46

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Automatic random variate generation in Python

Christoph Baumgarten®*, Tirth Patel

Abstract—The generation of random variates is an important tool that is re-
quired in many applications. Various software programs or packages contain
generators for standard distributions like the normal, exponential or Gamma,
e.g., the programming language R and the packages SciPy and NumPy in
Python. However, it is not uncommon that sampling from new/non-standard dis-
tributions is required. Instead of deriving specific generators in such situations,
so-called automatic or black-box methods have been developed. These allow
the user to generate random variates from fairly large classes of distributions
by only specifying some properties of the distributions (e.g. the density and/or
cumulative distribution function). In this note, we describe the implementation of
such methods from the C library UNU.RAN in the Python package SciPy and
provide a brief overview of the functionality.

Index Terms—numerical inversion, generation of random variates

Introduction

The generation of random variates is an important tool that is
required in many applications. Various software programs or
packages contain generators for standard distributions, e.g., R
([R C21]) and SciPy ([VGO'20]) and NumPy ([HMvdW *20])
in Python. Standard references for these algorithms are the books
[Dev86], [Dag88], [Gen03], and [Knul4]. An interested reader
will find many references to the vast existing literature in these
works. While relying on general methods such as the rejection
principle, the algorithms for well-known distributions are often
specifically designed for a particular distribution. This is also the
case in the module stats in SciPy that contains more than 100
distributions and the module random in NumPy with more than
30 distributions. However, there are also so-called automatic or
black-box methods for sampling from large classes of distributions
with a single piece of code. For such algorithms, information
about the distribution such as the density, potentially together with
its derivative, the cumulative distribution function (CDF), and/or
the mode must be provided. See [HLDO04] for a comprehensive
overview of these methods. Although the development of such
methods was originally motivated to generate variates from non-
standard distributions, these universal methods have advantages
that make their usage attractive even for sampling from standard
distributions. We mention some of the important properties (see
[LHOO0], [HLDO04], [DHL10]):

o The algorithms can be used to sample from truncated
distributions.

x Corresponding author: christoph.baumgarten@gmail.com
f Unaffiliated

Copyright © 2022 Christoph Baumgarten et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

o For inversion methods, the structural properties of the
underlying uniform random number generator are pre-
served and the numerical accuracy of the methods can be
controlled by a parameter. Therefore, inversion is usually
the only method applied for simulations using quasi-Monte
Carlo (QMC) methods.

« Depending on the use case, one can choose between a fast
setup with slow marginal generation time and vice versa.

The latter point is important depending on the use case: if a
large number of samples is required for a given distribution with
fixed shape parameters, a slower setup that only has to be run once
can be accepted if the marginal generation times are low. If small
to moderate samples sizes are required for many different shape
parameters, then it is important to have a fast setup. The former
situation is referred to as the fixed-parameter case and the latter as
the varying parameter case.

Implementations of various methods are available in the
C library UNU.RAN ([HLO7]) and in the associated R pack-
age Runuran (https://cran.r-project.org/web/packages/Runuran/
index.html, [TLO3]). The aim of this note is to introduce the
Python implementation in the SciPy package that makes some
of the key methods in UNU.RAN available to Python users in
SciPy 1.8.0. These general tools can be seen as a complement
to the existing specific sampling methods: they might lead to
better performance in specific situations compared to the existing
generators, e.g., if a very large number of samples are required for
a fixed parameter of a distribution or if the implemented sampling
method relies on a slow default that is based on numerical
inversion of the CDF. For advanced users, they also offer various
options that allow to fine-tune the generators (e.g., to control the
time needed for the setup step).

