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Modernizing computing by structural biologists with
Jupyter and Colab
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Abstract—Protein crystallography produces most of the protein structures used
in structure-based drug design. The process of protein structure determination is
computationally intensive and error-prone because many software packages are
involved. Here, we attempt to support the reproducibility of this computational
work by using Jupyter notebooks to document the decisions made, the code,
and selected output. We have made libraries of code templates to ease running
the crystallography packages in Jupyter notebooks when editing them with
JupyterLab or Colab. Our combined use of GitHub, snippet libraries, Jupyter
notebooks, JupyterLab, and Colab will help modernize the computing done by
structural biologists.

Index Terms—literate programming, reproducible research, scientific rigor,
electronic notebooks, JupyterLab, Jupyter notebooks, computational structural
biology, computational crystallography, biomolecular crystallography, protein
crystallography, biomolecular structure, biomedical research, protein*drug inter-
actions, RNA*drug interactions, molecular graphics, molecular visualization, sci-
entific communication, molecular artwork, computational molecular biophysics

Introduction

Structural biologists study the molecular structures of proteins
and nucleic acids to understand how they function in biology
and medicine. The underlying premise of the field is that molec-
ular function follows molecular form. More precise aliases for
these scientists include molecular structural biologists, structural
biochemists, and molecular biophysicists. Some of the methods
used to determine the near-atomic resolution molecular struc-
tures include molecular modeling, X-ray crystallography, nuclear
magnetic resonance (NMR), and cryo electron microscopy (cryo-
EM). These scientists often use the molecular structures of these
large biomolecules to design small-molecule drugs for improved
therapies. As a result, structural biology plays a vital role in drug
discovery and development, and many structural biologists work
in the pharmaceutical industry. Those in academia in the United
States generally have their work funded by the National Institutes
of Health, the National Science Foundation, the Department of
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Defense, the Department of Energy, or one of several disease
oriented medical foundations.

Structural biology is at the intersection of biochemistry, molec-
ular biology, molecular biophysics, and computer science. Struc-
tural biologists have diverse backgrounds and varying levels of
experience with computer programming ranging from minimal to
very advanced. Several decades ago, the barriers to entry into the
field included expertise with running command-line-driven pro-
grams and the ability to write programs to meet data analysis needs
not met by existing software packages. However, these barriers
have been lowered over the past two decades by the widespread
availability of GUI-driven software that is often free for academics
(e.g., CCP4 [Winn11], Phenix [Lieb19], CNS [Brun98], ATSAS
[Mana21], BioXTAS [Hopk17], CCPEM [Burn17]). As a result,
biologists, who often have little formal training in computing, have
become the largest component of the field.

Computing is involved in the six or more steps from structural
data acquisition to publication. Several alternate software pack-
ages are often available for each step. Different combinations of
these alternatives lead to a combinatorial explosion of possible
workflows. In some situations, workers have set up software
pipelines for some of the steps. However, these pipelines are dif-
ficult to transfer or have trouble with the challenging samples that
cannot yet be handled without human intervention. The current
heterogenous computing environment makes the computational
work vulnerable to errors in the tracking of input and output files.
Storing the code and outputs for some of the steps in Jupyter
notebooks would be one way to reduce this vulnerability [Kluy16],
[Gran21]

To ease crystal structure determination in Jupyter, we made
libraries of code templates for crucial programs. We formatted
the libraries for two extensions of JupyterLab that provide access
to code snippets. One extension (jupyterlab-snippets) displays the
snippets in nested pull-down menus [jLsnip]. The other extension
(elyra-code-snippet-extension) uses a search box to locate the de-
sired snippet [ELSN] (also see the blog post by Luciano Resende
[Rese20]). The user can easily add new code snippets to both
systems.

We also ported the libraries to Google Colaboratory or Google
Colab or just Colab [Carn18], [Cola21]. Colab is an integrated
development environment (IDE) for running Jupyter notebooks
on the Google Cloud Platform (GPC). Colab was designed to
promote the adaptation of deep learning software to new problems
and facilitate collaborative computing. Colab is a free service that
provides a temporary instance of a Linux operating system with
access to one K80 GPU through a Jupyter notebook. Access to
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TPUs is also available. The access is terminate after long periods
of inactivity or a 12-hour time limit, whichever is reached first.
The time limit can be extended with a small subscription fee.

