitive to µ . Therefore, this shows that

Fig. 5: The mean updraft velocity obtained by (left) the weak
variational and (right) the Augmented Lagrangian technique inside
the updrafts in the boxed region of Figure 2. Each line represents a
different value of µ for the given technique.

using the Augmented Lagrangian technique will result in more
reproducible wind fields from radar wind networks since it is
less sensitive to user-defined parameters than the weak variational
technique. However, a limitation of this technique is that, for now,
this technique is limited to two radars and to the mass continuity
and vertical vorticity constraints.

Concluding remarks

Atmospheric wind retrievals are vital for forecasting severe
weather events. Therefore, this motivated us to develop an open
source package for developing atmospheric wind retrievals called
PyDDA. In the original releases of PyDDA (versions 0.5 and



IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 215

Min Mean Max Std. Dev.

Weak variational
2.5 km 1.2 1.8 2.7 0.6
5 km 2.2 2.9 4.0 0.7
7.5 km 3.2 3.9 5.0 0.4
10 km 2.3 3.3 4.9 1.0
Aug. Lagrangian
2.5 km 1.8 2.8 3.3 0.5
5 km 3.1 3.3 3.5 0.1
7.5 km 3.2 3.5 3.9 0.1
10 km 3.0 4.3 4.9 0.5

TABLE 2: Minimum, mean, maximum, and standard deviation of w
(m/s) for select levels in Figure 5.

prior), the original goal of PyDDA was to convert legacy wind
retrieval packages such as CEDRIC and Multidop to be fully
Pythonic, open source, and accessible to the scientific community.
However, there remained many improvements to be made to
PyDDA to optimize the speed of the retrievals and to make it
easier to add constraints to PyDDA.

This therefore motivated two major changes to PyDDA’s wind
retrieval routine for PyDDA 1.0. The first major change to PyDDA
in PyDDA 1.0 was to simplify the wind retrieval process by
automating the calculation of the gradient of the cost function
used for the weak variational technique. To do this, we utilized
Jax and TensorFlow’s capabilities to do automatic differentiation
of functions. This also allows PyDDA to take advantage of GPU
resources, significantly speeding up retrieval times for mesoscale
retrievals at kilometer-scale resolution. In addition, running the
TensorFlow-based version of PyDDA provided significant perfor-
mance improvements even when using a CPU.

These automatically generated gradients were then used to
implement an Augmented Lagrangian technique in PyDDA 1.1
that allows for automatically determining the weights for each
cost function in the retrieval. The Augmented Lagrangian tech-
nique guarantees convergence to a physically realistic solution,
something that is not always the case for a given set of weights
for the weak variational technique. Therefore, this both creates
more reproducible wind retrievals and simplifies the process of
retrieving winds for the non-specialist user. However, since the
Augmented Lagrangian technique currently only supports the
ingesting of radar data into the retrieval, plans for PyDDA 1.2 and
beyond include expanding the Augmented Lagrangian technique
to support multiple data sources such as models and rawinsondes.

Code Availability

PyDDA is available for public use with documentation and
examples available at https://openradarscience.org/PyDDA. The
GitHub repository that hosts PyDDA’s source code is available
at https://github.com/openradar/PyDDA.

Acknowledgments

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (’Argonne’). Ar-
gonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf,

a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or
on behalf of the Government. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan. This
material is based upon work supported by Laboratory Directed
Research and Development (LDRD) funding from Argonne Na-
tional Laboratory, provided by the Director, Office of Science, of
the U.S. Department of Energy under Contract No. DE-AC02-
06CH11357. This material is also based upon work funded by
program development funds from the Mathematics and Computer
Science and Environmental Science departments at Argonne Na-
tional Laboratory.

REFERENCES

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL: http://github.com/
google/jax.

[CPMW13] Scott Collis, Alain Protat, Peter T. May, and Christopher
Williams. Statistics of storm updraft velocities from twp-ice
including verification with profiling measurements. Journal
of Applied Meteorology and Climatology, 52(8):1909 – 1922,
2013. doi:10.1175/JAMC-D-12-0230.1.