Automatic algorithms in SciPy

Many of the automatic algorithms described in [HLD04] and
[DHL10] are implemented in the ANSI C library, UNU.RAN
(Universal Non-Uniform RANdom variate generators). Our goal
was to provide a Python interface to the most important methods
from UNU.RAN to generate univariate discrete and continuous
non-uniform random variates. The following generators have been
implemented in SciPy 1.8.0:

e TransformedDensityRejection: Transformed
Density Rejection (TDR) ([H95], [GW92])

e NumericallInverseHermite: Hermite interpolation
based INVersion of CDF (HINV) ([HLO03])

e NumericalInversePolynomial: Polynomial inter-

polation based INVersion of CDF (PINV) ([DHL10])

mailto:christoph.baumgarten@gmail.com
https://cran.r-project.org/web/packages/Runuran/index.html
https://cran.r-project.org/web/packages/Runuran/index.html

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON

e SimpleRatioUniforms: Simple Ratio-Of-Uniforms
(SROU) ([Ley01], [Ley03])

¢ DiscreteGuideTable:
method (DGT) ([CA74])

¢ DiscreteAliasUrn:
(DAU) ([Wal77))

(Discrete) Guide Table

(Discrete) Alias-Urn method

Before describing the implementation in SciPy in Section
scipy_impl, we give a short introduction to random variate gener-
ation in Section intro_rv_gen.

A very brief introduction to random variate generation

It is well-known that random variates can be generated by inver-
sion of the CDF F of a distribution: if U is a uniform random
number on (0,1), X := F~'(U) is distributed according to F.
Unfortunately, the inverse CDF can only be expressed in closed
form for very few distributions, e.g., the exponential or Cauchy
distribution. If this is not the case, one needs to rely on imple-
mentations of special functions to compute the inverse CDF for
standard distributions like the normal, Gamma or beta distributions
or numerical methods for inverting the CDF are required. Such
procedures, however, have the disadvantage that they may be slow
or inaccurate, and developing fast and robust inversion algorithms
such as HINV and PINV is a non-trivial task. HINV relies on
Hermite interpolation of the inverse CDF and requires the CDF
and PDF as an input. PINV only requires the PDF. The algorithm
then computes the CDF via adaptive Gauss-Lobatto integration
and an approximation of the inverse CDF using Newton’s polyno-
mial interpolation. Note that an approximation of the inverse CDF
can be achieved by interpolating the points (F(x;),x;) for points
x; in the domain of F, i.e., no evaluation of the inverse CDF is
required.

For discrete distributions, F' is a step-function. To compute
the inverse CDF F~!(U), the simplest idea would be to apply
sequential search: if X takes values 0,1,2,... with probabil-
ities po, p1,p2,-.., start with j = 0 and keep incrementing j
until F(j) = po+---+ p; > U. When the search terminates,
X = j = F~'(U). Clearly, this approach is generally very slow
and more efficient methods have been developed: if X takes L
distinct values, DGT realizes very fast inversion using so-called
guide tables / hash tables to find the index j. In contrast DAU is
not an inversion method but uses the alias method, i.e., tables are
precomputed to write X as an equi-probable mixture of L two-
point distributions (the alias values).

The rejection method has been suggested in [VNS51]. In its
simplest form, assume that f is a bounded density on [a,b],
i.e., f(x) <M for all x € [a,b]. Sample two independent uniform
random variates on U on [0, 1] and V on [a,b] until M - U < f(V).
Note that the accepted points (U, V) are uniformly distributed in
the region between the x-axis and the graph of the PDF. Hence,
X :=V has the desired distribution f. This is a special case of
the general version: if f,g are two densities on an interval J such
that f(x) < c-g(x) for all x € J and a constant ¢ > 1, sample
U uniformly distributed on [0,1] and X distributed according to
g until ¢-U-g(X) < f(X). Then X has the desired distribution
f. It can be shown that the expected number of iterations before
the acceptance condition is met is equal to ¢. Hence, the main
challenge is to find hat functions g for which c is small and from
which random variates can be generated efficiently. TDR solves
this problem by applying a transformation 7 to the density such
that x — T(f(x)) is concave. A hat function can then be found

47

by computing tangents at suitable design points. Note that by its
nature any rejection method requires not always the same number
of uniform variates to generate one non-uniform variate; this
makes the use of QMC and of some variance reduction methods
more difficult or impossible. On the other hand, rejection is often
the fastest choice for the varying parameter case.