Colab comes with some deep learning software and the Python
scientific computing stack including SciPy [SciP20]. Colab spares
the user of the maintenance of the hardware and the operating sys-
tem software. Colab can also serve as a test platform for software
on Linux when one’s primary computing environment is a Mac
or Windows. Colab also eases collaborative work and provides a
uniform computing environment for classes and workshops. The
use of Colab requires that the user have a Google Drive account
for storing software, Jupyter notebooks, and data files.

The user can install additional Python and other packages
including structural biology software, provided the user has the
required software licenses. This software installation step requires
extra time at the start of the Colab session because most structure
biology software packages have numerous dependences. To accel-
erate this setup step, we provide notes and code snippets for the
installation of this software in the Jupyter notebook that serves as
the carrier of the snippet libraries on Colab. The user can install
the required software in several minutes. Although the software
is deleted automatically from Google Cloud at the end of session,
the software can be stored on the user’s Google Drive for faster
reinstallation.

Methods

We created snippet libraries for each structural biology package
to support structural biology computations in Jupyter and Colab.
Any particular workflow is unlikely to require all of the libraries.
For example, a beginner’s workflow is unlikely to use CCTBX,
a library of Python wrapped C++ routines for building molecular
structure determination software. Likewise, a cryo-EM workflow
will not need XDS, a package for processing X-ray diffraction
images. We created a GitHub site for each library to ease the
downloading of only those libraries that interest users (Table ??).
This modularization of the project should ease the correction
and augmentation of individual libraries as the extensions, and
structural biology software packages evolve. We only provided
libraries for JupyterLab because the Jupyter Project plans to phase
out support for the Jupyter Notebook software. Among the several
alternative extensions for code snippets in JupyterLab, we choose
jupyterlab-snippets [jLsnip] and Elyra [Elyra] because these two
extensions are actively maintained and have different features. We
also support a snippet library for Jupyter notebooks on Google
Colab as described below because Colab provides access to GPUs,
which can accelerate some of the larger computational tasks.

The jupyterlab-snippets extension

The jupyterlab-snippets extension adds a snippet menu to the
JupyterLab menu bar. The user accesses the snippets through
a cascading pulldown menu. Each snippet resides in a separate
plain text file without any formatting. This feature dramatically
eases adding new snippets by users and eases keeping the snippets
under version control. The snippets are stored in the Jupyter data
directory (which is found by entering jupyter --path; it is
in ~/Library/Jupyter/snippets on Mac OS). Each snippet library is
stored in a separate subfolder, which appears on the menu bar as
a part of a cascading pulldown menu (Figure 1).

We clustered snippets into categories. Each category has a
cascading submenu. Clicking on a snippet name in the submenu

Fig. 1: Cascading pull-down menu for the Jupyter categories of the
jupyterlabpymolpysnips library.

triggers its insertion into the current cell in the notebook. The
nested menu hierarchy serves well the user who is familiar with
the content of the snippet libraries.

Like most other snippet extensions for Jupyter Notebook and
JupyterLab, the jupyterlab-snippets extension does not support
tab stops or tab triggers. These are common features of snippet
libraries for most text editors and IDEs that accelerate the editing
of parameter values in snippets. The tab stops are particularly
valuable because they direct the user to sites that may need
changes in their parameter values, and they guide the user to all
of the site to ensure that none are overlooked. The overlooking of
parameter values that require changing can be a major source of
bugs. The tab triggers are also often mirrored, so a change at one
instance of the same parameter will be propagate automatically
to other identical instances of the parameter. To compensate for
the lack of tab triggers, we include a second copy of the code
in the same snippet but in a comment and with the tab triggers
marked with curly braces and numbers (Figure 2). The user uses
the code in the comment to direct their editing of the active code.
The user can delete the commented out comment when they have
finished editing. Separate versions of the libraries were made with
commented out code. These versions are distinguished by having
"plus" appended to their names.

