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Abstract—Space is more popular than ever, with the growing public awareness
of interplanetary scientific missions, as well as the increasingly large number
of satellite companies planning to deploy satellite constellations. Python has
become a fundamental technology in the astronomical sciences, and it has also
caught the attention of the Space Engineering community.

One of the requirements for designing a space mission is studying the
trajectories of satellites, probes, and other artificial objects, usually ignoring
non-gravitational forces or treating them as perturbations: the so-called n-body
problem. However, for preliminary design studies and most practical purposes, it
is sufficient to consider only two bodies: the object under study and its attractor.

Even though the two-body problem has many analytical solutions, or-
bit propagation (the initial value problem) and targeting (the boundary value
problem) remain computationally intensive because of long propagation times,
tight tolerances, and vast solution spaces. On the other hand, astrodynamics
researchers often do not share the source code they used to run analyses and
simulations, which makes it challenging to try out new solutions.

This paper presents poliastro, an open-source Python library for interactive
astrodynamics that features an easy-to-use API and tools for quick visualization.
poliastro implements core astrodynamics algorithms (such as the resolution
of the Kepler and Lambert problems) and leverages numba, a Just-in-Time
compiler for scientific Python, to optimize the running time. Thanks to Astropy,
poliastro can perform seamless coordinate frame conversions and use proper
physical units and timescales. At the moment, poliastro is the longest-lived
Python library for astrodynamics, has contributors from all around the world,
and several New Space companies and people in academia use it.

Index Terms—astrodynamics, orbital mechanics, orbit propagation, orbit visu-
alization, two-body problem

Introduction

History

The term "astrodynamics" was coined by the American as-
tronomer Samuel Herrick, who received encouragement from
the space pioneer Robert H. Goddard, and refers to the branch
of space science dealing with the motion of artificial celestial
bodies ([Dub73], [Her71]). However, the roots of its mathematical
foundations go back several centuries.

Kepler first introduced his laws of planetary motion in 1609
and 1619 and derived his famous transcendental equation (1),
which we now see as capturing a restricted form of the two-body
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problem. This work was generalized by Newton to give birth to
the n-body problem, and many other mathematicians worked on
it throughout the centuries (Daniel and Johann Bernoulli, Euler,
Gauss). Poincaré established in the 1890s that no general closed-
form solution exists for the n-body problem, since the resulting
dynamical system is chaotic [Bat99]. Sundman proved in the
1900s the existence of convergent solutions for a few restricted
with n = 3.

M = E− esinE (1)

In 1903 Tsiokovsky evaluated the conditions required for artificial
objects to leave the orbit of the earth; this is considered as a foun-
dational contribution to the field of astrodynamics. Tsiokovsky
devised equation 2 which relates the increase in velocity with the
effective exhaust velocity of thrusted gases and the fraction of used
propellant.

∆v = ve ln
m0

m f
(2)

Further developments by Kondratyuk, Hohmann, and Oberth in
the early 20th century all added to the growing field of orbital
mechanics, which in turn enabled the development of space flight
in the USSR and the United States in the 1950s and 1960s.

The two-body problem

In a system of i ∈ 1, ...,n bodies subject to their mutual attraction,
by application of Newton’s law of universal gravitation, the total
force fi affecting mi due to the presence of the other n−1 masses
is given by [Bat99]:

fi =−G
n

∑
j 6=i

mim j

|ri j|3
ri j (3)

where G = 6.67430 · 10−11 N m2 kg−2 is the universal gravita-
tional constant, and ri j denotes the position vector from mi to m j.
Applying Newton’s second law of motion results in a system of n
differential equations:

d2 ri

d t2 =−G
n

∑
j 6=i

m j

|ri j|3
ri j (4)

By setting n = 2 in 4 and subtracting the two resulting equali-
ties, one arrives to the fundamental equation of the two-body
problem:

d2 r
d t2 =− µ

r3 r (5)

where µ = G(m1 +m2) = G(M+m). When m�M (for example,
an artificial satellite orbiting a planet), one can consider µ = GM
a property of the attractor.
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Keplerian vs non-keplerian motion

Conveniently manipulating equation 5 leads to several properties
[Bat99] that were already published by Johannes Kepler in the
1610s, namely:

1) The orbit always describes a conic section (an ellipse, a
parabola, or an hyperbola), with the attractor at one of
the two foci and can be written in polar coordinates like
r = p

1+ecosν
(Kepler’s first law).

