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Abstract—Any application involving sensitive measurements of the physical
world starts with accurate, precise, and low-noise signal chain. Modern, highly
integrated data acquisition devices can often be directly connected to sensor
outputs, performing analog signal conditioning, digitization, and digital filtering
on a single silicon device, greatly simplifying system electronics. However, a
complete understanding of the signal chain’s noise sources and noise limiting
filters is still required to extract maximum performance from and debug these
modern devices.

Introduction

Mixed-mode signal chains are everywhere. Simply put, any system
that transforms a real-world signal to an electrical representation,
which is then digitized can be classified as a mixed-mode signal
chain. At every point along the chain the signal is degraded in
various ways that can usually be characterized either as some form
of distortion or additive noise. Once in the digital domain, the
processing of the digitized data is not perfect either, but at least it
is, for all practical purposes, immune to many of the offenders that
affect analog signals - component tolerances, temperature drift,
interference from adjacent signals or supply voltage variations.

As the industry continues to push the physical limits, one
thing that can be stated with certainty is this: there is always
room for improvement in analog and mixed signal components
for instrumentation. If an Analog to Digital Converter (ADC) or
a Digital to Analog Converter (DAC) appears on the market that
advances the state of the art in speed, noise, power, accuracy, or
price, industry will happily apply it to existing problems, then
ask for more improvement. However, in order to achieve the
best acquisition system for your application, it is fundamental
to be aware of the components’ limitations and choose these
accordingly.

This tutorial is in extension of Converter Connectivity
Tutorial1 and associated code and simulation files2. A repre-
sentative signal chain will be analyzed and tested, focusing on
noise. Individual signal chain elements will first be modelled with
the help of Python / SciPy3 and LTspice4, then verified using
Python to drive low-cost instrumentation and evaluation boards
via the Linux Industrial Input Output (IIO) framework. While
primarily for the education space, these instruments have adequate
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Fig. 1: In a mixed-mode signal chain, some physical phenomenon
such as temperature, light intensity, pH, force, or torque is converted
to an electrical parameter (resistance, current, or directly to voltage).
This signal is then amplified, low-pass filtered, and digitized by an
ADC, which may include internal digital filtering.

performance for many industrial applications. Furthermore, these
techniques can easily be adapted to other bench-top instruments.

A Generic Mixed Signal Chain

Figure 1 shows a generic signal chain typical of a precision
instrumentation application, with a physical input and digital
output. There are numerous background references on analog to
digital converters available5, and most readers will have a sense
that an analog to digital converter samples an input signal at some
point in time (or measures the average of a signal over some
observation time), and produces a numerical representation of that
signal - most often as a binary number with some value between
zero and 2N−1 where N is the number of bits in the output word.

ADC Noise Sources

While there are several noise sources in Figure 1, one that is often
either ignored, or over-emphasized, is the number of bits in the
ADC’s digital output. Historically, an ADC’s "number of bits" was
considered the ultimate figure of merit, where a 16-bit converter
was 4 times better than a 14-bit converter6. But in the case of
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Fig. 2: At a PGA gain of one (left), 13 codes are represented in the
AD7124 output noise, and the standard deviation is about 2.5 codes.
While quantization is visible, thermal noise is more significant. At a
PGA gain of 128 (right), 187 codes are represented, quantization
noise is insignificant. Truncating one or two least-significant bits
(doubling or quadrupling quantization noise) would not result in a
loss of information.

modern, high-resolution converters, the "number of bits" can be
safely ignored. Note a general principle of signal chain design:

"The input noise of one stage should be somewhat lower than
the output noise of the preceding stage."

As with any signal chain, one noise source within an ADC
often dominates. Thus, if a noiseless signal applied to an N-bit
ADC:

• results in either a single output code, or two adjacent
output codes, then quantization noise dominates. The
Signal to Noise Ratio can be no greater than (6.02 N +
1.76) dB7.

