
244 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Monaco: A Monte Carlo Library for Performing
Uncertainty and Sensitivity Analyses

W. Scott Shambaugh∗

F

Abstract—This paper introduces monaco, a Python library for conducting
Monte Carlo simulations of computational models, and performing uncertainty
analysis (UA) and sensitivity analysis (SA) on the results. UA and SA are critical
to effective and responsible use of models in science, engineering, and public
policy, however their use is uncommon. By providing a simple, general, and
rigorous-by-default library that wraps around existing models, monaco makes
UA and SA easy and accessible to practitioners with a basic knowledge of
statistics.

Index Terms—Monte Carlo, Modeling, Uncertainty Quantification, Uncertainty
Analysis, Sensitivity Analysis, Decision-Making, Ensemble Prediction, VARS, D-
VARS

Introduction

Computational models form the backbone of decision-making
processes in science, engineering, and public policy. However,
our increased reliance on these models stands in contrast to the
difficulty in understanding them as we add increasing complexity
to try and capture ever more of the fine details of real-world
interactions. Practitioners will often take the results of their large,
complex model as a point estimate, with no knowledge of how
uncertain those results are [FST16]. Multiple-scenario modeling
(e.g. looking at a worst-case, most-likely, and best-case scenario)
is an improvement, but a complete global exploration of the input
space is needed. That gives insight into the overall distribution of
results (UA) as well as the relative influence of the different input
factors on the ouput variance (SA). This complete understanding is
critical for effective and responsible use of models in any decision-
making process, and policy papers have identified UA and SA as
key modeling practices [ALMR20] [EPA09].

Despite the importance of UA and SA, recent literature reviews
show that they are uncommon – in 2014 only 1.3% of all published
papers [FST16] using modeling performed any SA. And even
when performed, best practices are usually lacking – amongst
papers which specifically claimed to perform sensitivity analysis,
a 2019 review found only 21% performed global (as opposed to
local or zero) UA, and 41% performed global SA [SAB+19].

Typically, UA and SA are done using Monte Carlo simula-
tions, for reasons explored in the following section. There are
Monte Carlo frameworks available, however existing options are
largely domain-specific, focused on narrow sub-problems (i.e.

* Corresponding author: wsshambaugh@gmail.com

Copyright © 2022 W. Scott Shambaugh. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

integration), tailored towards training neural nets, or require a
deep statistical background to use. See [OGA+20], [RJS+21], and
[DSICJ20] for an overview of the currently available Python tools
for performing UA and SA. For the domain expert who wants to
perform UA and SA on their existing models, there is not an easy
tool to do both in a single shot. monaco was written to address
this gap.

Fig. 1: The monaco project logo.

Motivation for Monte Carlo Approach

Mathematical Grounding

Randomized Monte Carlo sampling offers a cure to the curse of
dimensionality: consider an investigation of the output from k
input factors y = f (x1,x2, ...,xk) where each factor is uniformly
sampled between 0 and 1, xi ∈U [0,1]. The input space is then a
k-dimensional hypercube with volume 1. If each input is varied
one at a time (OAT), then the volume V of the convex hull of the
sampled points forms a hyperoctahedron with volume V = 1

k! (or
optimistically, a hypersphere with V = πk/2

2kΓ(k/2+1)), both of which
decrease super-exponentially as k increases. Unless the model is
known to be linear, this leaves the input space wholly unexplored.
In contrast, the volume of the convex hull of n → ∞ random
samples as is obtained with a Monte Carlo approach will converge
to V = 1, with much better coverage within that volume as well
[DFM92]. See Fig. 2.

Benefits and Drawbacks of Basic Monte Carlo Sampling

monaco focuses on forward uncertainty propagation with basic
Monte Carlo sampling. This has several benefits:

• The method is conceptually simple, lowering the barrier of
entry and increasing the ease of communicating results to
a broader audience.