2) The magnitude of the specific angular momentum h =
r2 dθ

d t is constant an equal to two times the areal velocity
(Kepler’s second law).

3) For closed (circular and elliptical) orbits, the period is
related to the size of the orbit through P = 2π

√
a3

µ

(Kepler’s third law).

For many practical purposes it is usually sufficient to limit
the study to one object orbiting an attractor and ignore all other
external forces of the system, hence restricting the study to
trajectories governed by equation 5. Such trajectories are called
"Keplerian", and several problems can be formulated for them:

• The initial-value problem, which is usually called prop-
agation, involves determining the position and velocity of
an object after an elapse period of time given some initial
conditions.

• Preliminary orbit determination, which involves using
exact or approximate methods to derive a Keplerian orbit
from a set of observations.

• The boundary-value problem, often named the Lambert
problem, which involves determining a Keplerian orbit
from boundary conditions, usually departure and arrival
position vectors and a time of flight.

Fortunately, most of these problems boil down to finding
numerical solutions to relatively simple algebraic relations be-
tween time and angular variables: for elliptic motion (0 ≤ e < 1)
it is the Kepler equation, and equivalent relations exist for the
other eccentricity regimes [Bat99]. Numerical solutions for these
equations can be found in a number of different ways, each one
with different complexity and precision tradeoffs. In the Methods
section we list the ones implemented by poliastro.

On the other hand, there are many situations in which natural
and artificial orbital perturbations must be taken into account so
that the actual non-Keplerian motion can be properly analyzed:

• Interplanetary travel in the proximity of other planets. On
a first approximation it is usually enough to study the
trajectory in segments and focus the analysis on the closest
attractor, hence patching several Keplerian orbits along
the way (the so-called "patched-conic approximation")
[Bat99]. The boundary surface that separates one segment
from the other is called the sphere of influence.

• Use of solar sails, electric propulsion, or other means
of continuous thrust. Devising the optimal guidance laws
that minimize travel time or fuel consumption under these
conditions is usually treated as an optimization problem
of a dynamical system, and as such it is particularly
challenging [Con14].

• Artificial satellites in the vicinity of a planet. This is
the regime in which all the commercial space industry
operates, especially for those satellites in Low-Earth Orbit
(LEO).

State of the art

In our view, at the time of creating poliastro there were a number
of issues with existing open source astrodynamics software that
posed a barrier of entry for novices and amateur practitioners.
Most of these barriers still exist today and are described in the
following paragraphs. The goals of the project can be condensed
as follows:

1) Set an example on reproducibility and good coding prac-
tices in astrodynamics.

2) Become an approachable software even for novices.
3) Offer a performant software that can be also used in

scripting and interactive workflows.

The most mature software libraries for astrodynamics are
arguably Orekit [noa22c], a "low level space dynamics library
written in Java" with an open governance model, and SPICE
[noa22d], a toolkit developed by NASA’s Navigation and An-
cillary Information Facility at the Jet Propulsion Laboratory.
Other similar, smaller projects that appeared later on and that
are still maintained to this day include PyKEP [IBD+20], be-
yond [noa22a], tudatpy [noa22e], sbpy [MKDVB+19], Skyfield
[Rho20] (Python), CelestLab (Scilab) [noa22b], astrodynamics.jl
(Julia) [noa] and Nyx (Rust) [noa21a]. In addition, there are
some Graphical User Interface (GUI) based open source programs
used for Mission Analysis and orbit visualization, such as GMAT
[noa20] and gpredict [noa18], and complete web applications for
tracking constellations of satellites like the SatNOGS project by
the Libre Space Foundation [noa21b].

The level of quality and maintenance of these packages is
somewhat heterogeneous. Community-led projects with a strong
corporate backing like Orekit are in excellent health, while on
the other hand smaller projects developed by volunteers (beyond,
astrodynamics.jl) or with limited institutional support (PyKEP,
GMAT) suffer from lack of maintenance. Part of the problem
might stem from the fact that most scientists are never taught how
to build software efficiently, let alone the skills to collaboratively
develop software in the open [WAB+14], and astrodynamicists are
no exception.