• results in a gaussian distribution of "many" output codes,
then thermal noise source dominates. The Signal to
Noise Ratio is no greater than:
20log(Vin(p− p)/(σ/

√
8)), where:

Vin(p− p) is the full-scale input signal
σ is the standard deviation of the output codes in units of
voltage.

Very high resolution converters, such as the AD7124-8 that
will be used as an example shortly, are rarely limited by quantiza-
tion noise; thermal noise dominates in all of the gain / bandwidth
settings, and a shorted input will always produce a fairly Gaussian
distribution of output codes. Figure 2 , from Ref.8 shows the
grounded-input histogram of the AD712482, 24-bit sigma-delta
ADC, with the internal Programmable Gain Amplifier (PGA) set
to 1 and 128, respectively.

Modeling and Measuring ADC noise

Modeling the noise of a thermal-noise limited ADC’s is straight-
forward. If the noise is "well behaved" (Gaussian, as it is
in Figure 2) and constant across the ADC’s input span, the
ADC’s time-domain noise can be modelled using NumPy’s9

random.normal function , then verified by taking the standard
deviation, as seen in the Model Gaussian Noise code block.
# Model Gaussian Noise
# See AD7124 datasheet for noise levels per mode
import numpy as np
offset = 0.000
rmsnoise = 0.42e-6 # AD7124 noise
noise = np.random.normal(loc=offset, scale=rmsnoise,

size=1024)
measured_noise = np.std(noise)
print("Measured Noise: ", measured_noise)

Figure 3 shows the general setup for testing ADC noise and filter
response1.

Fig. 3: The ADALM2000 is a multifunction USB test instrument with
two general-purpose analog inputs and two outputs, with sample rates
of 100Msps and 150Msps, respectively. It can be used as a simple
signal source for measuring ADC noise bandwidth and filter response.
A Raspberry Pi 4 running a kernel with AD7124 device driver support
acts as a simple bridge between the AD7124 and a host computer.

The AD7124 device driver falls under the industry-standard
IIO framework, which has a well-established software API (in-
cluding Python bindings). Application code can run locally (on
the Raspberry Pi) or on a remote machine via network, serial,
or USB connection. Furthermore, the pyadi-iio10 abstraction layer
takes care of much of the boilerplate setup required for interfacing
with IIO devices, greatly simplifying the software interface. The
AD7124-8 Basic Data Capture code block illustrates how to open
a connection to the AD7124-8, configure it, capture a block of
data, then close the connection.

# AD7124-8 Basic Data Capture

import adi # pyadi-iio library
# Connect to AD7124-8 via Raspberry Pi
my_ad7124 = adi.ad7124(uri="ip:analog.local")
ad_channel = 0 # Set channel
# Set PGA gain
my_ad7124.channel[ad_channel].scale = 0.0002983
my_ad7124.sample_rate = 128 # Set sample rate
# Read a single "raw" value
v0 = my_ad7124.channel[ad_channel].raw
# Buffered data capture
my_ad7124.rx_output_type = "SI" # Report in volts
# Only one buffered channel supported for now
my_ad7124.rx_enabled_channels = [ad_channel]
my_ad7124.rx_buffer_size = 1024
my_ad7124._ctx.set_timeout(100000) # Slow
data = my_ad7124.rx() # Fetch buffer of samples

print("A single raw reading: ", v0)
print("A few buffered readings: ", data[:16])
del my_ad7124 # Clean up

With communication to the AD7124-8 established, an extremely
simple, yet extremely useful test can be performed: measuring
input noise directly. Simply shorting the input to an ADC and
looking at the resulting distribution of ADC codes is a valuable
step in characterizing a signal chain design. The AD7124 input
mode is set to unipolar, so only positive values are valid; the test
circuit shown in Figure 4 ensures that the input is always positive.

Figure 5 shows two, 1024-point measurements. The lower
(blue) trace was taken immediately after initially applying power.

