PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

How PDFrw and fillable forms improves throughput at
a Covid-19 Vaccine Clinic

Haw-minn Lu**, José Unpingco*

Abstract—PDFrw was used to prepopulate Covid-19 vaccination forms to im-
prove the efficiency and integrity of the vaccination process in terms of federal
and state privacy requirements. We will describe the vaccination process from
the initial appointment, through the vaccination delivery, to the creation of sub-
sequent required documentation. Although Python modules for PDF generation
are common, they struggle with managing fillable forms where a fillable field
may appear multiple times within the same form. Additionally, field types such
as checkboxes, radio buttons, lists and combo boxes are not straightforward to
programmatically fill. Another challenge is combining multiple filled forms while
maintaining the integrity of the values of the fillable fields. Additionally, HIPAA
compliance issues are discussed.

Index Terms—acrobat documents, form filling, HIPAA compliance, COVID-19

Introduction

The coronavirus pandemic has been one of the most disruptive
nationwide events in living memory. The frail, vulnerable, and
elderly have been disproportionately affected by serious hospital-
izations and deaths. Notwithstanding the amazing pace of vaccine
development, logistical problems can still inhibit large-scale vac-
cine distribution, especially among the elderly. Vaccination centers
typically require online appointments to facilitate vaccine distri-
bution by State and Federal governments, but many elderly do not
have Internet access or know how to make online appointments,
or how to use online resources to coordinate transportation to and
from the vaccination site, as needed.

As a personal anecdote, when vaccinations were opened to
all aged 65 and older, one of the authors tried to get his parents
vaccinated and discovered that the experience documented here
[Let21] was unfortunately typical and required regularly pinging
the appointment website for a week to get an appointment.
However, beyond persistence, getting an appointment required
monitoring the website to track when batches of new appointments
were released --- all tasks that require an uncommon knowledge of
Internet infrastructure beyond most patients, not just the elderly.

To help San Diego County with the vaccine rollout, the Gary
and Mary West PACE (WestPACE) center established a pop-up
point of distribution (POD) for the COVID-19 vaccine [pre21]
specifically for the elderly with emphasis on those who are most
vulnerable. The success in the POD was reported in the local news

x Corresponding author: hlu@westhealth.org
£ Gary and Mary West Health Institute

Copyright © 2021 Haw-minn Lu et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

media [Lit21] [Col21] and prompted the State of California to ask
WestPACE’s sister organization (the Gary and Mary West Health
Institute) to develop a playbook for the deploying a pop-up POD
[pod21].

This paper describes the logistical challenges regarding the
vaccination rollout for WestPACE and focuses on the use of
Python’s PDFrw module to address real-world sensitive data
issues with PDF documents.

This paper gives a little more background of the effort.
Next the overall infrastructure and information flow is described.
Finally, a very detailed discussion on the use of python and the
PDFrw library to address a major bottleneck and volunteer pain
point.

Background

WestPACE operates a Program of All-Inclusive Care for the
Elderly (PACE) center which provides nursing-home-level care
and wrap-around services such as transportation to the most
vulnerable elderly. To provide vaccinations to WestPACE patients
as quickly as possible, WestPACE tried to acquire suitable freezers
(some vaccines require special cold storage) instead of waiting
for San Diego County to provide them; but, due to high-demand,
acquiring a suitably-sized freezer was very problematic. As a
pivot, WestPACE opted to acquire a freezer that was available but
with excess capacity beyond what was needed for just WestPACE,
and then collaborated with the County to use this excess capacity
to establish a walk-up vaccination center for all San Diego senior
citizens, in or out of WestPACE.

WestPACE coordinated with the local 2-1-1 organization re-
sponsible for coordination of community health and disaster ser-
vices. The 2-1-1 organization provided a call center with in-person
support for vaccine appointments and transportation coordination
to and from WestPACE. This immediately eased the difficulty
of making online appointments and the burden of transportation
coordination. With these relationships in place, the vaccination
clinic went from concept to active vaccine distribution site in about
two weeks resulting in the successful vaccination of thousands of
elderly.