The Ratio-Of-Uniforms method (ROU, [KM77]) is another
general method that relies on rejection. The underlying principle is
that if (U, V) is uniformly distributed on the set Ay := {(u,v): 0 <
v<+/f(u/v),a <u/v<b} where f is a PDF with support (a,b),
then X := U /V follows a distribution according to f. In general, it
is not possible to sample uniform values on Ay directly. However,
if A CR:=[u_,uy] x [0,v4] for finite constants u_,u,v,, one
can apply the rejection method: generate uniform values (U, V) on
the bounding rectangle R until (U,V) € Ay and return X = U /V.
Automatic methods relying on the ROU method such as SROU
and automatic ROU ([Ley00]) need a setup step to find a suitable
region S € R? such that A £ C S and such that one can generate
(U,V) uniformly on S efficiently.

Description of the SciPy interface

SciPy provides an object-oriented API to UNU.RAN’s methods.
To initialize a generator, two steps are required:

1) creating a distribution class and object,
2) initializing the generator itself.

In step 1, a distributions object must be created that im-
plements required methods (e.g., pdf, cdf). This can either
be a custom object or a distribution object from the classes
rv_continuous or rv_discrete in SciPy. Once the gen-
erator is initialized from the distribution object, it provides a
rvs method to sample random variates from the given dis-
tribution. It also provides a ppf method that approximates
the inverse CDF if the initialized generator uses an inversion
method. The following example illustrates how to initialize the
NumericalInversePolynomial (PINV) generator for the
standard normal distribution:
import numpy as np

from scipy.stats import
from math import exp

sampling

blementation

ion constant

required

class StandardNormal:
def pdf (self, x):

return exp(-0.5

* X*x*x2)

create a distribution object and initialize the
generator

dist = StandardNormal ()

rng = sampling.NumericalInversePolynomial (dist)

sample 100,000 random variates from the given

distribution

rvs = rng.rvs (100000)

As NumericalInversePolynomial generator uses an in-
version method, it also provides a ppf method that approximates
the inverse CDF:

evalu

ppf =

ate the approximate PPF at a

rng.ppf ([0.1, 0.5, 0.9])

few points

It is also easy to sample from a truncated distribution by passing
a domain argument to the constructor of the generator. For
example, to sample from truncated normal distribution:

48

truncate the distribution by passing a

‘domain’

rng = sampling.NumericallInversePolynomial (
dist, domain=(-1, 1)

argument

)

While the default options of the generators should work well in
many situations, we point out that there are various parameters that
the user can modify, e.g., to provide further information about the
distribution (such as mode or center) or to control the numerical
accuracy of the approximated PPF. (u_resolution). Details
can be found in the SciPy documentation https://docs.scipy.org/
doc/scipy/reference/. The above code can easily be generalized to
sample from parametrized distributions using instance attributes
in the distribution class. For example, to sample from the gamma
distribution with shape parameter alpha, we can create the
distribution class with parameters as instance attributes:

class Gamma:

def _ init__ (self, alpha):
self.alpha = alpha

def pdf (self, x):

return xx* (self.alpha-1) * exp(-x)
def support (self):

return 0, np.inf

initialize a
parameters

distl = Gamma (2)
dist2 = Gamma (3)

distribution object with varying

initialize a generator for each distribution
rngl = sampling.NumericallInversePolynomial (dist1l)
rng2 = sampling.NumericallInversePolynomial (dist2)

In the above example, the support method is used to set the
domain of the distribution. This can alternatively be done by
passing a domain parameter to the constructor.

In addition to continuous distribution, two UNU.RAN methods
have been added in SciPy to sample from discrete distributions. In
this case, the distribution can be either be represented using a
probability vector (which is passed to the constructor as a Python
list or NumPy array) or a Python object with the implementation
of the probability mass function. In the latter case, a finite domain
must be passed to the constructor or the object should implement
the support method'.