• The same sample points can be used for UA and SA. Gen-
erally, Bayesian methods such as Markov Chain Monte
Carlo provide much faster convergence on UA quantities
of interest, but their undersampling of regions that do not
contribute to the desired quantities is inadequate for SA
and complete exploration of the input space. The author’s

mailto:wsshambaugh@gmail.com

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 245

Fig. 2: Volume fraction V of a k-dimensional hypercube enclosed by
the convex hull of n→ ∞ random samples versus OAT samples along
the principle axes of the input space.

experience aligns with [SAB+19] in that there is great
practical benefit in broad sampling without pigeonholing
one’s purview to particular posteriors, through uncovering
bugs and edge cases in regions of input space that were
not being previously considered.

• It can be applied to domains that are not data-rich. See for
example NASA’s use of Monte Carlo simulations during
rocket design prior to collecting test flight data [HB10].

However, basic Monte Carlo sampling is subject to the classi-
cal drawbacks of the method such as poor sampling of rare events
and the slow σ/

√
n convergence on quantities of interest. If the

outputs and regions of interest are firmly known at the outset, then
other sampling methods will be more efficient [KTB13].

Additionally, given that any conclusions are conditional on
the correctness of the underlying model and input parameters,
the task of validation is critical to confidence in the UA and SA
results. However, this is currently out of scope for the library
and must be performed with other tools. In a data-poor domain,
hypothesis testing or probabilistic prediction measures like loss
scores can be used to anchor the outputs against a small number
of real-life test data. More generally, the "inverse problem" of
model and parameter validation is a deep field unto itself and
[C+12] and [SLKW08] are recommended as overviews of some
methods. If monaco’s scope is too limited for the reader’s needs,
the author recommends UQpy [OGA+20] for UA and SA, and
PyMC [SWF16] or Stan [CGH+17] as good general-purpose
probabilistic programming Python libraries.

Workflow

UA and SA of any model follows a common workflow. Probability
distributions for the model inputs are defined, and randomly
sampled values for a large number of cases are fed to the model.
The outputs from each case are collected and the full set of
inputs and outputs can be analyzed. Typically, UA is performed
by generating histograms, scatter plots, and summary statistics for
the output variables, and SA is performed by looking at the effect
of input on output variables through scatter plots, performing
regressions, and calculating sensitivity indices. These results can
then be compared to real-world test data to validate the model or
inform revisions to the model and input variables. See Fig. 3.

Note that with model and input parameter validation currently
outside monaco’s scope, closing that part of the workflow loop is
left up to the user.

Fig. 3: Monte Carlo workflow for understanding the full behavior of
a computational model, inspired by [SAB+19].

monaco Structure

Overall Structure

Broadly, each input factor and model output is a variable that
can be thought of as lists (rows) containing the full range of
randomized values. Cases are slices (columns) that take the i’th
input and output value for each variable, and represent a single
run of the model. Each case is run on its own, and the output
values are collected into output variables. Fig. 4 shows a visual
representation of this.

Fig. 4: Structure of a monaco simulation, showing the relationship
between the major objects and functions. This maps onto the central
block in Fig. 3.

Simulation Setup

The base of a monaco simulation is the Sim object. This object
is formed by passing it a name, the number of random cases
ncases, and a dict fcns of the handles for three user-defined
functions detailed in the next section. A random seed that then
seeds the entire simulation can also be passed in here, and is
highly recommended for repeatability of results.

Input variables then need to be defined. monaco takes in the
handle to any of scipy.stat’s continuous or discrete probability
distributions, as well as the required arguments for that probability
distribution [VGO+20]. If nonnumeric inputs are desired, the
method can also take in a nummap dictionary which maps the
randomly drawn integers to values of other types.

246 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

At this point the sim can be run. The randomized drawing
of input values, creation of cases, running of those cases, and
extraction of output values are automatically executed.

User-Defined Functions

The user needs to define three functions to wrap monaco’s Monte
Carlo structure around their existing computational model. First
is a run function which either calls or directly implements their
model. Second is a preprocess function which takes in a Case
object, extracts the randomized inputs, and structures them with
any other invariant data to pass to the run function. Third is a
postprocess function which takes in a Case object as well as the
results from the model, and extracts the desired output values. The
Python call chain is as:
postprocess(case, *run(*preprocess(case)))

Or equivalently to expand the Python star notation into pseu-
docode:
siminput = (siminput1, siminput2, ...)

= preprocess(case)
simoutput = (simoutput1, simoutput2, ...)

= run(*siminput)
= run(siminput1, siminput2, ...)