Although this is a technical paper, this background describes
the real impact technology can make in the lives of the vulnerable
and elderly in society in a crisis situation.

Infrastructure

The goal of the WestPACE vaccine clinic was to provide a friendly
environment to vaccinate senior citizens. Because this was a non-
profit and volunteer effort, the clinic did not have any pre-existing

mailto:hlu@westhealth.org

Fig. 1: Vaccination Pipeline

record management practices with corresponding IT infrastruc-
ture to handle sensitive health information according to Health
Insurance Portability and Accountability Act (HIPAA) standards.
One key obstacle is paperwork for appointments, questionnaires,
consent forms, and reminder cards (among others) that must be
processed securely and at speed, given the fierce demand for
vaccines. Putting the burden of dealing with this paperwork on the
patients would be confusing for the patient and time-consuming
and limit the overall count of vaccinations delivered. Thus, the
strategy was to use electronic systems to handle Protected Health
Information (PHI) wherever possible and comply with HIPAA
requirements [MF19] for data encryption at rest and in-transit,
including appropriate Business Associate Agreements (BAA) for
any cloud service providers [FKR ' 16]. For physical paper, HIPAA
requirements mean that PHI must always be kept in a locked room
or a container with restricted access.

Figure 1 shows a high level view of the user experience and
information flow. Making appointments can be challenging, espe-
cially those with limited caregiver support. Because the appoint-
ment systems were set up in a hurry, many user interfaces were
confusing and poorly designed. In the depicted pipeline, the person
(or caregiver) telephones the 2-1-1 call center and the live operator
collects demographic and health information, and coordinates
any necessary travel arrangements, as needed. The demographic
and health information is entered into the appointment system
managed by the California Department of Public Health. The
information is then downloaded to the clinic from the appointment
system the day before the scheduled vaccination. Next, a forms
packet is generated for every scheduled patient and consolidated
into a PDF file that is then printed and handed to the volunteers at
the clinic. The packet consolidates documents including consent
forms, health forms, and CDC-provided vaccination cards.

When the patient arrives at the clinic, their forms are pulled
and a volunteer reviews the questions while correcting any errors.
Once the information is validated, the patient is directed to sign
the appropriate forms. The crucially efficient part is that the
patient and volunteer only have to validate previously collected
information instead of filling out multiple forms with redundant
information. This was crucial during peak demand so that most
patients experienced less than a five minute delay between arrival
and vaccine administration. While there was consideration of
commercial services to do the electronic form filling and electronic
signatures, they were discounted because these turned out to be too
expensive and time-consuming to set up.

Different entities such as 2-1-1 and the State of California
handle certain elements of the data pipeline, but strict HIPAA
requirements are followed at each step. All clinic communications
with the State appointment system were managed through a
properly authenticated and encrypted system. The vaccine clinic

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

utilized pre-existing, cloud-based HIPAA-compliant system, with
corresponding BAAs. All sensitive data processing occurred on
this system. The system, which is described at [HmLAKJU20],
uses both python alone and in Jupyter notebooks.

Finally, the processed PDF forms were transferred using en-
cryption to a server at the clinic site where an authorized operator
printed them out. The paper forms were placed in the custody
of a clinic volunteer until they were delivered to a back office
for storage in a locked cabinet, pursuant to health department
regulations.

Though all aspects of the pipeline faced challenges, the pre-
population of forms turned out to be surprisingly difficult due
to the lack of programmatic PDF tools that properly work with
fillable forms. The remainder of the paper discusses the challenges
and provides instructions on how to use Python to fill PDF forms
for printing.

