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Accelerating Spectroscopic Data Processing Using
Python and GPUs on NERSC Supercomputers

Daniel Margala**, Laurie Stephey*, Rollin Thomas*, Stephen Bailey®

Abstract—The Dark Energy Spectroscopic Instrument (DESI) will create the
most detailed 3D map of the Universe to date by measuring redshifts in light
spectra of over 30 million galaxies. The extraction of 1D spectra from 2D spec-
trograph traces in the instrument output is one of the main computational bot-
tlenecks of DESI data processing pipeline, which is predominantly implemented
in Python. The new Perlmutter supercomputer system at the National Energy
Scientific Research and Computing Center (NERSC) will feature over 6,000
NVIDIA A100 GPUs across 1,500 nodes. The new heterogenous CPU-GPU
computing capability at NERSC opens the door for improved performance for
science applications that are able to leverage the high-throughput computation
enabled by GPUs. We have ported the DESI spectral extraction code to run on
GPU devices to achieve a 20x improvement in per-node throughput compared
to the current state of the art on the CPU-only Haswell partition of the Cori
supercomputer system at NERSC.

Index Terms—Python, HPC, GPU, CUDA, MPI, CuPy, Numba, mpi4py, NumPy,
SciPy, Astronomy, Spectroscopy

Introduction

The Dark Energy Spectroscopic Instrument (DESI) experiment
is a cosmological redshift survey. The survey will create the
most detailed 3D map of the Universe to date, using position
and redshift information from over 30 million galaxies. During
operation, around 1000 CCD frames per night (30 per exposure)
are read out from the instrument and transferred to NERSC for
processing and analysis. Each frame contains 500 2D spectrograph
traces from galaxies, standard stars (for calibration), or just the
sky (for background subtraction). These traces must be extracted
from the CCD frames taking into account optical effects from
the instrument, telescope, and the Earth’s atmosphere. Redshifts
are measured from the extracted The data is processed in near-
real time in order to monitor survey progress and update the
observing schedule for the following night. Periodically, a com-
plete reprocessing of all data observed to-date is performed and
made available as data release to the collaboration and eventually
released to the public.

The DESI spectral extraction code is an implementation of the
spectro-perfectionism algorithm, described in [BS10]. The process
of extracting 1D spectra from 2D spectrograph traces for all 500
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targets per frame is computationally intensive and has been the
primary focus of optimization efforts for several years ((RTD " 17],
[STB19]). The DESI data processing pipeline is predominantly
implemented using the Python programming language. A strict
requirement from the DESI data processing team is to keep the
code implementation in Python.

The existing state of the art implementation utilizes a divide
and conquer framework to make spectro-perfectionism algorithm
tractable on existing computing hardware, see Figure 1. The
code utilizes the Message Passing Interface (MPI) via mpidpy to
exploit both multi-core and multi-node parallelism ([DPS05]). The
application uses multidimensional array data structures provided
by NumPy along with several linear algebra and special functions
from the NumPy and SciPy libraries ((HMvdW " 20], [VGO™20]).
Several expensive kernels are implemented using Numba just-in-
time compilation ([LPS15]). All input and output files are stored
on disk using the FITS file format. The application is parallelized
by dividing an image into thousands of small patches, performing
the extraction on each individual patch in parallel, and stitching
the result back together.

This has worked well for CPU-only computing architectures
such as the Haswell (Intel Xeon Processor E5-2698 v3) and
Knights Landing (Intel Xeon Phi Processor 7250) partitions on the
Cori! supercomputer at NERSC. The new Perlmutter’ supercom-
puter system at NERSC will have a partition of GPU accelerated
nodes (AMD EPYC 7763, NVIDIA A100 GPU). The goal of
this work is to speed up the DESI experiment’s data processing
pipeline by porting the spectroscopic extraction step to run on the
GPU partition of the Perlmutter supercomputer at NERSC.

In early 2020, the team began reimplementing the existing
extraction code specter’ by reconsidering the problem. The DESI
spectral extraction problem is fundamentally an image process-
ing problem which historically have been well-suited to GPUs.
However, in many places, the existing CPU version of the code
used loops and branching logic rather than vector or matrix-
based operations. We performed a significant refactor switching
key parts of the analysis to matrix-based operations which would
be well suited to massive GPU parallelism. Additionally, the
refactor enabled more flexible task partitioning and improved node
utilization. From this refactor alone, still running only on the CPU,
we obtained 1.6x speedup compared to the original CPU version.
From here, we began our GPU implementation.