_ = postprocess(case, *simoutput)
= postprocess(case, simoutput1, simoutput2, ...)

These three functions must be passed to the simulation in a dict
with keys ’run’, ’preprocess’, and ’postprocess’. See the example
code at the end of the paper for a simple worked example.

Examining Results

After running, users should generally do all of the following
UA and SA tasks to get a full picture of the behavior of their
computational model.

• Plot the results (UA & SA).
• Calculate statistics for input or output variables (UA).
• Calculate sensitivity indices to rank importance of the

input variables on variance of the output variables (SA).
• Investigate specific cases with outlier or puzzling results.
• Save the results to file or pass them to other programs.

Data Flow

A summary of the process and data flow:

1) Instantiate a Sim object.
2) Add input variables to the sim with specified probability

distributions.
3) Run the simulation. This executes the following:

a) Random percentiles pi ∈ U [0,1] are drawn
ndraws times for each of the input variables.

b) These percentiles are transformed into random
values via the inverse cumulative density function
of the target probability distribution xi =F−1(pi).

c) If nonnumeric inputs are desired, the numbers are
converted to objects via a nummap dict.

d) Case objects are created and populated with the
input values for each case.

e) Each case is run by structuring the inputs values
with the preprocess function, passing them to
the run function, and collecting the output values
with the postprocess function.

f) The output values are collected into output vari-
ables and saved back to the sim. If the values are

nonnumeric, a valmap dict assigning numbers to
each unique value is automatically generated.

4) Calculate statistics & sensitivities for input & output
variables.

5) Plot variables, their statistics, and sensitivities.

Incorporating into Existing Workflows

If the user wants to use existing workflows for generating, run-
ning, post-processing, or examining results, any combination of
monaco’s major steps can be replaced with external tooling by
saving and loading input and output variables to file. For example,
monaco can be used only for its parallel processing backend by
importing existing randomly drawn input variables, running the
simulation, and exporting the output variables for outside analysis.
Or, it can be used only for its plotting and analysis capabilities by
feeding it inputs and outputs generated elsewhere.

Resource Usage

Note that monaco’s computational and storage overhead in cre-
ating easily-interrogatable objects for each variable, value, and
case makes it an inefficient choice for computationally simple
applications with high n, such as Monte Carlo integration. If the
preprocessed sim input and raw output for each case (which for
some models may dominate storage) is not retained, then the
storage bottleneck will be the creation of a Val object for each
case’s input and output values with minimum size 0.5 kB. The
maximum n will be driven by the size of the RAM on the host
machine being capable of holding at least 0.5 ∗ n(kin + kout) kB.
On the computational bottleneck side, monaco is best suited for
models where the model runtime dominates the random variate
generation and the few hundred microseconds of dask.delayed
task switching time.

Technical Features

Sampling Methods

Random sampling of the percentiles for each variable can be done
using scipy’s pseudo-random number generator (PRNG), or with
any of the low-discrepancy methods from the scip.stats.qmc quasi-
Monte Carlo (QMC) module. QMC in general provides faster
O(log(n)kn−1) convergence compared to the O(n−1/2) conver-
gence of random sampling [Caf98]. Available low-discrepancy
options are regular or scrambled Sobol sequences, regular or
scrambled Halton sequences, or Latin Hypercube Sampling. In
general, the ’sobol_random’ method that generates scrambled
Sobol sequences [Sob67] [Owe20] is recommended in nearly
all cases as the sequence with the fastest QMC convergence
[CKK18], balanced integration properties as long as the number of
cases is a power of 2, and a fairly flat frequency spectrum (though
sampling spectra are rarely a concern) [PCX+18]. See Fig. 5 for a
visual comparison of some of the options.

Order Statistics, or, How Many Cases to Run?

How many Monte Carlo cases should one run? One answer would
be to choose n ≥ 2k with a sampling method that implements a
(t,m,s) digital net (such as a Sobol or Halton sequence), which
guarantees that there will be at least one sample point in every
hyperoctant of the input space [JK08]. This should be considered
a lower bound for SA, with the number of cases run being some
integer multiple of 2k.