Probability vector to

distribution. Note tha

need not be vectorized

pv = [0.1, 9.0, 2.9, 3.4, 0.3]

PCG64 uniform RNG with seed 12

urng = np.random.default_rng (123

rng = sampling.DiscreteAliasUrn(
pv, random_state=urng

3
)

)

sample from the given discrete distribution
rvs = rng.rvs(100000)

Underlying uniform pseudo-random number generators

NumPy provides several generators for uniform pseudo-random
numbers”. It is highly recommended to use NumPy’s default
random number generator np . random.PCG64 for better speed
and performance, see [O’N14] and https://numpy.org/doc/stable/

1. Support for discrete distributions with infinite domain hasn’t been added
yet.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

reference/random/bit_generators/index.html. To change the uni-
form random number generator, a random_state parameter
can be passed as shown in the example below:

64-bit PCG random number generator in NumPy
urng = np.random.Generator (np.random.PCG64 ())
The above line can also be replaced by:

' ‘urng = np.random.default_rng()

as PCG64 is the default generator starting

from NumPy 1.19.0

change the uniform random number generator by

passing the ‘random_state’ arg

rng = sampling.NumericallInversePolynomial (
dist, random_state=urng

ument

)

We also point out that the PPF of inversion methods can be applied
to sequences of quasi-random numbers. SciPy provides different
sequences in its QMC module (scipy.stats.gmc).
NumericalInverseHermite provides a grvs method
which generates random variates using QMC methods present
in SciPy (scipy.stats.gmc) as uniform random number
generators®. The next example illustrates how to use qrvs with a
generator created directly from a SciPy distribution object.

from scipy import stats
from scipy.stats import gmc

1D Halton sequence generator.
grng = gmc.Halton (d=1)

rng = sampling.NumericallInverseHermite (stats.norm())

generate quasi random r
sequence as uniform variates
grvs = rng.qrvs(size=100, gmc_engine=grng)

bers using the Halton

Benchmarking

To analyze the performance of the implementation, we tested the
methods applied to several standard distributions against the gen-
erators in NumPy and the original UNU.RAN C library. In addi-
tion, we selected one non-standard distribution to demonstrate that
substantial reductions in the runtime can be achieved compared to
other implementations. All the benchmarks were carried out using
NumPy 1.22.4 and SciPy 1.8.1 running in a single core on Ubuntu
20.04.3 LTS with Intel(R) Core(TM) i7-8750H CPU (2.20GHz
clock speed, 16GB RAM). We run the benchmarks with NumPy’s
MT19937 (Mersenne Twister) and PCG64 random number gen-
erators (np.random.MT19937 and np.random.PCG64) in
Python and use NumPy’s C implementation of MT19937 in the
UNU.RAN C benchmarks. As explained above, the use of PCG64
is recommended, and MT19937 is only included to compare the
speed of the Python implementation and the C library by relying
on the same uniform number generator (i.e., differences in the
performance of the uniform number generation are not taken
into account). The code for all the benchmarks can be found on
https://github.com/tirthasheshpatel/unuran_benchmarks.

The methods used in NumPy to generate normal, gamma, and
beta random variates are:

o the ziggurat algorithm ([MTOOb]) to sample from the
standard normal distribution,

2. By default, NumPy’s legacy random number generator, MT19937
(np.random.RandomState ()) is used as the uniform random number
generator for consistency with the stats module in SciPy.

3.In SciPy 1.9.0, qrvs will be
NumericalInversePolynomial.

added to

https://docs.scipy.org/doc/scipy/reference/
https://docs.scipy.org/doc/scipy/reference/
https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://github.com/tirthasheshpatel/unuran_benchmarks

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON

o the rejection algorithms in Chapter XI1.2.6 in [Dev86] if
o < 1 and in [MTO0Oa] if & > 1 for the Gamma distribution,

e Johnk’s algorithm ([Joh64], Section IX.3.5 in [Dev86]) if
max{a, B} < I, otherwise a ratio of two Gamma variates
with shape parameter o and B (see Section IX.4.1 in
[Dev86]) for the beta distribution.