On the other hand, it is often difficult to translate the advances
in astrodynamics research to software. Classical algorithms devel-
oped throughout the 20th century are described in papers that are
sometimes difficult to find, and source code or validation data
is almost never available. When it comes to modern research
carried in the digital era, source code and validation data is
still difficult, even though they are supposedly provided "upon
reasonable request" [SSM18] [GBP22].

It is no surprise that astrodynamics software often requires
deep expertise. However, there are often implicit assumptions that
are not documented with an adequate level of detail which orig-
inate widespread misconceptions and lead even seasoned profes-
sionals to make conceptual mistakes. Some of the most notorious
misconceptions arise around the use of general perturbations data
(OMMs and TLEs) [Fin07], the geometric interpretation of the
mean anomaly [Bat99], or coordinate transformations [VCHK06].

Finally, few of the open source software libraries mentioned
above are amenable to scripting or interactive use, as promoted by
computational notebooks like Jupyter [KRKP+16].

The following sections will now discuss the various areas of
current research that an astrodynamicist will engage in, and how
poliastro improves their workflow.
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Methods

Software Architecture

The architecture of poliastro emerges from the following set of
conflicting requirements:

1) There should be a high-level API that enables users to
perform orbital calculations in a straightforward way and
prevent typical mistakes.

2) The running time of the algorithms should be within the
same order of magnitude of existing compiled implemen-
tations.

3) The library should be written in a popular open-source
language to maximize adoption and lower the barrier to
external contributors.

One of the most typical mistakes we set ourselves to prevent
with the high-level API is dimensional errors. Addition and
substraction operations of physical quantities are defined only for
quantities with the same units [Dro53]: for example, the operation
1 km + 100 m requires a scale transformation of at least one
of the operands, since they have different units (kilometers and
meters) but the same dimension (length), whereas the operation
1 km + 1 kg is directly not allowed because dimensions are
incompatible (length and mass). As such, software systems oper-
ating with physical quantities should raise exceptions when adding
different dimensions, and transparently perform the required scale
transformations when adding different units of the same dimen-
sion.

With this in mind, we evaluated several Python packages for
unit handling (see [JGAZJT+18] for a recent survey) and chose
astropy.units [TPWS+18].

radius = 6000 # km
altitude = 500 # m

# Wrong!
distance = radius + altitude

from astropy import units as u

# Correct
distance = (radius << u.km) + (altitude << u.m)

This notion of providing a "safe" API extends to other parts
of the library by leveraging other capabilities of the Astropy
project. For example, timestamps use astropy.time objects,
which take care of the appropriate handling of time scales
(such as TDB or UTC), reference frame conversions leverage
astropy.coordinates, and so forth.

One of the drawbacks of existing unit packages is that
they impose a significant performance penalty. Even though
astropy.units is integrated with NumPy, hence allowing
the creation of array quantities, all the unit compatibility checks
are implemented in Python and require lots of introspection, and
this can slow down mathematical operations by several orders of
magnitude. As such, to fulfill our desired performance requirement
for poliastro, we envisioned a two-layer architecture:

• The Core API follows a procedural style, and all the
functions receive Python numerical types and NumPy
arrays for maximum performance.

• The High level API is object-oriented, all the methods
receive Astropy Quantity objects with physical units,
and computations are deferred to the Core API.

Nice, high level API

Dangerous™ algorithms

Fig. 1: poliastro two-layer architecture

Most of the methods of the High level API consist only
of the necessary unit compatibility checks, plus a wrapper over
the corresponding Core API function that performs the actual
computation.
@u.quantity_input(E=u.rad, ecc=u.one)
def E_to_nu(E, ecc):

"""True anomaly from eccentric anomaly."""
return (

E_to_nu_fast(
E.to_value(u.rad),
ecc.value

) << u.rad
).to(E.unit)

As a result, poliastro offers a unit-safe API that performs the least
amount of computation possible to minimize the performance
penalty of unit checks, and also a unit-unsafe API that offers
maximum performance at the cost of not performing any unit
validation checks.