The "wandering" can be due to a number of factors - the
internal reference warming up, the external resistors warming up
(and hence drifting), or parasitic thermocouples, where slightly
dissimilar metals will produce a voltage in the presence of
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Fig. 4: A resistor divider is used to generate a 1.25mV bias across the
AD7124-8’s input, overcoming the 15µV maximum offset voltage and
ensuring that ADC readings are always positive.

Fig. 5: Two AD7124-8 data captures are taken with a 1.25mV bias
applied. The lower trace shows initial drift after power-up as the
circuit warms up. The upper trace shows stable readings after a half-
hour warmup time.

thermal gradients. Measured noise after warmup is approximately
565nVRMS - on par with the datasheet noise specification.

Expressing ADC Noise as a Density

The general principle of analog signal chain design (that the
input noise of one stage should be somewhat lower than the
output noise of the preceding stage) is an easy calculation if
all elements include noise density specifications, as most well-
specified sensors, and nearly all amplifiers do.

Unlike amplifiers and sensors, ADC datasheets typically do
not include a noise density specification. Expressing the ADC’s
noise as a density allows it to be directly compared to the noise
at the output of the last element in the analog signal chain, which
may be an ADC driver stage, a gain stage, or the sensor itself.

An ADC’s internal noise will necessarily appear somewhere
between DC and half the sample rate. Ideally this noise is flat, or
at least predictably shaped. In fact, since the ADC’s total noise
is spread out across a known bandwidth, it can be converted to
a noise density that can be directly compared to other elements
in the signal chain. Precision converters typically have total noise
given directly, in volts RMS: eRMS = σ , where eRMS is the total
RMS noise, calculated from the standard deviation of a grounded-
input histogram of codes.

Higher speed converters that are tested and characterized with
sinusoidal signals will typically have a signal to noise (SNR)
specification. If provided, the total RMS noise can be calculated
as:

eRMS =
ADCp− p
√

8∗10
SNR
20

Where ADCp− p is the peak-to-peak input range of the ADC.

Fig. 6: An ADALM2000 waveform generator is used to generate a
range of sinewave frequencies, allowing the AD7124-8’s filer response
to be measured directly. While the script sets the sinewave amplitude
and offset to a safe level, a 1k resistor protects the AD7124-8 in the
event of a malfunction. (The ADALM2000 output voltage range is -5V
to +5V, while the AD7124-8 absolute maximum limits are -0.3V and
+3.6V.)

The equivalent noise density can then be calculated:

en =
eRMS√

f s
2

Where f s is the ADC sample rate in samples/second.
The total noise from Figure 5 after warmup was 565nV at a

data rate of 128sps. The noise density is approximately:

565nV/
√

64Hz = 70nV/
√

Hz

The ADC can now be directly included in the signal chain noise
analysis, and leads to a guideline for optimizing the signal chain’s
gain:

Increase the gain just to the point where the noise density of
the last stage before the ADC is a bit higher than that of the ADC,
then stop. Don’t bother increasing the signal chain gain any more
- you’re just amplifying noise and decreasing the allowable range
of inputs.

This runs counter to the conventional wisdom of "filling"
the ADC’s input range. There may be benefit to using more
of an ADC’s input range if there are steps or discontinuities
in the ADC’s transfer function, but for "well behaved" ADCs
(most sigma delta ADCs and modern, high-resolution Successive
Approximation Register (SAR) ADCs), optimizing by noise is the
preferred approach.

Measuring ADC filter response

The AD7124-8 is a sigma-delta ADC, in which a modulator pro-
duces a high sample rate, but noisy (low resolution), representation
of the analog input. This noisy data is then filtered by an internal
digital filter, producing a lower rate, lower noise output. The type
of filter varies from ADC to ADC, depending on the intended
end application. The AD7124-8 is general-purpose, targeted at
precision applications. As such, the digital filter response and
output data rate are highly configurable. While the filter response
is well-defined in the datasheet, there are occasions when one may
want to measure the impact of the filter on a given signal. The
AD7124-8 Filter Response code block measures the filter response
by applying sinewaves to the ADC input and analyzing the output.
This method can be easily adapted to measuring other waveforms
- wavelets, simulated physical events. The ADALM2000 is con-
nected to the AD7124-8 circuit as shown in Figure 6.
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Fig. 7: A measurement of the AD7124 filter response in 64sps, SINC4
mode shows the filter’s passband, first lobe, and first two nulls.