1. https://docs.nersc.gov/systems/cori/
2. https://docs.nersc.gov/systems/perlmutter/
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Fig. 1: The goal of the algorithm is to extract spectra from raw telescope output. Here we show the raw telescope output for a single "patch”
and the corresponding pieces of the extracted spectra. The divide and conquer strategy used in this application divides an image into roughly
5,000 patches which can be extracted in parallel. The extracted pieces are then stiched back together and written to disk for further processing

by the data pipeline.

We describe our iterative approach to porting and optimizing
the application using NVIDIA Nsight Systems for performance
analysis. We use a combination of CuPy and JIT-compiled CUDA
kernels via Numba for GPU-acceleration. In order to maximize
use of resources (both CPUs and GPUs), we use MPI via mpidpy
and CUDA Multi-Process Service. We discuss the lessons we
learned during the course of this work that will help guide future
efforts of the team and inform other science teams looking to
leverage GPU-acceleration in their Python-based data processing
applications. We project that new extraction code gpu_specter*
running on Perlmutter will achieve a 20x improvement in per-
node throughput compared to the current production throughput
on Cori Haswell.

GPU Implementation

The existing CPU implementation uses NumPy and SciPy (BLAS
and LAPACK) for linear algebra, numba just-in-time compilation
for specialized kernels, and mpidpy (MPI) for multi-core and
multi-node scaling. The code is parallelized to run on multiple
CPU cores and nodes using a Single Program Multiple Data
(SPMD) programming pattern enabled by MPI through mpidpy.
The structure of the program is illustrated in Figure 2, which
highlights the main MPI communication points.

In order to leverage the compute capabilities of GPU devices
and adhere to the DESI Python requirement, we decided to
use a GPU-accelerated Python library. The main considerations
for heterogeneous CPU-GPU computing are to minimize data
movement between the CPU host and the GPU device and to feed
the GPU large chunks of data that can be processed in parallel.
Keeping those considerations in mind, we left rest of the GPU
programming details to external libraries. There are many rapidly
maturing Python libraries that allow users to write code that will

3. https://github.com/desihub/specter
4. https://github.com/desihub/gpu_specter
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Fig. 2: An illustration of the program structure highlighting main MPI
communication points. Flow runs from top to bottom.

run on GPU hardware, such as CuPy, pyCUDA, pytorch, JAX, and
Numba CUDA. We chose to use CuPy [OUN'17] and Numba
CUDA based on our ability to easily integrate their API with our
existing code.

The initial GPU port was implemented by off-loading compute
intensive steps of the extraction to the GPU using CuPy in
place of NumPy and SciPy. A few custom kernels were also
re-implemented using Numba CUDA just-in-time compilation. In
many cases, we merely replaced an existing API call from numpy,
scipy, or numba.jit with equivalent GPU-accelerated version from
cupy, cupyx.scipy, or numba.cuda.jit.
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The example code below demonstrates how we integrated
cupy, numba.cuda, and the NumPy API:
import

import
import

cupy
numba . cuda

numpy

# CUDA kernel
@numba.cuda. jit
def _cuda_addone (x) :
numba.cuda.grid (1)
if 1 < x.size:

x[1i] += 1

i =

# convenience wrapper with thread/block conf
def addone (x):

# threads per block

tpb = 32
# blocks per grid
bpg = (x.size + (tpb - 1)) // tpb
_cuda_addone [bpg, tpb] (x)
# create array on device using cupy
X = cupy.zeros (1000)
# pass cupy ndarray to numba.cuda kernel
addone (x)

# Use numpy api with cupy ndarray

total = numpy.sum(x)

We found that this interopability gave us a lot of flexibility to
experiment during development. This achieved our initial goal
porting the application to run on GPU hardware.

In the following sub-sections, we will discuss the major
development milestones that lead to the improved performance
of the application on GPUs.