Benchmarking against the normal, gamma, and beta distributions

Table 1 compares the performance for the standard normal,
Gamma and beta distributions. We recall that the density of the
Gamma distribution with shape parameter a > 0 is given by
x € (0,00) + x4~ e~ and the density of the beta distribution with
shape parameters o, > 0 is given by x € (0,1) — %
where I'(-) and B(-,-) are the Gamma and beta functions. The
results are reported in Table 1.
We summarize our main observations:

1) The setup step in Python is substantially slower than
in C due to expensive Python callbacks, especially for
PINV and HINV. However, the time taken for the setup is
low compared to the sampling time if large samples are
drawn. Note that as expected, SROU has a very fast setup
such that this method is suitable for the varying parameter
case.

2) The sampling time in Python is slightly higher than in
C for the MT19937 random number generator. If the
recommended PCG64 generator is used, the sampling
time in Python is slightly lower. The only exception
is SROU: due to Python callbacks, the performance is
substantially slower than in C. However, as the main
advantage of SROU is the fast setup time, the main use
case is the varying parameter case (i.e., the method is not
supposed to be used to generate large samples).

3) PINV, HINV, and TDR are at most about 2x slower than
the specialized NumPy implementation for the normal
distribution. For the Gamma and beta distribution, they
even perform better for some of the chosen shape pa-
rameters. These results underline the strong performance
of these black-box approaches even for standard distribu-
tions.

4) While the application of PINV requires bounded densi-
ties, no issues are encountered for o = 0.05 since the
unbounded part is cut off by the algorithm. However, the
setup can fail for very small values of c.

Benchmarking against a non-standard distribution

We benchmark the performance of PINV to sample from the
generalized normal distribution ([Sub23]) whose density is given

by x € (—o0,00) > % against the method proposed in [NP09]
and against the implementation in SciPy’s gennorm distribu-
tion. The approach in [NP09] relies on transforming Gamma
variates to the generalized normal distribution whereas SciPy
relies on computing the inverse of CDF of the Gamma distri-
bution (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
special.gammainccinv.html). The results for different values of p
are shown in Table 2.

PINV is usually about twice as fast than the special-
ized method and about 15-150 times faster than SciPy’s
implementation*. We also found an R package pgnorm (https:
/[cran.r-project.org/web/packages/pgnorm/) that implements vari-
ous approaches from [KR13]. In that case, PINV is usually about

49

70-200 times faster. This clearly shows the benefit of using a
black-box algorithm.

Conclusion

The interface to UNU.RAN in SciPy provides easy access to
different algorithms for non-uniform variate generation for large
classes of univariate continuous and discrete distributions. We
have shown that the methods are easy to use and that the al-
gorithms perform very well both for standard and non-standard
distributions. A comprehensive documentation suite, a tutorial
and many examples are available at https://docs.scipy.org/doc/
scipy/reference/stats.sampling.html and https://docs.scipy.org/doc/
scipy/tutorial/stats/sampling.html. Various methods have been im-
plemented in SciPy, and if specific use cases require additional
functionality from UNU.RAN, the methods can easily be added
to SciPy given the flexible framework that has been developed.
Another area of further development is to better integrate SciPy’s
QMC generators for the inversion methods.

Finally, we point out that other sampling methods like Markov
Chain Monte Carlo and copula methods are not part of SciPy. Rel-
evant Python packages in that context are PyMC ([PHF10]), PyS-
tan relying on Stan ([Tea21]), Copulas (https://sdv.dev/Copulas/)
and PyCopula (https://blent-ai.github.io/pycopula/).

Acknowledgments

The authors wish to thank Wolfgang Hérmann and Josef Leydold
for agreeing to publish the library under a BSD license and for
helpful feedback on the implementation and this note. In addition,
we thank Ralf Gommers, Matt Haberland, Nicholas McKibben,
Pamphile Roy, and Kai Striega for their code contributions, re-
views, and helpful suggestions. The second author was supported
by the Google Summer of Code 2021 program”.