Finally, there are several options to write performant code that
can be used from Python, and one of them is using a fast, compiled
language for the CPU intensive parts. Successful examples of this
include NumPy, written in C [HMvdW+20], SciPy, featuring a
mix of FORTRAN, C, and C++ code [VGO+20], and pandas,
making heavy use of Cython [BBC+11]. However, having to
write code in two different languages hinders the development
speed, makes debugging more difficult, and narrows the potential
contributor base (what Julia creators called "The Two Language
Problem" [BEKS17]).

As authors of poliastro we wanted to use Python as the
sole programming language of the implementation, and the best
solution we found to improve its performance was to use Numba,
a LLVM-based Python JIT compiler [LPS15].

Usage

Basic Orbit and Ephem creation

The two central objects of the poliastro high level API are Orbit
and Ephem:

• Orbit objects represent an osculating (hence Keplerian)
orbit of a dimensionless object around an attractor at a
given point in time and a certain reference frame.

• Ephem objects represent an ephemerides, a sequence of
spatial coordinates over a period of time in a certain
reference frame.

There are six parameters that uniquely determine a Keplerian
orbit, plus the gravitational parameter of the corresponding attrac-
tor (k or µ). Optionally, an epoch that contextualizes the orbit
can be included as well. This set of six parameters is not unique,
and several of them have been developed over the years to serve
different purposes. The most widely used ones are:

• Cartesian elements: Three components for the position
(x,y,z) and three components for the velocity (vx,vy,vz).
This set has no singularities.
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• Classical Keplerian elements: Two components for the
shape of the conic (usually the semimajor axis a or
semiparameter p and the eccentricity e), three Euler angles
for the orientation of the orbital plane in space (inclination
i, right ascension of the ascending node Ω, and argument
of periapsis ω), and one polar angle for the position of the
body along the conic (usually true anomaly f or ν). This
set of elements has an easy geometrical interpretation and
the advantage that, in pure two-body motion, five of them
are fixed (a,e, i,Ω,ω) and only one is time-dependent
(ν), which greatly simplifies the analytical treatment of
orbital perturbations. However, they suffer from singular-
ities steming from the Euler angles ("gimbal lock") and
equations expressed in them are ill-conditioned near such
singularities.

• Walker modified equinoctial elements: Six parameters
(p, f ,g,h,k,L). Only L is time-dependent and this set has
no singularities, however the geometrical interpretation of
the rest of the elements is lost [WIO85].

Here is how to create an Orbit from cartesian and from clas-
sical Keplerian elements. Walker modified equinoctial elements
are supported as well.
from astropy import units as u

from poliastro.bodies import Earth, Sun
from poliastro.twobody import Orbit
from poliastro.constants import J2000

# Data from Curtis, example 4.3
r = [-6045, -3490, 2500] << u.km
v = [-3.457, 6.618, 2.533] << u.km / u.s

orb_curtis = Orbit.from_vectors(
Earth, # Attractor
r, v # Elements

)

# Data for Mars at J2000 from JPL HORIZONS
a = 1.523679 << u.au
ecc = 0.093315 << u.one
inc = 1.85 << u.deg
raan = 49.562 << u.deg
argp = 286.537 << u.deg
nu = 23.33 << u.deg

orb_mars = Orbit.from_classical(
Sun,
a, ecc, inc, raan, argp, nu,
J2000 # Epoch

)

When displayed on an interactive REPL, Orbit objects provide
basic information about the geometry, the attractor, and the epoch:
>>> orb_curtis
7283 x 10293 km x 153.2 deg (GCRS) orbit
around Earth (X) at epoch J2000.000 (TT)

>>> orb_mars
1 x 2 AU x 1.9 deg (HCRS) orbit
around Sun (X) at epoch J2000.000 (TT)

Similarly, Ephem objects can be created using a variety of class-
methods as well. Thanks to astropy.coordinates built-in
low-fidelity ephemerides, as well as its capability to remotely
access the JPL HORIZONS system, the user can seamlessly build
an object that contains the time history of the position of any Solar
System body:
from astropy.time import Time
from astropy.coordinates import solar_system_ephemeris

from poliastro.ephem import Ephem

# Configure high fidelity ephemerides globally
# (requires network access)
solar_system_ephemeris.set("jpl")

# For predefined poliastro attractors
earth = Ephem.from_body(Earth, Time.now().tdb)

# For the rest of the Solar System bodies
ceres = Ephem.from_horizons("Ceres", Time.now().tdb)

There are some crucial differences between Orbit and Ephem
objects:

• Orbit objects have an attractor, whereas Ephem objects
do not. Ephemerides can originate from complex trajecto-
ries that don’t necessarily conform to the ideal two-body
problem.