Profiling the Code

As discussed in previous work [STB19], the team found a lot of
value using profiling tools such as the cProfile Python module.
In this work, we used NVIDIA’s NSight Systems to profile
the application, identify bottlenecks in performance, and focus
optimization efforts. We added CUDA NVTX markers (using the
CuPy API) to label regions of our code using descriptions that we
would be able to easily identify in the profile viewer. Without these
labels, it sometimes difficult to decipher the names of low-level
kernels that are called indirectly by our application. We generally
used a following command to generate profiles of our application:
--sample=none \

——trace=cuda,nvtx \

--stats=true \

<optional mpirun/srun> \

<optional mps-wrapper> \

app.py <app args>

nsys profile

The nsys profile launches and profiles our application. Usuaully,
we disable CPU sampling (--sample=none) and only trace CUDA
and NVTX APIs (--trace=cuda,nvtx) to limit noise in the profile
output. When using MPI, we add the mpirun or equivalent (srun
on NERSC systems) executable with its arguments following the
arguments to the nsys profile segment of the command. Simi-
larily, when using the CUDA Multi-Process Service, we include
a wrapper shell script that ensures the service is launches and
shutdowns from a single process per node. Finally, we specify
the executable we wish to profile along with its arguments. The
--stats=true option generates a set of useful summary statistics
that is printed to stdout. For a more detailed look at runtime
performance, it is useful view the generated report file using the
NSight Systems GUI.

iguration

Nsight Systems provides a zoomable timeline view that allows
us to visualize the performance of our code. Using Nsight Sys-
tems, we can see the regions of our code that we marked with
NVTX wrappers, as well as the lower level memory and kernel
operations. In Figure 3, we show a screenshot from an early profile
of our GPU port using the NSight Systems GUI. At a high-level,
we see that memory transfers and kernel executions, respectively,
account for 3% and 97% of the time spent on GPU. From this
profile, we identified that approximately 85% of the runtime of
the application is spent in the "decorrelate" step of the algorithm.
We also discovered an unexpected performance issue near the
end patch extraction that we were able to solve using NumPy
advanced array indexing. The execution time of the decorrelate
method is dominated by the eigenvalue decomposition operations.
Profiling also helped identify unexpected performance issues in
code regions we did not expect.

Maximizing Node Utilization

We use multiple GPUs in our application via MPI (mpidpy).
Since the CPU implementation is already using MPI, minimal
refactor was required. Each MPI rank is assigned to a sin-
gle GPU. Mapping MPI ranks to GPUs can be handled using
slurm options (--gpu-bind), setting environment variables such
as CUDA_VISIBLE_DEVICES, or at runtime using the CuPy
API (cupy.cuda.Device.use()). We oversubscribe ranks to GPUs
to saturate GPU utilization using CUDA Multi-Process Service
(MPS), which allows kernel and memcopy operations from dif-
ferent processes to overlap on the GPU. Some care must be
taken to avoid over allocating memory on each device. We use
a shell script wrapper to ensure the CUDA MPS control daemon
is started by a single process on each node process server before
launching our application. At NERSC, we use the following script
which references environment variables set by the slurm workload
manager.

#!/bin/bash
# Example mps-wrapper
# > s

usage:
pper command argl

export CU /tmp/nvidia-mps

export C : =/tmp/nvidia-log

# Launch MI single rank per node

if [ SSLURM_LOCALID -eq O ]; then
nvidia-cuda-mps—-control -d

fi

# Wait for MPS to start

sleep 5

# Run the command
nean

# Quit MPS control daemon before exiting
if [ SSLURM_LOCALID -eq O ]; then

echo quit | nvidia-cuda-mps-control
fi

In Figure 4, we show how performance scales with the number
of GPUs used and the number of MPI ranks per GPU. The solid
colored lines indicate the improved performance as we increase the
number of GPU used. Different colors represent varying degrees of
the number of MPI ranks per GPU. In this case, using 2 MPI ranks
per GPU seems to saturate performance and we observe a slight
degradation in performance oversubscribing further. We reached
the GPU memory limit when attempting to go beyond 4 MPI
ranks per GPU. The measurements for the analysis shown here
were performed on test node at NERSC using 4 NVIDIA V100
GPUs. The Perlmutter system will use NVIDIA A100 (40GB)
GPUs which have more cores and significantly more memory than
the V100 (16GB) GPUs. A similar analysis showed that we could
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Fig. 3: A screenshot of a profile from an early GPU port using NVIDIA Nsight Systems.

go up to 5 MPI ranks per GPU on a test system with A100s. We
note that while this configuration maximizes the expected GPU
utilization on a Perlmutter with 4 A100 GPUs, the 64-core AMD
Milan CPU is only at 31.25% utilization with 20 MPI ranks. Later
on, we will discuss one way to utilize a few of these spare CPU
cores.
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Fig. 4: Performance scaling with multiple NVIDIA V100 GPUs. The
solid colored lines indicate the improved performance as we increase
the number of GPU used. Different colors represent varying degrees
of the number of MPI ranks per GPU as indicated in the legend.
The horizontal blue lines representing CPU-only measurements were
approximate and only used for reference.