The elyra-code-snippet extension

A menu icon labeled with </> provides access to snippets in the
elyra-code-snippet-extension system. After the icon is clicked, the
snippets appear in the left margin of the JupyterLab GUI. Snippets
from all libraries appear in alphabetical order. The user can scroll
through the list of snippets. Hovering the mouse cursor over the
snippet’s name triggers the display of a description of the snippet.



16 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 2: Comparison of active code in the bottom code block and the
commented out code above the active code from a code snippet. The
commented lines of code serve as guides for editing because they
have curly braces marking sites to be considered for editing. The
commented lines of code compensate for the absence of tab stops.

Alternatively, the user can enter a search term in the search
box at the top of the menu to reduce the list of snippets. The
search terms can be part of a snippet name or a tag stored with
each snippet.

A tag icon displays all of the available tags in the snippets
as separate icons. The user can select tags to be used to choose
snippets by clicking on the icons.

Each snippet is displayed with several icons (Figure 3). A
triangular toggle can trigger the display of the snippet in a textbox.
A pencil icon enables the editing of the code. Other icons enable
copying the code to the clipboard, inserting code into the current
cell in the notebook, and deleting the snippet.

A plus sign in the upper-righthand corner opens a GUI for the
creation of a new snippet. The GUI occupies a new tab in the
window that houses the Jupyter notebooks. The GUI has a text
box for each kind of metadata: name, description, tags, language,
and the snippet code. There is a save button at the bottom to add
the new snippet to the current library.

Each snippet is stored in a separate JSON file. Each JSON file
has the snippet code plus several rows of metadata, including a list
of tags and the programming language of the snippet. The latter
provides a sanity check. For example, an attempt to insert a C++
snippet into a notebook with an active Python kernel will trigger
the opening of a window with a warning.

All of the snippets reside in the folder
url{JUPYTER_DATA/metadata/code-snippets}. This is the
directory url{~/Library/Jupyter/metadata/code-snippets} on the
Mac. There are no subfolders for individual snippet libraries,
unlike the jupyterlab-snippets extension. The snippets from
multiple libraries are stored together in the code-snippets folder.

The tag system can be used to select all snippets from one library.
The tag system serves well the user who is not familiar with
the content of the installed libraries. The user can download the
snippets from GitHub as zip file and then uncompress this file and
move the snippet files to the final destination.

Colab snippet library

The Colab snippet system resembles the Elyra snippet system in
that the snippets appear in a menu to the left of the notebook and
that search terms in a search box retrieve snippets. However, the
Colab system differs from the Elyra system ins that the snippets
are stored in one or more Jupyter notebooks. The user’s Google
Drive stores the notebook of snippets. The user enters the url for
the notebook in a the Tools --> Settings --> Site --> Custom
Snippet Notebook URL. Multiple URLs for multiple notebooks
can be entered at one time. The user logs out of Colab and upon
logging in again to install the snippets. The user will see the newly
added snippets in the left margin after opening the snippet menu
by clicking on the </> icon.

Each snippet had a markdown cell followed by a code cell. The
markdown cell contained the name of the snippet, a description
of what the snippet does, and the structural biology software.
These features are searched in the search box to narrow the list
of snippets to inspect for selection.

The first snippet in each notebook provided the steps for
installing the software on Colab. The markdown cell listed these
installation steps. Then a series of code snippets contained the
code for carrying out the steps. This installation snippet was the
only one in a notebook that contained more then one code snippet.

A search box at the top of the list of snippets is used to recover
a snippet (Figure 5. The user enters a snippet name in the search
box to display the snippet and its documentation. The user hits the
’Install’ button to install the snippet’s code at the current position
in the notebook. Unlike the Elyra snippets which insert a whole
snippet into one code block, a Colab snippet can have multiple
code blocks that are inserted into the notebook at the current
position of the mouse cursor. One snippet can have different types
of code blocks. For example, the snippet in Figure 5 has a three
blocks of Python code, two blocks of shell commands, and two
blocks of bash cell magics with multiple lines of bash commands.

The list snippet for a library will print in a table below
the current cell a list of the snippets in the library and a brief
description. This table is stored in a pandas DataFrame that can be
searched with the pandas search function. This table can also be
searched for key terms with the search function in the notebook.
The code block and output can be hidden by clicking on the three
blue dots on the left margin of the cell.