The AD7124-8 Filter Response code block will set the
ADALM2000’s waveform generator to generate a sinewave at
10Hz, capture 1024 data points, calculate the RMS value,
then append the result to a list. (The send_sinewave and
capture_data are utility functions that send a sinewave to
the ADALM2000 and receive a block of data from the AD7124,
respectively2.) It will then step through frequencies up to 250Hz,
then plot the result as shown in Figure 7.

# AD7124-8 Filter Response
import numpy as np
import matplotlib.pyplot as plt
resp = []
freqs = np.linspace(1, 121, 100, endpoint=True)
for freq in freqs:

print("testing ", freq, " Hz")
send_sinewave(my_siggen, freq) # Set frequency
time.sleep(5.0) # Let settle
data = capture_data(my_ad7124) # Grab data
resp.append(np.std(data)) # Take RMS value
if plt_time_domain:

plt.plot(data)
plt.show()

capture_data(my_ad7124) # Flush
# Plot log magnitude of response.
response_dB = 20.0 * np.log10(resp/0.5*np.sqrt(2))
print("\n Response [dB] \n")
print(response_dB)
plt.figure(2)
plt.plot(freqs, response_dB)
plt.title('AD7124 filter response')
plt.ylabel('attenuation')
plt.xlabel("frequency")
plt.show()

While measuring high attenuation values requires a quieter and
lower distortion signal generator, the response of the first few
major "lobes" is apparent with this setup.

Modeling ADC filters

The ability to measure an ADC’s filter response is a practical tool
for bench verification. However, in order to fully simulate a signal
chain, a model of the filter is needed. This isn’t explicitly provided
for many converters (including the AD7124-8), but a workable
model can be reverse engineered from the information provided in
the datasheet.

Note that what follows is only a model of the AD7124-8 filters,
it is not a bit-accurate representation. Refer to the AD7124-8
datasheet for all guaranteed parameters.

The AD7124’s filters all have frequency responses that are
combinations of various SINC functions (with a frequency re-
sponse proportional to (sin f/ f )N ) . These filters are fairly easy
to construct, and to reverse-engineer when nulls are known.

Fig. 8: The AD7124-8 10Hz notch filter has a SINC1 magnitude
response; the filter’s impulse response is simply an unweighted (rect-
angular) average of samples over a 100ms time interval.

Fig. 9: The AD7124-8 50/60Hz rejection filter response is the combi-
nation of a 50Hz, SINC3 filter and a 60Hz, SINC1 filter.

Figure 8 from Ref.8 shows the AD7124-8’s 10Hz notch filters.
Various combinations of higher-order SINC3 and SINC4 filters
are also available.

The simultaneous 50Hz/60Hz rejection filter shown in Figure
9, from Ref.8 is a nontrivial example. This filter is intended to
strongly reject noise from A.C. power lines, which is either 50Hz
(as in Europe) or 60Hz (as in the United States).