Batching GPU Operations

Earlier, we observed that eigenvalue decomposition accounted for
a significant portion of the execution time of our program. In the

spectro-perfectionism algorithm, an eigenvalue decomposition is
performed on the inverse covariance matrix which is then used
to calculate the covariance matrix followed by several smaller
eigenvalue decompositions that are performaned on the diagonal
blocks of the covariance matrix. Since the small eigenvalue de-
compositions are performed on independent sub-matrices, we tried
"batching" (or "stacking") the operations. We noted the existance
of a syevjBatched function in CUDA cuSOLVER library which
could perform eigenvalue decomposition on batches of input ma-
trices using a Jacobi eigenvalue solver. This was not immediately
available in Python via CuPy but we were able to implement
Cython wrappers in CuPy using similar wrappers already present
in CuPy as a guide. We submitted our implementation as a pull-
request to the CuPy project on GitHub’.

In Figure 5, we show profile snippets of that demonstate the
improved performance using the Jacobi eigenvalue solvers from
the cuSOLVER library. The execution time of the "decorrelate"
method improved by a factor of two.

This inspired us to look for opportunities to use batched
operations in our program. We found a significant speedup by
refactoring the application to extract spectra from multiple patches
in a subbundle using batched array and linear algebra operations.
This allowed us to leverage batched Cholesky decomposition and
solver operations on the GPU (potrfBatched and potrsBatched in
the cuSOLVER library). We contributed cupyx.linalg.posv (named
after LAPACK’s xPOSV routines) to solve the linear equations
A x = b via Cholesky factorization of A, where A is a real
symmetric or complex Hermitian positive-definite matrix®. Our
implementation was essentially a generalization of an existing
method cupyx.linalg.invh, which was implemented as the special
case where the right-hand side of the equation is the Identity
matrix. In Figure 6, we compare the profile timelines before
and after implementing batch Cholesky decomposition and solver
operations. The runtime for extraction over an entire subbundle of
5 spectra is 3.3 times faster using batched Cholesky operations.

5. https://github.com/cupy/cupy/pull/3488
6. https://github.com/cupy/cupy/pull/4291
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Overlapping Compute and 10

At this point, we observed that reading the input data and writing
the output results accounted for approximately 25%-30% of the
total wall time to process 30 frames from a single exposure in
series using a single node. The input data is read by a single MPI
rank, transferred to GPU memory, and then broadcast to other
MPI ranks using CUDA-aware MPI. After extraction, each MPI
rank transfers its results back to CPU memory and the results
are gathered to the root MPI rank. The root MPI rank combines
the results and writes the output to a FITS file on disk. Using
spare CPU cores, we were able to hide most of this IO latency
and better utilize the resources available on a node. When there
are multiple frames processed per node, the write and read steps
between successive frames can be interleaved with computation.

In Figure 7, we demonstrate how a subset of the MPI ranks

communicate to achieve this functionality. At a high level, the
processing of a single frame can be broken down into 3 distinct
phases: read, work, and write. The frames are processed in series,
frame one (green) is processed, then frame two (orange), and
finally frame (three). Panel a shows the non-overlapping sequence
of steps to process 3 frames in series. Panel b shows how the
overlapping of IO and computation is orchestrated using two
additional MPI ranks, dedicated reader and writer ranks. At the
start of the program, the reader rank reads the input data while
all worker ranks wait. The reader rank performs some initial
preprocessing and sends the data to the root computation rank.
Once the data has been sent, the reader rank begins reading
the next frame. After the worker root receives the input data, it
performs the work which can involve broadcasting the data to
additional worker ranks in the computation group (not shown in
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the diagram). The result on the root computation rank is then sent
to a specially designated writer rank. The computation group ranks
move on to processing the next frame which has already been read
from disk by a specially designated read rank. Meanwhile, the
writer rank finishes writing the previous result and is now waiting
to receive the next result.

Overlapping compute and IO in this manner effectively hides
the intermediate read and write operations between frames pro-
cessed serially on a node, reducing the wall time by over 60
seconds and providing a 1.34x speedup in per-node throughput.