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 247

Fig. 5: 256 uniform and normal samples along with the 2D frequency
spectra for PRNG random sampling (top), Sobol sampling (middle),
and scrambled Sobol sampling (bottom, default).

Along a similar vein, [DFM92] suggests that with random
sampling n≥ 2.136k is sufficient to ensure that the volume fraction
V approaches 1. The author hypothesizes that for a digital net, the
n≥ λ k condition will be satisfied with some λ ≤ 2, and so n≥ 2k

will suffice for this condition to hold. However, these methods of
choosing the number of cases may undersample for low k and be
infeasible for high k.

A rigorous way of choosing the number of cases is to first
choose a statistical interval (e.g. a confidence interval for a
percentile, or a tolerance interval to contain a percent of the
population), and then use order statistics to calculate the minimum
n required to obtain that result at a desired confidence level. This
approach is independent of k, making UA of high-dimensional
models tractable. monaco implements order statistics routines
for calculating these statistical intervals with a distribution-free
approach that makes no assumptions about the normality or other
shape characteristics of the output distribution. See Chapter 5 of
[HM91] for background.

A more qualitative UA method would simply be to choose a
reasonably high n (say, n = 210), manually examine the results to
ensure high-interest areas are not being undersampled, and rely
on bootstrapping of the desired variable statistics to obtain the
required confidence levels.

Variable Statistics

For any input or output variable, a statistic can be calculated
for the ensemble of values. monaco builds in some common
statistics (mean, percentile, etc), or alternatively the user can
pass in a custom one. To obtain a confidence interval for this
statistic, the results are resampled with replacement using the
scipy.stats.bootstrap module. The number of bootstrap samples
is determined using an order statistic approach as outlined in the
previous section, and multiplying that number by a scaling factor
(default 10x) for smoothness of results.

Sensitivity Indices

Sensitivity indices give a measure of the relationship between the
variance of a scalar output variable to the variance of each of the
input variables. In other words, they measure which of the input
ranges have the largest effect on an output range. It is crucial that
sensitivity indices are global rather than local measures – global
sensitivity has the stronger theoretical grounding and there is no
reason to rely on local measures in scenarios such as automated
computer experiments where data can be easily and arbitrarily
sampled [SRA+08] [PBPS22].

With computer-designed experiments, it is possible to con-
struct a specially constructed sample set to directly calculate
global sensitivity indices such as the Total-Order Sobol index
[Sob01], or the IVARS100 index [RG16]. However, this special
construction requires either sacrificing the desirable UA properties
of low-discrepancy sampling, or conducting an additional Monte
Carlo analysis of the model with a different sample set. For this
reason, monaco uses the D-VARS approach to calculating global
sensitivity indices, which allows for using a set of given data
[SR20]. This is the first publically available implementation of
the D-VARS algorithm.

Plotting

monaco includes a plotting module that takes in input and output
variables and quickly creates histograms, empirical CDFs, scatter
plots, or 2D or 3D "spaghetti plots" depending on what is most ap-
propriate for each variable. Variable statistics and their confidence
intervals are automatically shown on plots when applicable.

Vector Data

If the values for an output variable are length s lists, NumPy
arrays, or Pandas dataframes, they are treated as timeseries with s
steps. Variable statistics for these variables are calculated on the
ensemble of values at each step, giving time-varying statistics.

The plotting module will automatically plot size (1,s) arrays
against the step number as 2-D lines, size (2,s) arrays as 2-D
parametric lines, and size (3,s) arrays as 3-D parametric lines.

Parallel Processing

monaco uses dask.distributed [Roc15] as a parallel processing
backend, and supports preprocessing, running, and postprocessing
cases in a parallel arrangement. Users familiar with dask can
extend the parallelization of their simulation from their single
machine to a distributed cluster.

For simple simulations such as the example code at the end of
the paper, the overhead of setting up a dask server may outweigh
the speedup from parallel computation, and in those cases monaco
also supports running single-threaded in a single for-loop.

The Median Case

A "nominal" run is often useful as a baseline to compare other
cases against. If desired, the user can set a flag to force the
first case to be the median 50th percentile draw of all the input
variables prior to random sampling.