REFERENCES

[CA74] Hui-Chuan Chen and Yoshinori Asau. On gener-
ating random variates from an empirical distribution.
AIIE Transactions, 6(2):163-166, 1974. doi:10.1080/
05695557408974949.

John Dagpunar. Principles of random variate generation.
Oxford University Press, USA, 1988.

Luc Devroye. Non-Uniform Random Variate Generation.
Springer-Verlag, New York, 1986. doi:10.1007/978-1~
4613-8643-8.

Gerhard Derflinger, Wolfgang Hormann, and Josef Leydold.
Random variate generation by numerical inversion when only
the density is known. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 20(4):1-25, 2010. doi:
10.1145/1842722.1842723.

James E Gentle. Random number generation and Monte Carlo
methods, volume 381. Springer, 2003. doi:10.1007/
b97336.

Walter R Gilks and Pascal Wild. Adaptive rejection sampling
for Gibbs sampling. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 41(2):337-348, 1992. doi:10.
2307/2347565.

Wolfgang Hérmann. A rejection technique for sampling from
T-concave distributions. ACM Trans. Math. Softw., 21(2):182—
193, 1995. doi:10.1145/203082.203089.

Wolfgang Hoérmann and Josef Leydold. Continuous random
variate generation by fast numerical inversion. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS),
13(4):347-362, 2003. doi:10.1145/945511.945517.

[Dag88]

[Dev86]

[DHL10]

[Gen03]

[GW92]

[H95]

[HLO3]

4. In SciPy 1.9.0, the speed will be improved by implementing the method
from [NP09]

5. https://summerofcode.withgoogle.com/projects/#5912428874825728

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainccinv.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainccinv.html
https://cran.r-project.org/web/packages/pgnorm/
https://cran.r-project.org/web/packages/pgnorm/
https://docs.scipy.org/doc/scipy/reference/stats.sampling.html
https://docs.scipy.org/doc/scipy/reference/stats.sampling.html
https://docs.scipy.org/doc/scipy/tutorial/stats/sampling.html
https://docs.scipy.org/doc/scipy/tutorial/stats/sampling.html
https://sdv.dev/Copulas/
https://blent-ai.github.io/pycopula/
http://dx.doi.org/10.1080/05695557408974949
http://dx.doi.org/10.1080/05695557408974949
http://dx.doi.org/10.1007/978-1-4613-8643-8
http://dx.doi.org/10.1007/978-1-4613-8643-8
http://dx.doi.org/10.1145/1842722.1842723
http://dx.doi.org/10.1145/1842722.1842723
http://dx.doi.org/10.1007/b97336
http://dx.doi.org/10.1007/b97336
http://dx.doi.org/10.2307/2347565
http://dx.doi.org/10.2307/2347565
http://dx.doi.org/10.1145/203082.203089
http://dx.doi.org/10.1145/945511.945517
https://summerofcode.withgoogle.com/projects/#5912428874825728

50

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

N Python C
Distribution Method - - -
Setup | Sampling (PCG64) | Sampling (MT19937) | Setup | Sampling (MT19937)
PINV 4.6 29.6 36.5 0.27 324
HINV 2.5 33.7 40.9 0.38 36.8
Standard normal TDR 0.2 37.3 47.8 0.02 41.4
SROU | 8.7 us 2510 2160 0.5 us 232
NumPy - 17.6 22.4 - -
PINV 196.0 29.8 37.2 37.9 325
Gamma(0.05) HINV 24.5 36.1 43.8 1.9 40.7
NumPy - 55.0 68.1 - -
PINV 16.5 31.2 38.6 2.0 345
Gamma(0.5) HINV 49 342 41.7 0.6 37.9
NumPy - 86.4 99.2 - -
PINV 53 30.8 38.7 0.5 34.6
Gamma(3.0) HINV 53 33 40.6 0.4 36.8
TDR 0.2 38.8 49.6 0.03 44
NumPy - 36.5 47.1 - -
PINV 214 33.1 39.9 24 37.3
Beta(0.5,0.5) HINV 2.1 38.4 453 0.2 42
NumPy - 101 112 - -
Beta(0.5,1.0) HINV 0.2 37 443 0.01 41.1
NumPy - 125 138 - -
PINV 15.7 30.5 37.2 1.7 343
Beta(13,1.2) HINV 4.1 334 40.8 0.4 37.1
TDR 0.2 46.8 57.8 0.03 45
NumPy - 74.3 97 - -
PINV 9.7 30.2 38.2 0.9 33.8
Beta(3.0,2.0) HINV 5.8 33.7 412 0.4 37.4
TDR 0.2 42.8 52.8 0.02 44
NumPy - 72.6 92.8 - -