Results

Throughout development, we performed a standard benchmark
after major feature implementations to track progress over time.
For DESI, a useful and practical benchmark of performance is
the number of frames that can be processed per node-time on
NERSC systems. Specifically, we use the throughput measure
frames-per-node-hour (FPNH) as the figure of merit (FoM) for
this application. This figure enables DESI to cost out how much
data it can process given a fixed allocation of compute resources.

A summary of benchmark results by major feature milestone
is shown in Figure 8 and listed in Table 1. The benchmark uses
data from a single exposure containing 30 CCD frames. After
major feature implementations, we typically perform a scan of hy-
perparameter values to identify the optimal settings. For example,
after the "batch-subbundle" implementation, the optimal number
of wavelength bins per patch changed from 50 to 30. The baseline
FoM for this application on the Edison and Cori supercomputers
is 27.89 FPNH and 40.15 FPNH, respectively. The initial refactor
improved the CPU-only performance on Cori Haswell by more
than 50%. Our initial GPU port achieved 6.15 FPNH on Cori
GPU nodes, an unimpressive mark compared to the baseline CPU
benchmarks. Using visual profiling to guide optimization effort,
we were able to iterively improve the performance to 362.2 FPNH
on Cori GPU nodes.

Since the Perlmutter system is not available at the time of
writing, we estimate the expected performance by running the
benchmark on an NVIDIA DGX-A100 system. A Perlmutter GPU
node will have the same NVIDIA A100 GPUs as the DGX system
and the newer AMD Milan CPU compared to the AMD Rome
CPU on DGX. The projected FoM for this application on the
new Perlmutter supercomputer is 575.25 FPNH, a roughly 20x
improvement over the Edison baseline.

Going forward, the team will need to re-evaluate where to
refocus optimization efforts. The performance of the spectral
extraction step is now comparable to other steps in the DESI data
processing pipeline. We are currently evaluating other steps in the
DESI pipeline for GPU acceleration. The DESI team may also
opt to spend the improved efficiency to perform more compute
intensive processing if there is a scientific opportunity.

Conclusion

The rising popularity of heterogenous CPU-GPU computing plat-
forms offers an opportunity for improving the performance of
science applications. Adapting scientific Python applications to
use GPU devices is relatively seamless due to the community
of developers working on GPU-accelerated libraries that provide

*. Note that the initial-gpu benchmark only processed a single frame instead
of all 30 frames from an expoosure.
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Numpy-compatible and SciPy-compataible APIs and, of course,
the excellent foundation provided by NumPy and SciPy projects.
Profiling tools such as NVIDA Nsight Systems and the cProfile
Python module often provide actionable insights to that can focus
optimization efforts. Refactoring code to expose parallelism and
use more vectorized operations often improves performance on
both CPU and GPU computing architectures. For DESI, the
transition to GPUs on Perlmutter will shorten the time it takes
to process years worth of data from weeks to months down to
hours to days.
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Fig. 7: Overlapping 10 and compute. In panel a, we show an example timeline of the root worker MPI rank performing the read, work, and
write steps to process 3 frames. In panel b, we show an example timeline of the root worker, read, and write MPI ranks performing the read,

work, and write steps along with their inter-communication to process 3 frames.

Note System Arch Nodes GPUs MPI Ranks Walltime FPNH
(CPU/GPU) Per Node Per Node (sec)
. Edison  Xeon 25 - 24 154.9 27.89
baseline
Cori Haswell 19 32 141.6 40.15
cpu-refactor  Cori Haswell 2 - 32 830.2 65.05
initial-gpu CoriGPU Skylake/V100 1 1 1 585.5" 6.15
. CoriGPU Skylake/V100 2 4 8 611.6 88.30
multi-gpu
DGX Rome/A100 2 4 16 526.8 102.51
. CoriGPU Skylake/V100 2 4 8 463.7 116.46
batch-eigh
DGX Rome/A100 2 4 16 372.7 144.90
batch- CoriGPU Skylake/V100 1 4 8 458.9 235.36
subbundle DGX  Rome/A100 1 4 20 252.4 427.86
. . CoriGPU Skylake/V100 1 4 10 362.2 298.19
interleave-io
DGX Rome/A100 1 4 22 187.7 575.25

TABLE 1: Summary of benchmark results by major feature milestone.
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Fig. 8: DESI Figure-of-Merit progress by major feature milestone.
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