Debugging Cases

By default, all the raw results from each case’s simulation run
prior to postprocessing are saved to the corresponding Case object.
Individual cases can be interrogated by looking at these raw
results, or by indicating that their results should be highlighted

248 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

in plots. If some cases fail to run, monaco will mark them as
incomplete and those specific cases can be rerun without requiring
the full set of cases to be recomputed. A debug flag can be set to
not skip over failed cases and instead stop at a breakpoint or dump
the stack trace on encountering an exception.

Saving and Loading to File

The base Sim object and the Case objects can be serialized and
saved to or loaded from .mcsim and .mccase files respectively,
which are stored in a results directory. The Case objects are saved
separately since the raw results from a run of the simulation
may be arbitrarily large, and the Sim object can be comparatively
lightweight. Loading the Sim object from file will automatically
attempt to load the cases in the same directory, but can also stand
alone if the raw results are not needed.

Alternatively, the numerical representations for input and out-
put variables can be saved to and loaded from .json or .csv files.
This is useful for interfacing with external tooling, but discards
the metadata that would be present by saving to monaco’s native
objects.

Example

Presented here is a simple example showing a Monte Carlo
simulation of rolling two 6-sided dice and looking at their sum.

The user starts with their run function which here directly
implements their computational model. They must then create
preprocess and postprocess functions to feed in the randomized
input values and collect the outputs from that model.
The 'run' function, which implements the
existing computational model (or wraps it)
def example_run(die1, die2):

dicesum = die1 + die2
return (dicesum,)

The 'preprocess' function grabs the random
input values for each case and structures it
with any other data in the format the 'run'
function expects
def example_preprocess(case):

die1 = case.invals['die1'].val
die2 = case.invals['die2'].val
return (die1, die2)

The 'postprocess' function takes the output
from the 'run' function and saves off the
outputs for each case
def example_postprocess(case, dicesum):

case.addOutVal(name='Sum', val=dicesum)
case.addOutVal(name='Roll Number',

val=case.ncase)
return None

The monaco simulation is initialized, given input variables with
specified probability distributions (here a random integer between
1 and 6), and run.
import monaco as mc
from scipy.stats import randint

dict structure for the three input functions
fcns = {'run' : example_run,

'preprocess' : example_preprocess,
'postprocess': example_postprocess}

Initialize the simulation
ndraws = 1024 # Arbitrary for this example
seed = 123456 # Recommended for repeatability

sim = mc.Sim(name='Dice Roll', ndraws=ndraws,

fcns=fcns, seed=seed)

Generate the input variables
sim.addInVar(name='die1', dist=randint,

distkwargs={'low': 1, 'high': 6+1})
sim.addInVar(name='die2', dist=randint,

distkwargs={'low': 1, 'high': 6+1})

Run the Simulation
sim.runSim()

The results of the simulation can then be analyzed and examined.
Fig. 6 shows the plots this code generates.
Calculate the mean and 5-95th percentile
statistics for the dice sum
sim.outvars['Sum'].addVarStat('mean')
sim.outvars['Sum'].addVarStat('percentile',

{'p':[0.05, 0.95]})

Plots a histogram of the dice sum
mc.plot(sim.outvars['Sum'])

Creates a scatter plot of the sum vs the roll
number, showing randomness
mc.plot(sim.outvars['Sum'],

sim.outvars['Roll Number'])

Calculate the sensitivity of the dice sum to
each of the input variables
sim.calcSensitivities('Sum')
sim.outvars['Sum'].plotSensitivities()

Fig. 6: Output from the example code which calculates the sum of two
random dice rolls. The top plot shows a histogram of the 2-dice sum
with the mean and 5–95th percentiles marked, the middle plot shows
the randomness over the set of rolls, and the bottom plot shows that
each of the dice contributes 50% to the variance of the sum.

Case Studies

These two case studies are toy models meant as illustrative of
potential uses, and not of expertise or rigor in their respective
domains. Please see https://github.com/scottshambaugh/monaco/
tree/main/examples for their source code as well as several more
Monte Carlo implementation examples across a range of domains
including financial modeling, pandemic spread, and integration.

https://github.com/scottshambaugh/monaco/tree/main/examples
https://github.com/scottshambaugh/monaco/tree/main/examples

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 249

Baseball

This case study models the trajectory of a baseball in flight
after being hit for varying speeds, angles, topspins, aerodynamic
conditions, and mass properties. From assumed initial conditions
immediately after being hit, the physics of the ball’s ballistic flight
are calculated over time until it hits the ground.