TABLE 1
Average time taken (reported in milliseconds, unless mentioned otherwise) to sample 1 million random variates from the standard normal distribution. The mean is
computed over 7 iterations. Standard deviations are not reported as they were very small (less than 1% of the mean in the large majority of cases). Note that not
all methods can always be applied, e.g., TDR cannot be applied to the Gamma distribution if a < 1 since the PDF is not log-concave in that case. As NumPy uses

rejection algorithms with precomputed constants, no setup time is reported.

p 0.25 | 045 0.75 1 1.5 2 5 8
Nardon and Pianca (2009) 100 101 101 45 148 120 128 122
SciPy’s gennorm distribution 832 1000 | 1110 | 559 | 5240 | 6720 | 6230 | 5950
Python (PINV Method, PCG64 urng) 50 47 45 41 40 37 38 38
TABLE 2

Comparing SciPy’s implementation and a specialized method against PINV to sample 1 million variates from the generalized normal distribution for different values
of the parameter p. Time reported in milliseconds. The mean is computer over 7 iterations.

[HLO7]

[HLDO4]

[HMvdW*20]

[Joh64]

[KM77]

Wolfgang Hormann and Josef Leydold. UNU.RAN - Univer-
sal Non-Uniform RANdom number generators, 2007. https:
/Istatmath.wu.ac.at/unuran/doc.html.

Wolfgang Hormann, Josef Leydold, and Gerhard Derflinger.
Automatic nonuniform random variate generation. Springer,
2004. doi:10.1007/978-3-662-05946-3.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357-362, 2020.
doi:10.1038/s41586-020-2649-2.

MD Johnk. Erzeugung von betaverteilten und gammaverteilten
Zufallszahlen. Metrika, 8(1):5-15, 1964. doi:10.1007/
b£f02613706.

Albert J Kinderman and John F Monahan. Computer gen-
eration of random variables using the ratio of uniform devi-

[Knul4]

[KR13]

[Ley00]

[LeyO1]

[Ley03]

ates. ACM Transactions on Mathematical Software (TOMS),
3(3):257-260, 1977. doi:10.1145/355744.355750.
Donald E Knuth. The Art of Computer Programming, Volume
2: Seminumerical algorithms. Addison-Wesley Professional,
2014. doi:10.2307/2317055.

Steve Kalke and W-D Richter. Simulation of the p-generalized
Gaussian distribution. Journal of Statistical Computation
and Simulation, 83(4):641-667, 2013. doi:10.1080/
00949655.2011.631187.

Josef Leydold. Automatic sampling with the ratio-of-uniforms

method. ACM Transactions on Mathematical Software
(TOMS), 26(1):78-98, 2000. doi:10.1145/347837.
347863.

Josef Leydold. A simple universal generator for continuous
and discrete univariate T-concave distributions. ACM Transac-
tions on Mathematical Software (TOMS), 27(1):66-82, 2001.
doi:10.1145/382043.382322.