Higher order SINC filters can be generated by convolving
SINC1 filters. For example, convolving two SINC1 filters (with
a rectangular impulse response in time) will result in a triangular
impulse response, and a corresponding SINC2 frequency response.
The AD7124 Filters code block generates a SINC3 filter with a
null at 50Hz, then adds a fourth filter with a null at 60Hz.
# AD7124 Filters
import numpy as np
f0 = 19200
# Calculate SINC1 oversample ratios for 50, 60Hz
osr50 = int(f0/50) # 384
osr60 = int(f0/60) # 320

# Create "boxcar" SINC1 filters
sinc1_50 = np.ones(osr50)
sinc1_60 = np.ones(osr60)

# Calculate higher order filters
sinc2_50 = np.convolve(sinc1_50, sinc1_50)
sinc3_50 = np.convolve(sinc2_50, sinc1_50)
sinc4_50 = np.convolve(sinc2_50, sinc2_50)

# Here's the SINC4-ish filter from datasheet
# Figure 91, with three zeros at 50Hz, one at 60Hz.
filt_50_60_rej = np.convolve(sinc3_50, sinc1_60)

The resulting impulse (time domain) shapes of the filters are
shown in Figure 10. Filter coefficient (tap) values are normalized
for unity (0dB) gain at zero frequency.

And finally, the frequency response can be calculated using
NumPy’s freqz function, as seen in the AD7124 Frequency Re-
sponse code block. The response is shown in Figure 11.
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Fig. 10: Repeatedly convolving rectangular impulse responses pro-
duces triangular, then "Gaussian-like" impulse responses.

Fig. 11: Convolving a SINC3, 50Hz notch filter with a SINC1, 60Hz
filter produces a composite response that strongly rejects both 50Hz
and 60Hz.

# AD7124 Frequency Response
import numpy as np
from scipy import signal
f0 = 19200
w, h = signal.freqz(filt_50_60_rej, 1, worN=16385,

whole = False, fs = f0)
freqs = w * f0/(2.0*np.pi)
hmax = abs(max(h)) # Normalize to unity
response_dB = 20.0 * np.log10(abs(h)/hmax)

Resistance is Futile: A Fundamental Sensor Limitation

All sensors, no matter how perfect, have some maximum input
value (and a corresponding maximum output - which may be
a voltage, current, resistance, or even dial position) and a finite
noise floor - "wiggles" at the output that exist even if the input is
perfectly still. At some point, a sensor with an electrical output
will include an element with a finite resistance (or more generally,
impedance) represented by Rsensor in Figure 12. This represents
one fundamental noise limit that cannot be improved upon - this
resistance will produce, at a minimum:

en(RMS) =
√

4∗K ∗T ∗Rsensor ∗ (F2−F1) Volts of noise,
where:

en(RMS) is the total noise
K is Boltzmann’s constant (1.38e-23 J/K)
T is the resistor’s absolute temperature (Kelvin)
F2 and F1 are the upper and lower limits of the frequency band

of interest.
Normalizing the bandwidth to 1Hz expresses the noise density,

in V√
Hz

.
A sensor’s datasheet may specify a low output impedance

(often close to zero Ohms), but this is likely a buffer stage - which
eases interfacing to downstream circuits, but does not eliminate
noise due to impedances earlier in the signal chain.

There are numerous other sensor limitations - mechanical,
chemical, optical, each with their own theoretical limits and whose

Fig. 12: Sensors often include an internal buffer to simplify connection
to downstream circuits. While the output impedance is low (often
approaching zero Ohms), noise from high impedance sensing elements
is buffered along with the signal.

Fig. 13: A 1M resistor serves as a predictable noise source, which is
then amplified to a usable level by a low-noise operational amplifier.

effects can be modelled and compensated for later. But noise is the
one imperfection that cannot.

A Laboratory Noise Source

A calibrated noise generator functions as a "world’s worst sensor",
that emulates the noise of a sensor without actually sensing
anything. Such a generator allows a signal chain’s response to
noise to be measured directly. The circuit shown in Figure 13 uses
a 1M resistor as a 127nV/

√
Hz (at room temperature) noise source

with "okay accuracy" and bandwidth. While the accuracy is only
"okay", this method has advantages:

• It is based on first principles, so in a sense can act as an
uncalibrated standard.

• It is truly random, with no repeating patterns.

The OP482 is an ultralow bias current amplifier with corre-
spondingly low current noise, and a voltage noise low enough that
the noise due to a 1M input impedance is dominant. Configured
with a gain of 2121, the output noise is 269 µV/

√
Hz.