• Orbit objects capture a precise instant in a two-body mo-
tion plus the necessary information to propagate it forward
in time indefinitely, whereas Ephem objects represent a
bounded time history of a trajectory. This is because the
equations for the two-body motion are known, whereas
an ephemeris is either an observation or a prediction
that cannot be extrapolated in any case without external
knowledge. As such, Orbit objects have a .propagate
method, but Ephem ones do not. This prevents users from
attempting to propagate the position of the planets, which
will always yield poor results compared to the excellent
ephemerides calculated by external entities.

Finally, both types have methods to convert between them:

• Ephem.from_orbit is the equivalent of sampling a
two-body motion over a given time interval. As explained
above, the resulting Ephem loses the information about
the original attractor.

• Orbit.from_ephem is the equivalent of calculating
the osculating orbit at a certain point of a trajectory,
assuming a given attractor. The resulting Orbit loses
the information about the original, potentially complex
trajectory.

Orbit propagation

Orbit objects have a .propagatemethod that takes an elapsed
time and returns another Orbit with new orbital elements and an
updated epoch:
>>> from poliastro.examples import iss

>>> iss
>>> 6772 x 6790 km x 51.6 deg (GCRS) ...

>>> iss.nu.to(u.deg)
<Quantity 46.59580468 deg>

>>> iss_30m = iss.propagate(30 << u.min)

>>> (iss_30m.epoch - iss.epoch).datetime
datetime.timedelta(seconds=1800)

>>> (iss_30m.nu - iss.nu).to(u.deg)
<Quantity 116.54513153 deg>

The default propagation algorithm is an analytical procedure
described in [FCM13] that works seamlessly in the near parabolic
region. In addition, poliastro implements analytical propagation
algorithms as described in [DB83], [OG86], [Mar95], [Mik87],
[PP13], [Cha22], and [VM07].
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Fig. 2: Osculating (Keplerian) vs perturbed (true) orbit (source:
Wikipedia, CC BY-SA 3.0)

Natural perturbations

As showcased in Figure 2, at any point in a trajectory we
can define an ideal Keplerian orbit with the same position and
velocity under the attraction of a point mass: this is called the
osculating orbit. Some numerical propagation methods exist that
model the true, perturbed orbit as a deviation from an evolving,
osculating orbit. poliastro implements Cowell’s method [CC10],
which consists in adding all the perturbation accelerations and then
integrating the resulting differential equation with any numerical
method of choice:

d2 r
d t2 =− µ

r3 r+ad (6)

The resulting equation is usually integrated using high order
numerical methods, since the integration times are quite large
and the tolerances comparatively tight. An in-depth discussion of
such methods can be found in [HNW09]. poliastro uses Dormand-
Prince 8(5,3) (DOP853), a commonly used method available in
SciPy [HMvdW+20].

There are several natural perturbations included: J2 and J3
gravitational terms, several atmospheric drag models (exponential,
[Jac77], [AAAA62], [AAA+76]), and helpers for third body
gravitational attraction and radiation pressure as described in [?].
@njit
def combined_a_d(

t0, state, k, j2, r_eq, c_d, a_over_m, h0, rho0
):

return (
J2_perturbation(

t0, state, k, j2, r_eq
) + atmospheric_drag_exponential(

t0, state, k, r_eq, c_d, a_over_m, h0, rho0
)

)

def f(t0, state, k):
du_kep = func_twobody(t0, state, k)
ax, ay, az = combined_a_d(

t0,
state,
k,
R=R,
C_D=C_D,
A_over_m=A_over_m,
H0=H0,
rho0=rho0,
J2=Earth.J2.value,

)
du_ad = np.array([0, 0, 0, ax, ay, az])

return du_kep + du_ad

rr = propagate(
orbit,
tofs,
method=cowell,
f=f,

)