Josef Leydold. Short universal generators via generalized
ratio-of-uniforms method. Mathematics of Computation,
72(243):1453-1471, 2003. doi:10.1090/s0025-5718~
03-01511-4.

https://statmath.wu.ac.at/unuran/doc.html
https://statmath.wu.ac.at/unuran/doc.html
http://dx.doi.org/10.1007/978-3-662-05946-3
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1007/bf02613706
http://dx.doi.org/10.1007/bf02613706
http://dx.doi.org/10.1145/355744.355750
http://dx.doi.org/10.2307/2317055
http://dx.doi.org/10.1080/00949655.2011.631187
http://dx.doi.org/10.1080/00949655.2011.631187
http://dx.doi.org/10.1145/347837.347863
http://dx.doi.org/10.1145/347837.347863
http://dx.doi.org/10.1145/382043.382322
http://dx.doi.org/10.1090/s0025-5718-03-01511-4
http://dx.doi.org/10.1090/s0025-5718-03-01511-4

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON

[LHOO]

[MTO00a]

[MTO0b]

[NP09]

[O’N14]

[PHF10]

[R C21]
[Sub23]
[Tea21]

[TLO3]

[VGO™20]

[VN51]

[Wal77]

Josef Leydold and Wolfgang Hormann. Universal algorithms
as an alternative for generating non-uniform continuous ran-
dom variates. In Proceedings of the International Conference
on Monte Carlo Simulation 2000., pages 177-183, 2000.
George Marsaglia and Wai Wan Tsang. A simple method for
generating gamma variables. ACM Transactions on Math-
ematical Software (TOMS), 26(3):363-372, 2000. doi:
10.1145/358407.358414.

George Marsaglia and Wai Wan Tsang. The ziggurat method
for generating random variables. Journal of statistical soft-
ware, 5(1):1-7, 2000. doi:10.18637/jss.v005.108.
Martina Nardon and Paolo Pianca. Simulation techniques
for generalized Gaussian densities. Journal of Statistical
Computation and Simulation, 79(11):1317-1329, 2009. doi :
10.1080/00949650802290912.

Melissa E. O’Neill. PCG: A family of simple fast space-
efficient statistically good algorithms for random number gen-
eration. Technical Report HMC-CS-2014-0905, Harvey Mudd
College, Claremont, CA, September 2014.

Anand Patil, David Huard, and Christopher J Fonnesbeck.
PyMC: Bayesian stochastic modelling in Python. Journal of
Statistical Software, 35(4):1, 2010. doi1:10.18637/7Jss.
v035.104.

R Core Team. R: A language and environment for statistical
computing, 2021. https://www.R-project.org/.

M.T. Subbotin. On the law of frequency of error. Mat. Sbornik,
31(2):296-301, 1923.

Stan Development Team. Stan modeling language users guide
and reference manual, version 2.28., 2021. https://mc-stan.org.
Giinter Tirler and Josef Leydold. Automatic non-uniform
random variate generation in r. In Proceedings of DSC, page 2,
2003.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in
python. Nature methods, pages 1-12, 2020. doi:10.1038/
541592-019-0686-2.

John Von Neumann. Various techniques used in connection
with random digits. Appl. Math Ser, 12(36-38):3, 1951.
Alastair J Walker. An efficient method for generating discrete
random variables with general distributions. ACM Transac-
tions on Mathematical Software (TOMS), 3(3):253-256, 1977.
doi:10.1145/355744.3557409.

http://dx.doi.org/10.1145/358407.358414
http://dx.doi.org/10.1145/358407.358414
http://dx.doi.org/10.18637/jss.v005.i08
http://dx.doi.org/10.1080/00949650802290912
http://dx.doi.org/10.1080/00949650802290912
http://dx.doi.org/10.18637/jss.v035.i04
http://dx.doi.org/10.18637/jss.v035.i04
https://www.R-project.org/
https://mc-stan.org
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1145/355744.355749

	Introduction
	Automatic algorithms in SciPy
	A very brief introduction to random variate generation
	Description of the SciPy interface
	Underlying uniform pseudo-random number generators

	Benchmarking
	Benchmarking against the normal, gamma, and beta distributions
	Benchmarking against a non-standard distribution

	Conclusion
	Acknowledgments
	References