The noise source was verified with an ADALM2000 USB
instrument, using the Scopy11 GUI’s spectrum analyzer, shown
in Figure 14.

Under the analyzer settings shown, the ADALM2000 noise
floor is 40µV/

√
Hz, well below the 269 µV/

√
Hz of the noise

source.
While Scopy is useful for single, visual measurements, the

functionality can be replicated easily with the SciPy periodogram
function. Raw data is collected from an ADALM2000 using the
libm2k12 and Python bindings, minimally processed to remove
DC content (that would otherwise "leak" into low frequency bins),
and scaled to nV/

√
Hz. This method, shown in the Noise Source

Measurement code block can be applied to any data acquisition
module, so long as the sample rate is fixed and known, and data
can be formatted as a vector of voltages.
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Fig. 14: The output of the resistor-based laboratory noise generator
has a usable bandwidth of approximately 10kHz.

Fig. 15: An LTspice simulation of the laboratory noise source shows
approximately the same usable bandwidth as the measured circuit.

# Noise Source Measurement
import numpy as np
navgs = 32 # Avg. 32 runs to smooth out data
ns = 2**16
vsd = np.zeros(ns//2+1) # /2 for onesided
for i in range(navgs):
ch1 = np.asarray(data[0]) # Extract ch 1 data
ch1 -= np.average(ch1) # Remove DC
fs, psd = periodogram(ch1, 1000000,

window="blackman",
return_onesided=True)

vsd += np.sqrt(psd)
vsd /= navgs

We are now armed with a known noise source and a method to
measure said source, both of which can be used to validate signal
chains.

Modeling Signal Chains in LTspice

LTspice is a freely available, general-purpose analog circuit simu-
lator that can be applied to signal chain design. It can perform tran-
sient analysis, frequency-domain analysis (AC sweep), and noise
analysis, the results of which can be exported and incorporated
into mixed signal models using Python.

Figure 15 shows a noise simulation of the analog noise gen-
erator, with close agreement to experimental results. An op-amp
with similar properties to the OP482 was used for the simulation.

Figure 15 circuit’s noise is fairly trivial to model, given that
it is constant for some bandwidth (in which a signal of interest
would lie), above which it rolls off with approximately a first
order lowpass response. Where this technique comes in handy is
modeling non-flat noise floors, either due to higher order analog
filtering, or active elements themselves. The classic example is the

Fig. 16: The LTC2057 noise density is flat at low frequencies, with a
peak at 50kHz (half of the internal oscillator’s 100kHz frequency).

Fig. 17: LTspice is used to simulate the output nosie of an LTC2057
in a noninverting gain of +10 configuration. LTspice provides simple
tools for integrating noise, but results of any simulation can be
exported and imported into Python for further analysis.

"noise mountain" that often exists in autozero amplifiers such as
the LTC2057, as seen in Figure 16 , from Ref.13.

Importing LTspice noise data for frequency domain analysis in
Python is a matter of setting up the simulation command such that
exact frequencies in the analysis vector are simulated. In this case,
the noise simulation is set up for a simulation with a maximum
frequency of 2.048MHz and resolution of 62.5Hz , corresponding
to the first Nyquist zone at a sample rate of 4.096 MSPS. Figure
17 shows the simulation of the LT2057 in a non-inverting gain of
10, simulation output, and exported data format.