Fig. 7 shows some plots of the results. A baseball team might
use analyses like this to determine where outfielders should be
placed to catch a ball for a hitter with known characteristics, or
determine what aspect of a hit a batter should focus on to improve
their home run potential.

Fig. 7: 100 simulated baseball trajectories (top), and the relationship
between launch angle and landing distance (bottom). Home runs are
highlighted in orange.

Election

This case study attempts to predict the result of the 2020 US
presidential election, based on polling data from FiveThirtyEight
3 weeks prior to the election [Fiv20].

Each state independently casts a normally distributed percent-
age of votes for the Democratic, Republican, and Other candidates,
based on polling. Also assumed is a uniform ±3% national
swing due to polling error which is applied to all states equally.
That summed percentage is then normalized so the total for all
candidates is 100%. The winner of each state’s election assigns
their electoral votes to that candidate, and the candidate that wins
at least 270 of the 538 electoral votes is the winner.

The calculated win probabilities from this simulation are
93.4% Democratic, 6.2% Republican, and 0.4% Tie. The 25–75th
percentile range for the number of electoral votes for the Demo-
cratic candidate is 281–412, and the actual election result was 306
electoral votes. See Fig. 8.

Fig. 8: Predicted electoral votes for the Democratic 2020 US Pres-
idential candidate with the median and 25-75th percentile interval
marked (top), and a map of the predicted Democratic win probability
per state (bottom).

Conclusion

This paper has introduced the ideas underlying Monte Carlo
analysis and discussed when it is appropriate to use for conducting
UA and SA. It has shown how monaco implements a rigorous,
parallel Monte Carlo process, and how to use it through a simple
example and two case studies. This library is geared towards
scientists, engineers, and policy analysts that have a computational
model in their domain of expertise, enough statistical knowledge
to define a probability distribution, and a desire to ensure their
model will make accurate predictions of reality. The author hopes
this tool will help contribute to easier and more widespread use of
UA and SA in improved decision-making.

Further Information

monaco is available on PyPI as the package monaco, has API
documentation at https://monaco.rtfd.io/, and is hosted on github
at https://github.com/scottshambaugh/monaco/.

REFERENCES

[ALMR20] I Azzini, G Listorti, TA Mara, and R Rosati. Uncertainty and
sensitivity analysis for policy decision making. An Introductory
Guide. Joint Research Centre, European Commission, Luxem-
bourg, 2020. doi:10.2760/922129.

[C+12] National Research Council et al. Assessing the reliability of
complex models: mathematical and statistical foundations of
verification, validation, and uncertainty quantification. National
Academies Press, 2012. doi:10.17226/13395.

https://monaco.rtfd.io/
https://github.com/scottshambaugh/monaco/
http://dx.doi.org/10.2760/922129
http://dx.doi.org/10.17226/13395

250 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[Caf98] Russel E Caflisch. Monte carlo and quasi-monte carlo
methods. Acta numerica, 7:1–49, 1998. doi:10.1017/
S0962492900002804.

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel
Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1),
2017. doi:10.18637/jss.v076.i01.

[CKK18] Per Christensen, Andrew Kensler, and Charlie Kilpatrick. Pro-
gressive multi-jittered sample sequences. In Computer Graphics
Forum, volume 37, pages 21–33. Wiley Online Library, 2018.
doi:10.1111/cgf.13472.

[DFM92] Martin E. Dyer, Zoltan Füredi, and Colin McDiarmid. Volumes
spanned by random points in the hypercube. Random Struc-
tures & Algorithms, 3(1):91–106, 1992. doi:10.1002/rsa.
3240030107.

[DSICJ20] Dominique Douglas-Smith, Takuya Iwanaga, Barry F.W. Croke,
and Anthony J. Jakeman. Certain trends in uncertainty and
sensitivity analysis: An overview of software tools and tech-
niques. Environmental Modelling & Software, 124, 2020. doi:
10.1016/j.envsoft.2019.104588.

[EPA09] US EPA. Guidance on the development, evaluation, and appli-
cation of environmental models (epa/100/k-09/003), 2009. URL:
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF.