Programmatically Fill Forms

Programmatically filling in PDF forms can be a quick and accurate
way to disseminate forms. Bits and pieces can be found throughout
the Internet and places like Stack Overflow but no single source
provides a complete answer. The Medium blog post by Vivsvaan
Sharma [Sha20] is a good starting place. Another useful resource
is the PDF 1.7 specification [pdf0O8]. Since the deployment of
the vaccine clinic, the details of the form filling can be found
at WestHealth’s blog [Lu21]. The code is available on GitHub as
described below.

The following imports are used in the examples given below.
import pdfrw
from pdfrw.objects.pdfstring import PdfString

from pdfrw.objects.pdfstring import BasePdfName
from pdfrw import PdfDict, PdfObject

Finding Your Way Around PDFrw and Fillable Forms

Several examples of basic form filling code can be found on the
Internet, including the above-mentioned Medium blog post. The
following is a typical snippet which was taken largely from the
blog post.

pdf = pdfrw.PdfReader (file_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:
continue

for annotation in annotations:

if annotation['/Subtype']=='/Widget':
if annotation['/T']:
key = annotation['/T'].to_unicode ()
print (key)

The type of annotation['/T"'] is pdfString. While some
sources use [1l:-1] to extract the string from pdfString,
the to_unicode method is the proper way to extract the
string. According to the PDF 1.7 specification § 12.5.6.19,
all fillable forms use widget annotation. The check for
annotation['/SubType'] filters the annotations to only
widget annotations.

To set the value value, a PDFString needs to be created
by encoding value with the encode method. The encoded
PDFString is then used to update the annotation as shown
in the following code snippet.

annotation.update (PdfDict (V=PdfString.encode (value)))

HOW PDFRW AND FILLABLE FORMS IMPROVES THROUGHPUT AT A COVID-19 VACCINE CLINIC 3

This converts value into a PdfString and updates the
annotation, creating a value for annotation['/V'].

In addition, at the top level of the PdfReader object pdf, the
NeedAppearances property in the interactive form dictionary,
AcroForm (See § 12.7.2) needs to be set, without this, the fields
are updated but will not necessarily display. To remedy this, the
following code snippet can be used.

pdf.Root .AcroForm.update (PdfDict (
NeedAppearances=PdfObject ('true')))

Multiple Fields with Same Name

Combining the code snippets provides a simple method for filling
in text fields, except if there are multiple instances of the same
field. To refer back to the clinic example, each patient’s form
packet comprised multiple forms each with the Name field. Some
forms even had the Name appear twice such as in a demographic
section and then in a Print Name field next to a signature line.
If the code above on such a form were run, the Name field will
not show up.

Whenever the multiple fields occur with the same name, the
situation is more complicated. One way to deal with this is to
simply rename the fields to be different such as Name-1 and
Name-2, which is fine if the sole use of the form is for automated
form filling. This would require access to a form authoring tool. If
the form is also to be used for manual filling, this would require
the user to enter the Name multiple times.

When fields appear multiple times, the widget annotation does
not have the /T field but has a /Parent field. As it turns out
this /Parent contains the field name /T as well as the default
value /V. Each /Parent has one /Kids for each occurrence of
the field. To modify the code to handle repeated occurrences of a
field, the following lines can be inserted:

if not annotation['/T']:
annotation=annotation['/Parent']

These lines allow the inspection and modifications of annotations
that appear more than once. With this modification, the result of
the inspection code yields:
pdf = pdfrw.PdfReader (file_path)
for page in pdf.pages:

annotations = page['/Annots']

if annotations is None:
continue

for annotation in annotations:
if annotation['/Subtype']l=='/Widget':
if not annotation['/T']:
annotation=annotation['/Parent']
if annotation['/T']:
key = annotation['/T'].to_unicode ()
print (key)
With this code in the above example, Name would be printed
multiple times, once for each instance, but each instance points
to the same /Parent. With this modification, the form filler
actually fills the /Parent value multiple times, but this has no
impact since it is overwriting the default value with the same value.