Notebooks on Colab open very quickly, but the user must
reinstall their software on each login. We ease this annoying task
by supplying the complete chain of installation steps. For exam-
ple, the installation of the molecular graphics program PyMOL
requires seven code blocks of different types. Some involve the use
of curl, and others use the conda package management system. We
include all steps in one snippet, which is uniquely possible with
the snippet system for Colab (Figure 5). The user only has to select
one snippet and then run each code block in succession.

The use of Colab requires that the user has a Google account
and a Google Drive. Many structural biologists already have both.
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Fig. 3: The GUI from the elyra-code-snippet extension for accessing code snippets is shown on the left. A preview of the hbonddash snippet is
shown in the lower left. A Jupyter notebook with the inserted the hbonddash snippet is shown on the right.

Notebooks with sample workflows

We created a library of Jupyter Notebooks with sample workflows.
This library of notebooks is only representative and not exhaustive
because the combinatorial explosion of possible workflows makes
covering all workflows impractical. These notebooks can serve as
templates for the creation of new notebooks and are available on
our GitHub site [MLGH].

Availability of the snippet libraries

We have shared these libraries on GitHub [MLGH]. Each library
is also archived in zenodo.

Results

We describe here a set of libraries of code templates to support
computational crystallography in Jupyter Notebooks on the cloud
and on local computers. The libraries and notebooks can be loaded
on and run on Google Colab where the user can share the notebook
with collaborators or gain access to GPUs and TPUs. The user
uploads the libraries and notebook to their Google Drive account
and accesses the notebook from Colab. The storage of the libraries
and notebooks on Google Drive persists between logins to Google
Colab, but the crystallographic software must be reinstalled on
each use of Colab. These libraries are installed only once; however,
the crystallographic software must be reinstalled upon each login.
We describe below installation scripts in the form of snippets that
can be quickly run at the top of a Notebook to minimize the effort
required to re-install the software. Another limitation of the Colab

snippet system is that snippets from all libraries are stored in one
pool and have to be accessed by either scrolling through a long list
or by entering the snippet name in a search box. We addressed this
limitation with a snippet for each library that prints a list of the
available snippets with a short description. This list can span more
than the length of a paper, but it can be collapsed to hide it or can
be deleted when no longer needed. After the snippet is pulled out
of the list by the search box, more detailed documentation about
the snippet is displayed. Next, we describe the content of each
library with representative output in the Colab notebook.

Structure determination and refinement workflows with Phenix

A team of professional software developers based at the Berkeley-
Lawrence National Laboratory (BLNL) develops the Phenix soft-
ware to refine protein crystal structures determined from X-ray
diffraction data [Adam02]. The project includes several collabora-
tors located around the world who develop auxiliary components
of the package. Phenix uses Python to interface with the Com-
putational Crystallography Tool Box (CCTBX), which is written
in C++ for speed [Gros02]. CCTBX is also wrapped in Python
and can be imported at as module. While Python eases the use
of CCTBX, mastery of CCTBX requires at least an intermediate
level of Python programming skills. On the other hand, Phenix is
easy to use via the command line or a GUI and has become of the
most popular software packages for biological crystallography.

The Phenix project greatly eased the incorporation of sim-
ulated annealing into crystal structure refinement by hiding the
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Fig. 4: The GUI from elyra-code-snippet extension for the creation of new snippets. The Learn more link takes the user to the documentation
on Read-the-docs.

tedious preparation of the required parameter files from the user.
Simulated annealing involves molecular dynamics (MD) simula-
tion at high temperatures to move parts of a molecular model
out of local energy minima and into conformations that fit the
experimental data better. Twenty minutes of applying simulated
annealing to an early model that still has numerous errors can
significantly improve the model while saving the user a day or
more of the tedious manual rebuilding of the molecular model.
The PDB file does not have sufficient information about chemical
bonding for MD simulations. The molecular dynamics software
that carries out the simulated annealing requires two parameter
files and the coordinate file. The preparation and debugging of the
parameter files manually takes many hours, but Phenix automates
this task.