[Fiv20] FiveThirtyEight. 2020 general election forecast - state topline
polls-plus data, October 2020. URL: https://github.com/
fivethirtyeight/data/tree/master/election-forecasts-2020.

[FST16] Federico Ferretti, Andrea Saltelli, and Stefano Tarantola. Trends
in sensitivity analysis practice in the last decade. Science of
the total environment, 568:666–670, 2016. doi:10.1016/j.
scitotenv.2016.02.133.

[HB10] John Hanson and Bernard Beard. Applying monte carlo simu-
lation to launch vehicle design and requirements verification. In
AIAA Guidance, Navigation, and Control Conference. American
Institute of Aeronautics and Astronautics, 2010. doi:10.2514/
6.2010-8433.

[HM91] Gerald J Hahn and William Q Meeker. Statistical intervals: a
guide for practitioners. John Wiley & Sons, 1991. doi:10.
1002/9780470316771.ch5.

[JK08] Stephen Joe and Frances Y Kuo. Constructing sobol sequences
with better two-dimensional projections. SIAM Journal on Sci-
entific Computing, 30(5):2635–2654, 2008. doi:10.1137/
070709359.

[KTB13] Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook
of monte carlo methods. John Wiley & Sons, 2013. doi:10.
1002/9781118014967.

[OGA+20] Audrey Olivier, Dimitris G. Giovanis, B.S. Aakash, Mohit
Chauhan, Lohit Vandanapu, and Michael D. Shields. Uqpy: A
general purpose python package and development environment
for uncertainty quantification. Journal of Computational Science,
47:101204, 2020. doi:10.1016/j.jocs.2020.101204.

[Owe20] Art B Owen. On dropping the first sobol’point. arXiv
preprint arXiv:2008.08051, 2020. doi:10.48550/arXiv.
2008.08051.

[PBPS22] Arnald Puy, William Becker, Samuele Lo Piano, and An-
drea Saltelli. A comprehensive comparison of total-order es-
timators for global sensitivity analysis. International Journal
for Uncertainty Quantification, 12(2), 2022. doi:int.j.
uncertaintyquantification.2021038133.

[PCX+18] Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat
Hanrahan, and Victor Ostromoukhov. Sequences with low-
discrepancy blue-noise 2-d projections. In Computer Graphics
Forum, volume 37, pages 339–353. Wiley Online Library, 2018.
doi:10.1111/cgf.13366.

[RG16] Saman Razavi and Hoshin V Gupta. A new framework for
comprehensive, robust, and efficient global sensitivity analysis:
1. theory. Water Resources Research, 52(1):423–439, 2016.
doi:10.1002/2015wr017558.

[RJS+21] Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine
Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke,
Samuele Lo Piano, Takuya Iwanaga, William Becker, et al. The
future of sensitivity analysis: An essential discipline for systems
modeling and policy support. Environmental Modelling & Soft-
ware, 137:104954, 2021. doi:10.1016/j.envsoft.2020.
104954.

[Roc15] Matthew Rocklin. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th python

in science conference, volume 130, page 136. Citeseer, 2015.
doi:10.25080/majora-7b98e3ed-013.

[SAB+19] Andrea Saltelli, Ksenia Aleksankina, William Becker, Pamela
Fennell, Federico Ferretti, Niels Holst, Sushan Li, and Qiongli
Wu. Why so many published sensitivity analyses are false: A
systematic review of sensitivity analysis practices. Environmental
modelling & software, 114:29–39, 2019. doi:10.1016/j.
envsoft.2019.01.012.

[SLKW08] Richard M Shiffrin, Michael D Lee, Woojae Kim, and Eric-
Jan Wagenmakers. A survey of model evaluation approaches
with a tutorial on hierarchical bayesian methods. Cog-
nitive Science, 32(8):1248–1284, 2008. doi:10.1080/
03640210802414826.

[Sob67] Ilya M Sobol. On the distribution of points in a cube and
the approximate evaluation of integrals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967. doi:
10.1016/0041-5553(67)90144-9.