Checkboxes

In accordance to §12.7.4.2.3, the checkbox state can be set as
follows:

def checkbox (annotation, value):
if value:
val_str = BasePdfName ('/Yes')

else:
val_str = BasePdfName ('/0Off")
annotation.update (PdfDict (V=val_str))

This could work if the export value of the checkbox is Yes, which
is the default, but not when the export value is something else. The
easiest solution is to edit the form to ensure that the export value of
the checkbox is Yes and the default state of the box is unchecked.
The recommendation in the specification is that it be set to Yes.
In the event tools to make this change are not available, the /v and
/AS fields should be set to the export value not Yes. The export
value can be inspected by examining the appearance dictionary
/AP and specifically at the /N field. Each annotation has up to
three appearances in its appearance dictionary: /N, /R and /D,
standing for normal, rollover, and down (§12.5.5). The latter two
have to do with appearance in interacting with the mouse. The
normal appearance has to do with how the form is printed.

There may be circumstances where the form has checkboxes
whose default state is checked. In that case, in order to uncheck a
box, the best practice is to delete the /V as well as the /AS field
from the dictionary.

According to the PDF specification for checkboxes, the ap-
pearance stream /AS should be set to the same value as /V.
Failure to do so may mean that the checkboxes do not appear.

More Complex Forms

For the purpose of the vaccine clinic application, the filling of text
fields and checkboxes were all that were needed. However, for
completeness, other form field types were studied and solutions
are given below.

Radio Buttons

Radio buttons are by far the most complex of the form entry types.
Each widget links to /Kids which represent the other buttons in
the radio group. Each widget in a radio group will link to the same
‘kids’. Much like the ‘parents’ for the repeated forms fields with
the same name, each kid need only be updated once, but the same
update can be used multiple times if it simplifies the code.

In a nutshell, the value /V of each widget in a radio group
needs to be set to the export value of the button selected. In each
kid, the appearance stream /AS should be set to /Off except
for the kid corresponding to the export value. In order to identify
the kid with its corresponding export value, the /N field of the
appearance dictionary /AP needs to be examined just as was done
with the checkboxes.

The resulting code could look like the following:
def radio_button (annotation, value):

for each in annotation['/Kids']:
determine the export value of each kid

keys = each['/AP']['/N'].keys ()
keys.remove (' /Off")
export = keys|[0]

if f'/{value}'
val_str =
else:
val_str = BasePdfName (f'/Off")
each.update (PdfDict (AS=val_str))

== export:
BasePdfName (f'/ {value/")

annotation.update (PdfDict (

V=BasePdfName (f'/{value/")))

4

Combo Boxes and Lists

Both combo boxes and lists are forms of the form type choice.
The combo boxes resemble drop-down menus and lists are similar
to list pickers in HTML. Functionally, they are very similar in
form filling. The value /V and appearance stream /AS need to
be set to their exported values. The /Op field yields a list of lists
associating the exported value with the value that appears in the
widget.

To set the combo box, the value needs to be set to the export
value.
def combobox (annotation,

export=None

for each in annotation['/Opt']:
if each[l].to_unicode ()==value:

value) :

export = each[0].to_unicode ()
if export is None:
err = f"Export Value: "" Not Found"
raise KeyError (err)
pdfstr = PdfString.encode (export)
annotation.update (PdfDict (V=pdfstr, AS=pdfstr))

Lists are structurally very similar. The list of exported values can
be found in the /Opt field. The main difference is that lists
based on their configuration can take multiple values. Multiple
values can be set with PDFrw by setting /V and /AS to a list of
PdfStrings. The code presented here uses two separate helpers,
but because of the similarity in structure between list boxes and
combo boxes, they could be combined into one function.

def listbox (annotation, values):
pdfstrs=[]
for value in values:
export=None
for each in annotation['/Opt']:
if each[l].to_unicode()==value:
export = each[0].to_unicode ()
if export is None:
err = f"Export Value:
raise KeyError (err)
pdfstrs.append (PdfString.encode (export))
annotation.update (PdfDict (V=pdfstrs, AS=pdfstrs))

value) Not Found"