More recently, Phenix has been extended to refine crystal
structures with neutron diffraction data and for structure determi-
nation and refinement with cryo-EM data [Lieb19]. The addition
of support for cryo-EM help address the recent need for the
ability to fit atomic models to cryo-EM maps that have recently
become available at near atomic resolution because of the dramatic
improvements in detector technology. Users can interact with
Phenix via a GUI interface or the command line, as mentioned
before, but users can also use PHIL, domain-specific language
scripting language for more precise parameter settings for Phenix.
In addition, users can use the phenix.python interpreter.
Unfortunately, the phenix.python interpreter is still limited to
Python2, whereas CCTBX has been available for Python3 for over
a year.
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Fig. 5: Code snippet for installing PyMOL on Colab. The <> icon opens a menu on the left side that lists all of the snippets. The search term
’pymol’ was used to reduce the list of candidate snippets. The highlighted snippets name ’Install PyMOL is new Colab notebook’. Selecting
this snippets opens the snippet below. The snippet description is displayed followed by the seven blocks of code. The description includes the
seven steps for installing the molecular graphics programs. Clicking with the mouse cursor on ’INSERT’ in blue inserts the code into in the
cells on the notebook on the fight.

Jupyter Lab and its extensions are also best run with Python3.
The most practical approach to using Phenix in Jupyter Lab is to
invoke Phenix by utilizing the shell rather than using Python. For
example, the command shown below invokes statistical analysis
of the B-factors in a Protein Data Bank (PDB) file by using one
line of code in the shell. The PDB file uses a legacy, fixed-format
file for storing the atomic coordinates and B-factors of crystal
structures. The B-factors are a measure of the atomic motion, sta-
tistical disorder, or both in individual atoms in a protein structure.
The PDB file format was defined and popularized by the Protein
Data Bank, a repository for atomic coordinates and structural data
that has over 170,000 entries from around the world. The PDB
was started in 1972 and unified with the branches in Japan and
Europe in 2003 as the wwPDB [Berm03]. The wwPDB continues
to play a central role in promoting the principles of open science
and reproducible research in structural biology.

Since 2019, the wwPDB requires the PDBx/mmCIF format
for new depositions [Adam19]. Many structural biology software
packages now have the ability to read files in the PDBx/mmCIF
format.
!phenix.b_factor_statistics 1lw9.pdb

The output form this command is printed below the cell that
invokes the command. Some of the output is shown below.
Starting phenix.b_factor_statistics
on Wed Jun 2 04:49:01 2021 by blaine

Processing files:

Found model, /Users/blaine/pdbFiles/1lw9.pdb

Processing PHIL parameters:

No PHIL parameters found

Final processed PHIL parameters:

data_manager {
model {

file = "/Users/blaine/pdbFiles/1lw9.pdb"
}
default_model = "/Users/blaine/pdbFiles/1lw9.pdb"

}

Starting job
Validating inputs

min max mean <Bi,j> iso aniso
Overall: 6.04 100.00 24.07 N/A 1542 0
Protein: 6.04 100.00 23.12 N/A 1328 0
Water: 9.98 55.93 30.47 N/A 203 0
Other: 14.11 35.47 21.10 N/A 11 0
Chain A: 6.04 100.00 24.07 N/A 1542 0
Histogram:

Values Number of atoms
6.04 - 15.44 309
15.44 - 24.83 858
24.83 - 34.23 187
34.23 - 43.62 78
43.62 - 53.02 32
53.02 - 62.42 16
62.42 - 71.81 8
71.81 - 81.21 6
81.21 - 90.60 2
90.60 - 100.00 46

Job complete
usr+sys time: 1.92 seconds
wall clock time: 2.93 seconds
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There are several dozen commands that can be run via the shell
and return useful output that can be captured in one Jupyter
Notebook rather than in dozens of log files. The output can
be copied and pasted into a new cell and then reformatted in
markdown as a table or the copied output be used as input data
to make a plot with matplotlib. While these are basic data science
tasks, they are intimidating to new users of Jupyter and some
of the details are easy for more experienced users to forget. To
overcome this problem, we supply snippets that demonstrate how
to transform the output and that can be used as templates by the
users.