[Sob01] Ilya M Sobol. Global sensitivity indices for nonlinear mathe-
matical models and their monte carlo estimates. Mathematics
and computers in simulation, 55(1-3):271–280, 2001. doi:
10.1016/s0378-4754(00)00270-6.

[SR20] Razi Sheikholeslami and Saman Razavi. A fresh look at vari-
ography: measuring dependence and possible sensitivities across
geophysical systems from any given data. Geophysical Re-
search Letters, 47(20):e2020GL089829, 2020. doi:10.1029/
2020gl089829.

[SRA+08] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campo-
longo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and
Stefano Tarantola. Global sensitivity analysis: the primer. John
Wiley & Sons, 2008. doi:10.1002/9780470725184.

[SWF16] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck.
Probabilistic programming in python using pymc3. PeerJ Com-
puter Science, 2:e55, 2016. doi:10.7717/peerj-cs.55.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Na-
ture methods, 17(3):261–272, 2020. doi:10.14293/s2199-
1006.1.sor-life.a7056644.v1.rysreg.

http://dx.doi.org/10.1017/S0962492900002804
http://dx.doi.org/10.1017/S0962492900002804
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1111/cgf.13472
http://dx.doi.org/10.1002/rsa.3240030107
http://dx.doi.org/10.1002/rsa.3240030107
http://dx.doi.org/10.1016/j.envsoft.2019.104588
http://dx.doi.org/10.1016/j.envsoft.2019.104588
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF
https://github.com/fivethirtyeight/data/tree/master/election-forecasts-2020
https://github.com/fivethirtyeight/data/tree/master/election-forecasts-2020
http://dx.doi.org/10.1016/j.scitotenv.2016.02.133
http://dx.doi.org/10.1016/j.scitotenv.2016.02.133
http://dx.doi.org/10.2514/6.2010-8433
http://dx.doi.org/10.2514/6.2010-8433
http://dx.doi.org/10.1002/9780470316771.ch5
http://dx.doi.org/10.1002/9780470316771.ch5
http://dx.doi.org/10.1137/070709359
http://dx.doi.org/10.1137/070709359
http://dx.doi.org/10.1002/9781118014967
http://dx.doi.org/10.1002/9781118014967
http://dx.doi.org/10.1016/j.jocs.2020.101204
http://dx.doi.org/10.48550/arXiv.2008.08051
http://dx.doi.org/10.48550/arXiv.2008.08051
http://dx.doi.org/int.j.uncertaintyquantification.2021038133
http://dx.doi.org/int.j.uncertaintyquantification.2021038133
http://dx.doi.org/10.1111/cgf.13366
http://dx.doi.org/10.1002/2015wr017558
http://dx.doi.org/10.1016/j.envsoft.2020.104954
http://dx.doi.org/10.1016/j.envsoft.2020.104954
http://dx.doi.org/10.25080/majora-7b98e3ed-013
http://dx.doi.org/10.1016/j.envsoft.2019.01.012
http://dx.doi.org/10.1016/j.envsoft.2019.01.012
http://dx.doi.org/10.1080/03640210802414826
http://dx.doi.org/10.1080/03640210802414826
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1016/s0378-4754(00)00270-6
http://dx.doi.org/10.1016/s0378-4754(00)00270-6
http://dx.doi.org/10.1029/2020gl089829
http://dx.doi.org/10.1029/2020gl089829
http://dx.doi.org/10.1002/9780470725184
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.14293/s2199-1006.1.sor-life.a7056644.v1.rysreg
http://dx.doi.org/10.14293/s2199-1006.1.sor-life.a7056644.v1.rysreg

	Introduction
	Motivation for Monte Carlo Approach
	Mathematical Grounding
	Benefits and Drawbacks of Basic Monte Carlo Sampling
	Workflow

	monaco Structure
	Overall Structure
	Simulation Setup
	User-Defined Functions
	Examining Results
	Data Flow
	Incorporating into Existing Workflows
	Resource Usage

	Technical Features
	Sampling Methods
	Order Statistics, or, How Many Cases to Run?
	Variable Statistics
	Sensitivity Indices
	Plotting
	Vector Data
	Parallel Processing
	The Median Case
	Debugging Cases
	Saving and Loading to File

	Example
	Case Studies
	Baseball
	Election

	Conclusion
	Further Information
	References