In order to determine the impact of a given band of noise
on a signal (signal to noise ratio) the noise is root-sum-square
integrated across the bandwidth of interest. In LTspice, plotted
parameters can be integrated by setting the plot limits, then
control-clicking the parameter label. The total noise over the entire
2.048MHz simulation is 32µVRMS. A function to implement this
operation in Python is shown in the Integrate Power Spectral
Density code block.
def integrate_psd(psd, bw):

import numpy as np
int_psd_sqd = np.zeros(len(psd))
integrated_psd = np.zeros(len(psd))
int_psd_sqd[0] = psd[0]**2.0
for i in range(1, len(psd)):

int_psd_sqd[i] += int_psd_sqd[i-1]\
+ psd[i-1] ** 2

integrated_psd[i] += int_psd_sqd[i]**0.5
integrated_psd *= bw**0.5
return integrated_psd
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Reading in the exported noise data and passing to the integrate_psd
function results in a total noise of 3.21951e-05, very close to
LTspice’s calculation.

Generating Test Noise

Expanding on the functionality of the purely analog noise genera-
tor above, it is very useful to be able to produce not only flat, but
arbitrary noise profiles - flat "bands" of noise, "pink noise", "noise
mountains" emulating peaking in some amplifiers. The Generate
Time-series From Half-spectrum code block starts with a desired
noise spectral density (which can be generated manually, or taken
from an LTspice simulation), the sample rate of the time series,
and produces a time series of voltage values that can be sent to a
DAC.
def time_points_from_freq(freq, fs=1, density=False):

import numpy as np
N = len(freq)
rnd_ph_pos = (np.ones(N-1, dtype=np.complex)*

np.exp(1j*np.random.uniform
(0.0, 2.0*np.pi, N-1)))

rnd_ph_neg = np.flip(np.conjugate(rnd_ph_pos))
rnd_ph_full = np.concatenate(([1], rnd_ph_pos, [1],

rnd_ph_neg))
r_s_full = np.concatenate((freq, np.roll

(np.flip(freq), 1)))
r_spectrum_rnd_ph = r_s_full * rnd_ph_full
r_time_full = np.fft.ifft(r_spectrum_rnd_ph)

if (density is True):
# Note that this N is "predivided" by 2
r_time_full *= N*np.sqrt(fs/(N))

return(np.real(r_time_full))

This function can be verified by controlling one ADALM2000
through a libm2k script, and verifying the noise profile with a
second ADALM2000 and the spectrum analyzer in the Scopy
GUI. The Push Noise Time-series to ADALM2000 code snippet
generates four "bands" of 1mV/

√
Hz noise on the ADALM2000

W2 output (with a sinewave on W1, for double-checking function-
ality.)
# Push Noise Time-series to ADALM2000
import numpy as np
n = 8192
# create some "bands" of 1mV/rootHz noise
bands = np.concatenate((np.ones(n//16),

np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16)))*1000e-6

bands[0] = 0.0 # Set DC content to zero
buffer2 = time_points_from_freq(bands, fs=75000,

density=True)
buffer = [buffer1, buffer2]
aout.setCyclic(True)
aout.push(buffer)

Figure 18 shows four bands of 1mV/
√

Hz noise being generated
by one ADALM2000. The input vector is 8192 points long at a
sample rate of 75ksps, for a bandwidth of 9.1Hz per point. Each
"band" is 512 points, or 4687Hz wide. The rolloff above ~20kHz
is the SINC rolloff of the DAC. If the DAC is capable of a higher
sample rate, the time series data can be upsampled and filtered by
an interpolating filter14.

This noise generator can be used in conjunction with the pure
analog generator for verifying the rejection properties of a signal
chain.

Fig. 18: The Scopy spectrum analyzer is used to verify the arbitrary
noise generator. Deep notches between noise bands expose the an-
alyzer’s noise floor, showing that an arbitrary noise profile can be
accurately generated.

Modeling and verifying ADC Noise Bandwidth

External noise sources and spurious tones above Fs/2 will fold
back (alias) into the DC-Fs/2 region - and a converter may be
sensitive to noise far beyond Fs/2 - the AD872A mentioned above
has a sample rate of 10Msps, but an input bandwidth of 35MHz.
While performance may not be the best at such high frequencies,
this converter will happily digitize 7 Nyquist zones of noise
and fold them back on top of your signal. This illustrates the
importance of antialias filters for wideband ADCs. But converters
for precision applications, which are typically sigma-delta (like
the AD7124-8) or oversampling SAR architectures, in which the
input bandwidth is limited by design.