Continuous thrust control laws

Beyond natural perturbations, spacecraft can modify their trajec-
tory on purpose by using impulsive maneuvers (as explained in
the next section) as well as continuous thrust guidance laws. The
user can define custom guidance laws by providing a perturbation
acceleration in the same way natural perturbations are used. In
addition, poliastro includes several analytical solutions for con-
tinuous thrust guidance laws with specific purposes, as studied in
[CR17]: optimal transfer between circular coplanar orbits [Ede61]
[Bur67], optimal transfer between circular inclined orbits [Ede61]
[Kec97], quasi-optimal eccentricity-only change [Pol97], simulta-
neous eccentricity and inclination change [Pol00], and agument of
periapsis adjustment [Pol98]. A much more rigorous analysis of a
similar set of laws can be found in [DCV21].

from poliastro.twobody.thrust import change_ecc_inc

ecc_f = 0.0 << u.one
inc_f = 20.0 << u.deg
f = 2.4e-6 << (u.km / u.s**2)

a_d, _, t_f = change_ecc_inc(orbit, ecc_f, inc_f, f)

Impulsive maneuvers

Impulsive maneuvers are modeled considering a change in the
velocity of a spacecraft while its position remains fixed. The
poliastro.maneuver.Maneuver class provides various
constructors to instantiate popular impulsive maneuvers in the
framework of the non-perturbed two-body problem:

• Maneuver.impulse
• Maneuver.hohmann
• Maneuver.bielliptic
• Maneuver.lambert

from poliastro.maneuver import Maneuver

orb_i = Orbit.circular(Earth, alt=700 << u.km)
hoh = Maneuver.hohmann(orb_i, r_f=36000 << u.km)

Once instantiated, Maneuver objects provide information regard-
ing total ∆v and ∆t:

>>> hoh.get_total_cost()
<Quantity 3.6173981270031357 km / s>

>>> hoh.get_total_time()
<Quantity 15729.741535747102 s>

Maneuver objects can be applied to Orbit instances using the
apply_maneuver method.

>>> orb_i
7078 x 7078 km x 0.0 deg (GCRS) orbit
around Earth (X)

>>> orb_f = orb_i.apply_maneuver(hoh)
>>> orb_f
36000 x 36000 km x 0.0 deg (GCRS) orbit
around Earth (X)
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Targeting

Targeting is the problem of finding the orbit connecting two
positions over a finite amount of time. Within the context of
the non-perturbed two-body problem, targeting is just a matter
of solving the BVP, also known as Lambert’s problem. Because
targeting tries to find for an orbit, the problem is included in the
Initial Orbit Determination field.

The poliastro.iod package contains izzo and
vallado modules. These provide a lambert function for solv-
ing the targeting problem. Nevertheless, a Maneuver.lambert
constructor is also provided so users can keep taking advantage of
Orbit objects.
# Declare departure and arrival datetimes
date_launch = time.Time(

'2011-11-26 15:02', scale='tdb'
)
date_arrival = time.Time(

'2012-08-06 05:17', scale='tdb'
)

# Define initial and final orbits
orb_earth = Orbit.from_ephem(

Sun, Ephem.from_body(Earth, date_launch),
date_launch

)
orb_mars = Orbit.from_ephem(

Sun, Ephem.from_body(Mars, date_arrival),
date_arrival

)

# Compute targetting maneuver and apply it
man_lambert = Maneuver.lambert(orb_earth, orb_mars)
orb_trans, orb_target = ss0.apply_maneuver(

man_lambert, intermediate=true
)

Targeting is closely related to quick mission design by means of
porkchop diagrams. These are contour plots showing all combi-
nations of departure and arrival dates with the specific energy for
each transfer orbit. They allow for quick identification of the most
optimal transfer dates between two bodies.

The poliastro.plotting.porkchop provides the
PorkchopPlotter class which allows the user to generate
these diagrams.
from poliastro.plotting.porkchop import (

PorkchopPlotter
)
from poliastro.utils import time_range

# Generate all launch and arrival dates
launch_span = time_range(

"2020-03-01", end="2020-10-01", periods=int(150)
)
arrival_span = time_range(

"2020-10-01", end="2021-05-01", periods=int(150)
)

# Create an instance of the porkchop and plot it
porkchop = PorkchopPlotter(

Earth, Mars, launch_span, arrival_span,
)

Previous code, with some additional customization, generates
figure 3.