Determining Form Field Types Programmatically

While PDF authoring tools or visual inspection can identify each
form’s type, the type can be determined programmatically as well.
It is important to understand that fillable forms fall into four form
types, button (push button, checkboxes and radio buttons), text,
choice (combo box and list box), and signature. They correspond
to following values of the /FT form type field of a given anno-
tation, /Btn, /Tx, /Ch and /Sig, respectively. Since signature
filling is not supported and the push button is a widget which can
cause an action but is not fillable, those corresponding types are
omitted from consideration.

To distinguish the types of buttons and choices, the form
flags /Ff field is examined. For radio buttons, the 16th bit
is set. For combo box the 18th bit is set. Please note that
annotation['/Ff'] returns a PdfObject when returned
and must be coerced into an int for bit testing.

def field_ type (annotation):
ft = annotation['/FT']

ff = annotation['/Ff']
if ft == '/Tx':
return 'text'
if ft == '/Ch':
if ff and int(ff) & 1 << 17: # test 18th bit
return 'combo'

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

else:
return 'list'
if ft == '/Btn':
if ff and int (ff) & 1 << 15: # test 16th bit
return 'radio'
else:
return 'checkbox'

For completeness, the following text_form filler helper is
included.
def text_form(annotation, value):

pdfstr = PdfString.encode (value)

annotation.update (PdfDict (V=pdfstr, AS=pdfstr))

This completes the building blocks to an automatic form filler.

Consolidating Multiple Filled Forms

There are two problems with consolidating multiple filled forms.
The first problem is that when two PDF files are merged, fields
with matching names are associated with each other. For instance,
if John Doe were entered in one form’s name field and Jane Doe in
the second. After combining the two forms John Doe will override
the second form’s name field and John Doe would appear in both
forms. The second problem is that most simple command line
or programmatic methods of combining two or more PDF files
lose form data. One solution is to "flatten” each PDF file. This
is equivalent to printing the file to PDF. In effect, this bakes in
the filled form values and does not permit the editing the fields.
Going even further, one could render the PDFs as images if the
only requirement is that the combined files be printable. However,
tools like ghostscript, imagemagick, and PDFUnite don’t
do a good job of preserving form data when rendering PDF files.

Form Field Name Collisions

Combining multiple filled PDF files was an issue for the vaccine
clinic because the same form was filled out for multiple patients.
The alternative of printing hundreds of individual forms was
infeasible. To combine a batch of PDF forms, all form field names
must be different. Thankfully, the solution is quite simple, in the
process of filling out the form using the code above, rename (set)
the value of /T.
def form_filler (in_path, data, out_path,

pdf = pdfrw.PdfReader (in_path)

for page in pdf.pages:

annotations = page['/Annots']

if annotations is None:
continue

suffix) :

for annotation in annotations:
if annotation['/SubType'] == '/Widget':
key = annotation['/T'].to_unicode ()
if key in data:
pdfstr =
new_key = key + suffix
annotation.update (
PdfDict (V=pdfstr,
pdf.Root.AcroForm.update (PdfDict (
NeedAppearances=PdfObject ('true')))
pdfrw.PdfWriter () .write (out_path, pdf

T=new_key))

Only a unique suffix needs to be supplied to each form. The suffix
can be as simple as a sequential number.

Combining the Files

Solutions for combining PDF files with PDFrw can be found on
the Internet. The following recipe is typical:

PdfString.encode (datalkey])

HOW PDFRW AND FILLABLE FORMS IMPROVES THROUGHPUT AT A COVID-19 VACCINE CLINIC

writer = PdfWriter ()
for fname in files:
r = PdfReader (fname)
writer.addpages (r.pages)
writer.write ("output.pdf")

While the form data still exists in the output file, the rendering
information is lost and won’t show when displayed or printed.
The problem comes from the fact that the written PDF does
not have an interactive form dictionary (see §12.7.2 of the PDF
1.7 specification). In particular, the interactive forms dictionary
contains the boolean NeedAppearances which needs to be
set for fields to be shown. If the forms being combined have
different interactive form dictionaries, they need to be merged.
In this application where the source forms are identical among the
various copies, any AcroForm dictionary can be used.