It is often useful to think of the "equivalent noise bandwidth"
(ENBW) of a filter, including an ADC’s built-in filter. The ENBW
is the bandwidth of a flat passband "brick wall" filter that lets
through the same amount of noise as the non-flat filter. A common
example is the ENBW of a first-order R-C filter, which is:

ENBW = f c∗π/2

Where f c is the cutoff frequency of the filter. If broadband noise,
from "DC to daylight", is applied to the inputs of both a 1KHz,
first-order lowpass filter and 1.57kHz brickwall lowpass filter, the
total noise power at the outputs will be the same.

The ENBW Example code block accepts a filter magnitude
response, and returns the effective noise bandwidth. A single-pole
filter’s magnitude response is calculated, and used to verify the
ENBW = f c∗ pi/2 relationship.
import numpy as np
def arb_enbw(fresp, bw):

int_frsp_sqd = np.zeros(len(fresp))
int_frsp_sqd[0] = fresp[0]**2.0
for i in range(1, len(fresp)):

int_frsp_sqd[i] += (int_frsp_sqd[i-1] +
fresp[i-1] ** 2)

return int_frsp_sqd[len(int_frsp_sqd)-1]*bw

fc = 1 # Hz
bw_per_point = 200/65536 # Hz/record length
frst_ord = np.ndarray(65536, dtype=float)
# Magnitude = 1/SQRT(1 + (f/fc)^2))
for i in range(65536):

frst_ord[i] = (1.0 /
(1.0 +
(i*bw_per_point)**2.0)**0.5)

fo_enbw = arb_enbw(frst_ord, bw_per_point)
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Fig. 19: A 1mV/
√

Hz noise band is driven into the AD7124-8 input. A
qualitative reduction in noise is apparent; 426mV peak-to-peak noise
at the ADC input results in approximately 25mV peak-to-peak noise
at the ADC output. The 5.1mVRMS total output noise is close to the
predicted 5.69mVRMS, given the 1mV/

√
Hz noise density and 31Hz

ENBW of the ADC’s filter.

This function can be used to calculate the ENBW of an arbitrary
filter response, including the AD7124’s internal filters. The fre-
quency response of the AD7124 SINC4 filter, 128sps sample rate
can be calculated similar to the previous 50/60Hz rejection filter
example. The arb_anbw function returns a ENBW of about 31Hz.

The ADALM2000 noise generator can be used to validate
this result. Setting the test noise generator to generate a band of
1000µV/

√
Hz should result in a total noise of about 5.69mVRMS,

and measured results are approximately 5.1mVRMS total noise.
The oscilloscope capture of the ADC input signal is plotted next
to the ADC output data, in Figure 19. Note the measured peak-to-
peak noise of 426mV, while the ADC peak-to-peak noise is about
26mV. While such a high noise level is (hopefully) unrealistic in
an actual precision signal chain, this exercise demonstrates that
the ADC’s internal filter can be relied on to act as the primary
bandwidth limiting, and hence noise reducing, element in a signal
chain.

Conclusion

Noise is a limiting factor in any signal chain; once noise con-
taminates a signal, information is lost. Before building a signal
acquisition system, the application requirements must be under-
stood, components selected accordingly, and the prototype circuit
tested. This tutorial offers a collection of methods that accurately
model and measure sensor and signal chain noise that can be used
during the design and testing process.

The techniques detailed in this tutorial are, individually,
nothing new. However, in order to achieve an adequate system,
it becomes valuable to have a collection of fundamental, easy

to implement, and low-cost techniques to enable signal chain
modeling and verification. Even though industry continues to offer
parts with increased performance, there will always be a certain
limitation that one must be aware of. These techniques can not
only be used to validate parts before building a mixed-mode signal
chain, but also to identify design faults in an existing one.
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