These commands are becoming harder to find as the on-
line documentation has been migrating to serving only the GUI
interface. The bash script files that run the Phenix commands can
be found on Mac OSX by running the following command:
!ls /Applications/phenix-*/build/bin/phenix.\*

These shell scripts invoke Python scripts that capture the command
line arguments and pass them to the Phenix Python interpreter.
This Python script files can be found on Mac OSX by running the
following command:
!ls /Applications/phenix-1.19.2-4158/modules/phenix/phenix/command_line/*.py.

Molecular graphics with PyMOL

The end result of the crystal structure refinement in Phenix is a set
of atomic coordinates. They can be displayed in one of the many
available molecular graphics programs like PyMOL [PyMO21]. If
PyMOL is available in the current Python environment, PyMOL’s
Python API can be accessed by importing the cmd class. In
addition, it is useful to import the Image class from IPython to
be able to upload images written to disk by PyMOL.
from pymol import cmd
from IPython.display import Image

After installing PyMOL in Colab as outlines in Figure 5 and
the PyMOL snippet library, the T4L snippet was inserted into a
Colab notebook and executed. The snippet includes the IPython
command that was used to upload the image into the Notebook as
shown in Figure 6.

There are several other methods of importing images including
using Markdown or HTML code.

Discussion

Amazon introduced the first cloud computing service in 2006;
there are now over 200 services. These services have the advantage
of providing access to computer hardware and software. These
services can lower barriers for those labs that have limited access
to computer hardware or that have trouble with installing software.
Many of these services supply disk spaces and access to CPUs,
GPUs, and sometimes TPUs. Access to basic services is often free
with additional services, computing power, and disk space being
available for a modest fee. In principle, consumer computers could
be used as an interface for doing all manner of crystallographic
computing on the cloud.

Why Colab?

Colab was developed internally and first released for public use
in 2018. Numerous research papers in the physical and medical
sciences have been published that used Colab. Google Colab
provides fast and easy access for users with a Google account
and Google drive, so many workers in crystallography already

Fig. 6: The code of the T4L snippet inserted into a code block in
Colab. .

have the prerequisites. Many readers are also familiar with Jupyter
Notebooks (10 million shared on GitHub as of early 2021). Jupyter
Notebooks can be loaded onto Google Drive and then opened in
Colab. Colab is a specialized IDE for editing Jupyter Notebooks.
the Colab interfaces has more features that the easy-to-use nteract
IDE, but fewer features than JupyterLab. Colab provides almost
instant loading of specific Jupyter notebooks but at the cost of
needing reinstall the software used in a notebook upon logging in
again or after a 12-hour session. The first point lower the barrier
to resuming work while the second point can be addressed by
including the code for installing the required software at the head
of the notebook.

Microsoft has stopped supporting its Azure Notebook and
has asked users to migrate to several alternative approaches.
One approach is to use of Visual Studio Code (VSC) rather to
JupyterLab to edit and run Jupyter notebooks locally and on
Microsoft’s cloud service. VSC is an advanced text editor that
has stronger support for code snippets because it supports the
use of tab triggers and tab stops, two important features that
are missing from Colab, JupyterLab, and the Classic Jupyter
Notebook. However, VSC is so feature-rich that it can be over-
whelming for some beginning users. To support a wider group of
users, we developed the libraries for Google Colab. We plan to
develop libraries for editing Jupyter Notebooks in VSC.

What is new

We report a set of code template libraries for doing biomolecular
crystallographic computing on Colab. These template libraries
only need to be installed once because they persist between
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logins. These templates include the code for installing the soft-
ware required for crystallographic computing. These installation
templates save time because the installation process involves as
many as seven operations that would be difficult to remember.
Once the user adds the installation code to the top of a given
notebook, the user only needs to rerun these blocks of code upon
logging into Colab to be able to reinstall the software. The user can
modify the installation templates to install the software on their
local machines. Examples of such adaptations are provided on a
dedicated GitHub webpage. The template libraries presented here
lower an important barrier to the use of Colab by those interested
in crystallographic computing on the cloud.