After obtaining the dictionary from pdf.Root .AcroForm
(assuming the PdfReader object is stored in pdf), it is not clear
how to add it to the PAfWriter object. The clue comes from a
simple recipe for copying a pdf file.

pdf = PdfReader (in_file)
PdfWriter () .write (out_file, pdf)

Examination of the underlying source code shows the sec-
ond parameter pdf to be set to the attribute trailer
of the PdfWriter object. Assuming acro_form con-
tains the desired interactive form, the interactive form dic-
tionary can be added to the output document by using
writer.trailer.Root.AcroForm = acro_form.

Conclusion

A complete functional version of this PDF form filler is open
source and can be found at WestHealth’s GitHub repository https:
/lgithub.com/WestHealth/pdf-form-filler. This process was able to
produce large quantities of pre-populated forms for senior citizens
seeking COVID-19 vaccinations relieving one of the bottlenecks
that have plagued many other vaccine clinics.

REFERENCES

[Col21] Annica Colbert. Seniors-only vaccination site. KPBS News,
Feb 2021. URL: https://www.kpbs.org/podcasts/san-diego-
news-now/2021/feb/11/seniors-only- vaccination-site/.
Barbara L. Filkins, Ju Young Kim, Bruce Roberts, Winston
Armstrong, Mark A. Miller, Michael L. Hultner, Anthony P.
Castillo, Jean Christophe Ducom, Eric J. Topol, and Steven
R. Steinhubl. Privacy and security in the era of digital health:
What should translational researchers know and do about
it? American Journal of Translational Research, 8(3):1560—
1580, 2016. Publisher Copyright: © 2016, E-Century Pub-
lishing Corporation. All rights reserved.
[HmLAKJU20] Haw-minn Lu, Adrian Kwong, and José Unpingco. Securing
Your Collaborative Jupyter Notebooks in the Cloud using
Container and Load Balancing Services. In Meghann Agar-
wal, Chris Calloway, Dillon Niederhut, and David Shupe,
editors, Proceedings of the 19th Python in Science Con-
ference, pages 2 — 10, 2020. doi:10.25080/Majora—
342d178e-001.
U-T Letters. Opinion: Vaccination frustration grows as
seniors weigh limited options. San Diego Union-Tribune, Jan
2021. URL: https://www.sandiegouniontribune.com/opinion/
story/2021-01-22/vaccination-frustrations- grow-as- seniors-
search-for-appointments.
[Lit21] Joe Little. For san diego seniors, making vaccination ap-
pointments is as easy as calling 211. 7 San Diego News, Feb
2021. URL: https://www.nbcsandiego.com/news/local/for-
san-diego-seniors-making-vaccination-appointments-is-as-
easy-as-calling-211/2531346/.

[FKR " 16]

[Let21]

[Lu21]

[MF19]

[pdf08]

[pod21]

[pre21]

[Sha20]

5

Haw-minn Lu. Exploring fillable forms with pdfrw, Mar
2021. URL: https://westhealth.github.io/exploring-fillable-
forms-with-pdfrw.html.

Wilnellys Moore and Sarah Frye. Review of hipaa,
part 1: History, protected health information, and
privacy and security rules. Journal of Nuclear
Medicine Technology, 47(4):269-272, 2019. URL: https:
/ltech.snmjournals.org/content/47/4/269, arXiv:https:
//tech.snmjournals.org/content/47/4/269.
full.pdf, doi:10.2967/jnmt.119.2278109.
Document Management - Portable Document Format - Part
1: PDF 1.7. Adobe Systems Incorporated, 2008.