Plotting

For visualization purposes, poliastro provides the
poliastro.plotting package, which contains various
utilities for generating 2D and 3D graphics using different
backends such as matplotlib [Hun07] and Plotly [Inc15].
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Fig. 3: Porkchop plot for Earth-Mars transfer arrival energy showing
latest missions to the Martian planet.

Generated graphics can be static or interactive. The main
difference between these two is the ability to modify the camera
view in a dynamic way when using interactive plotters.

The most important classes in the poliastro.plotting
package are StaticOrbitPlotter and OrbitPlotter3D.
In addition, the poliastro.plotting.misc module con-
tains the plot_solar_system function, which allows the user
to visualize inner and outter both in 2D and 3D, as requested by
users.

The following example illustrates the plotting capabilities of
poliastro. At first, orbits to be plotted are computed and their
plotting style is declared:
from poliastro.plotting.misc import plot_solar_system

# Current datetime
now = Time.now().tdb

# Obtain Florence and Halley orbits
florence = Orbit.from_sbdb("Florence")
halley_1835_ephem = Ephem.from_horizons(

"90000031", now
)
halley_1835 = Orbit.from_ephem(

Sun, halley_1835_ephem, halley_1835_ephem.epochs[0]
)

# Define orbit labels and color style
florence_style = {label: "Florence", color: "#000000"}
halley_style = {label: "Florence", color: "#84B0B8"}

The static two-dimensional plot can be created using the following
code:
# Generate a static 2D figure
frame2D = rame = plot_solar_system(

epoch=now, outer=False
)
frame2D.plot(florence, **florence_style)
frame2D.plot(florence, **halley_style)

As a result, figure 4 is obtained.
The interactive three-dimensional plot can be created using the

following code:
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Fig. 4: Two-dimensional view of the inner Solar System, Florence,
and Halley.

# Generate an interactive 3D figure
frame3D = rame = plot_solar_system(

epoch=now, outer=False,
use_3d=True, interactive=true

)
frame3D.plot(florence, **florence_style)
frame3D.plot(florence, **halley_style)

As a result, figure 5 is obtained.

Fig. 5: Three-dimensional view of the inner Solar System, Florence,
and Halley.

Commercial Earth satellites

Figure 6 gives a clear picture of the most important natural pertur-
bations affecting satellites in LEO, namely: the first harmonic of
the geopotential field J2 (representing the attractor oblateness),
the atmospheric drag, and the higher order harmonics of the
geopotential field.

At least the most significant of these perturbations need to be
taken into account when propagating LEO orbits, and therefore
the methods for purely Keplerian motion are not enough. As
seen above, poliastro implements a number of these perturbations
already - however, numerical methods are much slower than
analytical ones, and this can render them unsuitable for large
scale simulations, satellite conjunction assesment, propagation in
constrained hardware, and so forth.

To address this issue, semianalytical propagation methods
were devised that attempt to strike a balance between the fast
running times of analytical methods and the necessary inclusion
of perturbation forces. One of such semianalytical methods are

Fig. 6: Natural perturbations affecting Low-Earth Orbit (LEO) mo-
tion (source: [VM07])

the Simplified General Perturbation (SGP) models, first developed
in [HK66] and then refined in [LC69] into what we know these
days as the SGP4 propagator [HR80] [VCHK06]. Even though
certain elements of the reference frame used by SGP4 are not
properly specified [VCHK06] and that its accuracy might still be
too limited for certain applications [Ko09] [Lar16], it is nowadays
the most widely used propagation method thanks in large part to
the dissemination of General Perturbations orbital data by the US
501(c)(3) CelesTrak (which itself obtains it from the 18th Space
Defense Squadron of the US Space Force).

The starting point of SGP4 is a special element set that uses
Brouwer mean orbital elements [Bro59] plus a ballistic coefficient
based on an approximation of the atmospheric drag [LC69], and
its results are expressed in a special coordinate system called True
Equator Mean Equinox (TEME). Special care needs to be taken
to avoid mixing mean elements with osculating elements, and to
convert the output of the propagation to the appropriate reference
frame. These element sets have been traditionally distributed in a
compact text representation called Two-Line Element sets (TLEs)
(see 7 for an example). However this format is quite cryptic and
suffers from a number of shortcomings, so recently there has
been a push to use the Orbit Data Messages international standard
developed by the Consultive Committee for Space Data Systems
(CCSDS 502.0-B-2).