Relation to other work with snippet libraries

To the best of our knowledge, we are the first to provide snippet
libraries for crystallographic computing. This library is among the
first that is domain specific. Most snippet libraries are for program-
ming languages or for hypertext languages like HTML, markdown
and LaTeX. The average snippet also tends to be quite short and
the size of the libraries tends to be quite small. The audience
for these libraries are millions of professional programmers and
web page developers. We reasoned that this great tool should be
brought to the aid of the thousands of workers in crystallography.

The other area where domain specific snippets have been
provided is in molecular graphics. The pioneering work on a
scripting wizard provided templates for use in the molecular
graphics program RasMol [Hort99]. The conscript program pro-
vided a converter from RasMol to PyMOL [Mott10]. Language
converters for translating code between the leading molecular
graphics programs would allow users to more easily find and use
the optimal molecular graphics program for the task at hand.

We also provided snippets for PyMOL, which has 100,000
users, for use in text editors [Moo21a] and Jupyter notebooks
[Moo21b]. The former support tab triggers and tab stops; the latter
does not.

The libraries have to be molecular graphics program specific
because molecular graphics programs have been written in a range
of programming languages. The user issues the commands in ei-
ther in a general programming language like Python or a a domain
specific language (DSL) like pml. It would cause confusion to mix
snippets from multiple languages. To counter this growing tower
of babel, the OpenStructure initiative was formed [Bias13].

We have also worked out how to deploy this snippet libraries in
OnDemand notebooks at High-Performance Computing centers.
These notebooks resemble Colab notebooks in that JupyterLab
extensions cannot be installed. However, they do not have any
alternate support for accessing snippets from menus in the GUI.
Instead, we had to create IPython magics for each snippet that
load the snippet’s code into the code cell. This system would also
work on Colab and may be preferred by expert users because the
snippet names used to invoke magic are under autocompletetion.
That is, the user enters the start of a name and IPython suggests
the remainder of the name in a pop-up menu. We offer a variant
library that inserts a commented out copy of the code that has been
annotated with the sites that are to be edited by the user.

Opportunities for Interoperability

The set of template libraries can encourage synergistic interop-
erability between software packages supported by the snippet
libraries. That is the development of notebooks that use two or
more software packages and even programming languages. More

general and well-known examples of interoperability include the
Cython packages in Python that enable the running of C++ code
inside Python, the reticulate package that enables the running of
Python code in R , and the PyCall package in Julia that enables
the running of the Python packages in Julia. The latter package
is widely used to run matplotlib in Julia. Interoperability already
occurs between the CCP4, clipper, and CCTBX projects and to a
limited extent between CCTBX and PyMOL, but interoperability
could be more widespread if the walls around the software silos
were lowered. The snippet libraries provided here can prompt
interoperability on Colab by their proximity on Colab.

Polyglot snippets

The unique feature of the Colab snippets is that a given snippet
can contain multiple cells. The cells can be a mix of markdown
(text cells) and code cells. The cells can also use a mix of
programming languages invoked by different cell magics. Cell
magics are an alternate method to kernels for switching between
programming languages. The code for defining various cell mag-
ics are included in our snippet library. The supported compiled
programming languages include C, C++, Julia, and Fortran2008.
The bash cell magic is built into Colab. This ability to two or
more programming languages in one snippet leads to polyglot
snippets. Some operations involving two or more programming
languages need to be executed sequentially. These can be best
grouped together in one snippet. This feature of polyglot snippets
save time because the user does not have to reinvent the workflow
by finding and inserting into the notebook a series of snippets.

Ubiquitous computing platform on the cloud

Colab provides the user with a ubiquitous instance of Ubuntu.
Colab is accessed by opening Jupyter Notebooks stored on the
users’ Google Drive account. Colab can be accessed from devices
that can access the Google Drive account. The opening of the
Colab instance is rapid in contrast to the Binder service where
the building of a new Ubuntu instance requires a wait of many
minutes. In addition, the Colab session remains active for up to
12 hours on the free plan and longer on paid plans whereas a
Binder instance closes after ten minutes of inactivity. Binder is an
open-source project while Colab is a closed source project. Colab
maintains the Ubuntu operating system so the user does not need
to spend time on software updates.
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