Pop up vaccination point of distribution (pod) for seniors: A
how to guide, Apr 2021. URL: https://www.westhealth.org/
resource/vaccine-pod-for-seniors/.

New covid-19 vaccine site for vulnerable seniors at west
pace in san marcos. West Health Press Releases, Feb 2021.
URL: https://www.westhealth.org/press-release/new-covid-
19-vaccine-site-for- vulnerable-seniors-at- west- pace-in-san-
marcos/.

Vivsvaan Sharma. Filling editable pdf in python, Aug
2020. URL: https://medium.com/@vivsvaan/filling-editable-
pdf-in-python-76712c3ce99.

https://github.com/WestHealth/pdf-form-filler
https://github.com/WestHealth/pdf-form-filler
https://www.kpbs.org/podcasts/san-diego-news-now/2021/feb/11/seniors-only-vaccination-site/
https://www.kpbs.org/podcasts/san-diego-news-now/2021/feb/11/seniors-only-vaccination-site/
http://dx.doi.org/10.25080/Majora-342d178e-001
http://dx.doi.org/10.25080/Majora-342d178e-001
https://www.sandiegouniontribune.com/opinion/story/2021-01-22/vaccination-frustrations-grow-as-seniors-search-for-appointments
https://www.sandiegouniontribune.com/opinion/story/2021-01-22/vaccination-frustrations-grow-as-seniors-search-for-appointments
https://www.sandiegouniontribune.com/opinion/story/2021-01-22/vaccination-frustrations-grow-as-seniors-search-for-appointments
https://www.nbcsandiego.com/news/local/for-san-diego-seniors-making-vaccination-appointments-is-as-easy-as-calling-211/2531346/
https://www.nbcsandiego.com/news/local/for-san-diego-seniors-making-vaccination-appointments-is-as-easy-as-calling-211/2531346/
https://www.nbcsandiego.com/news/local/for-san-diego-seniors-making-vaccination-appointments-is-as-easy-as-calling-211/2531346/
https://westhealth.github.io/exploring-fillable-forms-with-pdfrw.html
https://westhealth.github.io/exploring-fillable-forms-with-pdfrw.html
https://tech.snmjournals.org/content/47/4/269
https://tech.snmjournals.org/content/47/4/269
http://arxiv.org/abs/https://tech.snmjournals.org/content/47/4/269.full.pdf
http://arxiv.org/abs/https://tech.snmjournals.org/content/47/4/269.full.pdf
http://arxiv.org/abs/https://tech.snmjournals.org/content/47/4/269.full.pdf
http://dx.doi.org/10.2967/jnmt.119.227819
https://www.westhealth.org/resource/vaccine-pod-for-seniors/
https://www.westhealth.org/resource/vaccine-pod-for-seniors/
https://www.westhealth.org/press-release/new-covid-19-vaccine-site-for-vulnerable-seniors-at-west-pace-in-san-marcos/
https://www.westhealth.org/press-release/new-covid-19-vaccine-site-for-vulnerable-seniors-at-west-pace-in-san-marcos/
https://www.westhealth.org/press-release/new-covid-19-vaccine-site-for-vulnerable-seniors-at-west-pace-in-san-marcos/
https://medium.com/@vivsvaan/filling-editable-pdf-in-python-76712c3ce99
https://medium.com/@vivsvaan/filling-editable-pdf-in-python-76712c3ce99

	Introduction
	Background
	Infrastructure
	Programmatically Fill Forms
	Finding Your Way Around PDFrw and Fillable Forms
	Multiple Fields with Same Name

	Checkboxes
	More Complex Forms
	Radio Buttons
	Combo Boxes and Lists
	Determining Form Field Types Programmatically

	Consolidating Multiple Filled Forms
	Form Field Name Collisions
	Combining the Files

	Conclusion
	References