[FLT06] Roger Fletcher, Sven Leyffer, and Philippe Toint. A brief
history of filter methods. Technical report, Argonne National
Laboratory, 2006. URL: http://www.optimization-online.org/
DB_FILE/2006/10/1489.pdf.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.
doi:10.1038/s41586-020-2649-2.

[JCL+18] R. C. Jackson, S. M. Collis, V. Louf, A. Protat, and L. Ma-
jewski. A 17 year climatology of the macrophysical prop-
erties of convection in darwin. Atmospheric Chemistry and
Physics, 18(23):17687–17704, 2018. doi:10.5194/acp-
18-17687-2018.

[JCL+20] Robert Jackson, Scott Collis, Timothy Lang, Corey Potvin,
and Todd Munson. Pydda: A pythonic direct data assimilation
framework for wind retrievals. Journal of Open Research
Software, 8(1):20, 2020. doi:10.5334/jors.264.

[LN89] Dong C. Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. MATHEMATI-
CAL PROGRAMMING, 45:503–528, 1989. doi:10.1007/
bf01589116.

[LSKJ17] Timothy Lang, Mario Souto, Shahin Khobahi, and Bobby
Jackson. nasa/multidop: Multidop v0.3, October 2017. doi:
10.5281/zenodo.1035904.

https://openradarscience.org/PyDDA
https://github.com/openradar/PyDDA
https://www.tensorflow.org/
http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/10.1175/JAMC-D-12-0230.1
http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.5194/acp-18-17687-2018
http://dx.doi.org/10.5194/acp-18-17687-2018
http://dx.doi.org/10.5334/jors.264
http://dx.doi.org/10.1007/bf01589116
http://dx.doi.org/10.1007/bf01589116
http://dx.doi.org/10.5281/zenodo.1035904
http://dx.doi.org/10.5281/zenodo.1035904


216 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[LV20] Sven Leyffer and Charlie Vanaret. An augmented lagrangian
filter method. Mathematical Methods of Operations Research,
92(2):343–376, 2020. URL: https://doi.org/10.1007/s00186-
020-00713-x, doi:10.1007/s00186-020-00713-x.

[MF98] L. Jay Miller and Sherri M. Fredrick. Custom editing and
display of reduced information in cartesian space. Technical
report, National Center for Atmospheric Research, 1998.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, New York, NY, USA, second edition, 2006.

[PSX12] Corey K. Potvin, Alan Shapiro, and Ming Xue. Impact of
a vertical vorticity constraint in variational dual-doppler wind
analysis: Tests with real and simulated supercell data. Journal
of Atmospheric and Oceanic Technology, 29(1):32 – 49, 2012.
doi:10.1175/JTECH-D-11-00019.1.

[RJSCTL+19] Robert Jackson, Scott Collis, Timothy Lang, Corey Potvin,
and Todd Munson. PyDDA: A new Pythonic Wind Re-
trieval Package. In Chris Calloway, David Lippa, Dillon
Niederhut, and David Shupe, editors, Proceedings of the
18th Python in Science Conference, pages 111 – 117, 2019.
doi:10.25080/Majora-7ddc1dd1-010.

[SPG09] Alan Shapiro, Corey K. Potvin, and Jidong Gao. Use of a verti-
cal vorticity equation in variational dual-doppler wind analysis.
Journal of Atmospheric and Oceanic Technology, 26(10):2089
– 2106, 2009. doi:10.1175/2009JTECHA1256.1.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

https://doi.org/10.1007/s00186-020-00713-x
https://doi.org/10.1007/s00186-020-00713-x
http://dx.doi.org/10.1007/s00186-020-00713-x
http://dx.doi.org/10.1175/JTECH-D-11-00019.1
http://dx.doi.org/10.25080/Majora-7ddc1dd1-010
http://dx.doi.org/10.1175/2009JTECHA1256.1
http://dx.doi.org/10.1038/s41592-019-0686-2

	Introduction
	Weak variational technique
	Using automatic differentiation
	Improving performance with GPU capabilities
	Augmented Lagrangian method
	Concluding remarks
	Code Availability
	Acknowledgments
	References

