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Abstract—A common technique adopted by the Search For Extraterrestrial In-
telligence (SETI) community is monitoring electromagnetic radiation for signs of
extraterrestrial technosignatures using ground-based radio observatories. The
analysis is made using a Python-based software called TurboSETI to detect nar-
rowband drifting signals inside the recordings that can mean a technosignature.
The data stream generated by a telescope can easily reach the rate of terabits
per second. Our goal was to improve the processing speeds by writing a GPU-
accelerated backend in addition to the original CPU-based implementation of the
de-doppler algorithm used to integrate the power of drifting signals. We discuss
how we ported a CPU-only program to leverage the parallel capabilities of a
GPU using CuPy, Numba, and custom CUDA kernels. The accelerated backend
reached a speed-up of an order of magnitude over the CPU implementation.

Index Terms—gpu, numba, cupy, seti, turboseti

1. Introduction

The Search for Extraterrestrial Intelligence (SETI) is a broad term
utilized to describe the effort of locating any scientific proof of
past or present technology that originated beyond the bounds of
Earth. SETI can be performed in a plethora of ways: either actively
by deploying orbiters and rovers around planets/moons within the
solar system, or passively by either searching for biosignatures in
exoplanet atmospheres or “listening” to technologically-capable
extraterrestrial civilizations. One of the most common techniques
adopted by the SETI community is monitoring electromagnetic
radiation for narrowband signs of technosignatures using ground-
based radio observatories. This search can be performed in mul-
tiple ways: equipment primarily built for this task, like the Allen
Telescope Array (California, USA), renting observation time, or
in the background while the primary user is conducting other ob-
servations. Other radio-observatories useful for this search include
the MeerKAT Telescope (Northern Cape, South Africa), Green
Bank Telescope (West Virginia, USA), and the Parkes Telescope
(New South Wales, Australia). The operation of a radio-telescope
is similar to an optical telescope. Instead of using optics to
concentrate light into an optical sensor, a radio-telescope operates
by concentrating electromagnetic waves into an antenna using a
large reflective structure called a “dish” ([Reb82]). The interac-
tion between the metallic antenna and the electromagnetic wave
generates a faint electrical current. This effect is then quantized
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by an analog-to-digital converter as voltages and transmitted to a
processing logic to extract useful information from it. The data
stream generated by a radio telescope can easily reach the rate
of terabits per second because of the ultra-wide bandwidth radio
spectrum. The current workflow utilized by the Breakthrough
Listen, the largest scientific research program aimed at finding
evidence of extraterrestrial intelligence, consists in pre-processing
and storing the incoming data as frequency-time binary files
([LCS+19]) in persistent storage for later analysis. This post-
analysis is made possible using a Python-based software called
TurboSETI ([ESF+17]) to detect narrowband signals that could be
drifting in frequency owing to the relative radial velocity between
the observer on earth, and the transmitter. The offline processing
speed of TurboSETI is directly related to the scientific output of
an observation. Each voltage file ingested by TurboSETI is often
on the order of a few hundreds of gigabytes. To process data
efficiently without Python overhead, the program uses Numpy for
near machine-level performance. To measure a potential signal’s
drift rate, TurboSETI uses a de-doppler algorithm to align the
frequency axis according to a pre-set drift rate. Another algorithm
called “hitsearch” ([ESF+17]) is then utilized to identify any
signal present in the recorded spectrum. These two algorithms
are the most resource-hungry elements of the pipeline consuming
almost 90% of the running time.

2. Approach

Multiple methods were utilized in this effort to write a GPU-
accelerated backend and optimize the CPU implementation of
TurboSETI. In this section, we enumerate all three main methods.

2.1. CuPy

The original implementation of TurboSETI heavily depends on
Numpy ([HMvdW+20]) for data processing. To keep the number
of modifications as low as possible, we implemented the GPU-
accelerated backend using CuPy ([OUN+17]). This open-source
library offers GPU acceleration backed by NVIDIA CUDA and
AMD ROCm while using a Numpy style API. This enabled us
to reuse most of the code between the CPU and GPU-based
implementations.

2.1. Numba

Some computationally heavy methods of the original CPU-based
implementation of TurboSETI were written in Cython. This ap-
proach has disadvantages: the developer has to be familiar with
Cython syntax to alter the code; the code requires additional logic
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Double-Precision (float64)

Impl. Device File A File B File C
Cython CPU 0.44 min 25.26 min 23.06 min
Numba CPU 0.36 min 20.67 min 22.44 min
CuPy GPU 0.05 min 2.73 min 3.40 min

TABLE 1
Double precision processing time benchmark with Cython, Numba and CuPy

implementation.

Single-Precision (float32)

Impl. Device File A File B File C
Numba CPU 0.26 min 16.13 min 16.15 min
CuPy GPU 0.03 min 1.52 min 2.14 min

TABLE 2
Single precision processing time benchmark with Numba and CuPy

implementation.

to be compiled at installation time. Consequently, it was decided
to replace Cython with pure Python methods decorated with the
Numba ([LPS15]) accelerator. By leveraging the power of the Just-
In-Time (JIT) compiler from Low Level Virtual Machine (LLVM),
Numba can compile Python code into assembly code as well
as apply Single Instruction/Multiple Data (SIMD) acceleration
instructions to achieve near machine-level speeds.

2.2. Single-Precision Floating-Point

The original implementation of the software handled the input
data as double-precision floating-point numbers. This behavior
would cause all the mathematical operations to take significantly
longer to process because of the extended precision. The ultimate
precision of the output product is inherently limited by the preci-
sion of the original input data which in most cases is represented
by an 8-bit signed integer. Therefore, the addition of a single-
precision floating-point number decreased the processing time
without compromising the useful precision of the output data.

3. Results

To test the speed improvements between implementations we used
files from previous observations coming from different observato-
ries. Table 1 indicates the processing times it took to process three
different files in double-precision mode. We can notice that the
CPU implementation based on Numba is measurably faster than
the original CPU implementation based on Cython. At the same
time, the GPU-accelerated backend processed the data from 6.8 to
9.3 times faster than the original CPU-based implementation.

Table 2 indicates the same results as Table 1 but with single-
precision floating points. The original Cython implementation was
left out because it doesn’t support single-precision mode. Here,
the same data was processed from 7.5 to 10.6 times faster than the
Numba CPU-based implementation.

To illustrate the processing time improvement, a single obser-
vation containing 105 GB of data was processed in 12 hours by the
original CPU-based TurboSETI implementation on an i7-7700K
Intel CPU, and just 1 hour and 45 minutes by the GPU-accelerated
backend on a GTX 1070 Ti NVIDIA GPU.

4. Conclusion

The original implementation of TurboSETI worked exclusively
on the CPU to process data. We implemented a GPU-accelerated
backend to leverage the massive parallelization capabilities of a
graphical device. The benchmark performed shows that the new
CPU and GPU implementation takes significantly less time to
process observation data resulting in more science being produced.
Based on the results, the recommended configuration to run the
program is with single-precision calculations on a GPU device.
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