1 25544U 98067A   22156.15037205  .00008547  00000+0  15823-3 0  9994
2 25544  51.6449  36.2070 0004577 196.3587 298.4146 15.49876730343319

Fig. 7: Two-Line Element set (TLE) for the ISS (retrieved on 2022-
06-05)

At the moment, general perturbations data both in OMM and
TLE format can be integrated with poliastro thanks to the sgp4
Python library and the Ephem class as follows:
from astropy.coordinates import TEME, GCRS

from poliastro.ephem import Ephem
from poliastro.frames import Planes

def ephem_from_gp(sat, times):
errors, rs, vs = sat.sgp4_array(times.jd1, times.jd2)
if not (errors == 0).all():

warn(
"Some objects could not be propagated, "
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"proceeding with the rest",
stacklevel=2,

)
rs = rs[errors == 0]
vs = vs[errors == 0]
times = times[errors == 0]

cart_teme = CartesianRepresentation(
rs << u.km,
xyz_axis=-1,
differentials=CartesianDifferential(

vs << (u.km / u.s),
xyz_axis=-1,

),
)
cart_gcrs = (

TEME(cart_teme, obstime=times)
.transform_to(GCRS(obstime=times))
.cartesian

)

return Ephem(
cart_gcrs,
times,
plane=Planes.EARTH_EQUATOR

)

However, no native integration with SGP4 has been implemented
yet in poliastro, for technical and non-technical reasons. On one
hand, this propagator is too different from the other methods, and
we have not yet devised how to add it to the library in a way
that does not create confusion. On the other hand, adding such
a propagator to poliastro would probably open the flood gates of
corporate users of the library, and we would like to first devise
a sustainability strategy for the project, which is addressed in the
next section.

Future work

Despite the fact that poliastro has existed for almost a decade, for
most of its history it has been developed by volunteers on their
free time, and only in the past five years it has received funding
through various Summer of Code programs (SOCIS 2017, GSOC
2018-2021) and institutional grants (NumFOCUS 2020, 2021).
The funded work has had an overwhemingly positive impact on
the project, however the lack of a dedicated maintainer has caused
some technical debt to accrue over the years, and some parts of
the project are in need of refactoring or better documentation.

Historically, poliastro has tried to implement algorithms that
were applicable for all the planets in the Solar System, however
some of them have proved to be very difficult to generalize for
bodies other than the Earth. For cases like these, poliastro ships a
poliastro.earth package, but going forward we would like
to continue embracing a generic approach that can serve other
bodies as well.

Several open source projects have successfully used poliastro
or were created taking inspiration from it, like spacetech-ssa
by IBM1 or mubody [BBVPFSC22]. AGI (previously Analytical
Graphics, Inc., now Ansys Government Initiatives) published a
series of scripts to automate the commercial tool STK from Python
leveraging poliastro2. However, we have observed that there is still
lots of repeated code across similar open source libraries written
in Python, which means that there is an opportunity to provide
a "kernel" of algorithms that can be easily reused. Although
poliastro.core started as a separate layer to isolate fast, non-
safe functions as described above, we think we could move it to
an external package so it can be depended upon by projects that

do not want to use some of the higher level poliastro abstractions
or drag its large number of heavy dependencies.

Finally, the sustainability of the project cannot yet be taken for
granted: the project has reached a level of complexity that already
warrants dedicated development effort that cannot be covered with
short-lived grants. Such funding could potentially come from the
private sector, but although there is evidence that several for-profit
companies are using poliastro, we have very little information of
how is it being used and what problems are those users having,
let alone what avenues for funded work could potentially work.
Organizations like the Libre Space Foundation advocate for a
strong copyleft licensing model to convince commercial actors to
contribute to the commons, but in principle that goes against the
permissive licensing that the wider Scientific Python ecosystem,
including poliastro, has adopted. With the advent of new business
models and the ever increasing reliance in open source by the
private sector, a variety of ways to engage commercial users and
include them in the conversation exist. However, these have not
been explored yet.
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